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Writing Goals
• Write for the audience.  
- “Don’t just write what you want to say, write what the audience needs to hear.” 

• Get your audience to nod: if the reviewer doesn’t agree or wonders if you’re 
wrong, they are less likely to like your paper 

- Avoid weasel-y words: “Some researchers think…” Who? 
• Make your writing predictable 
- Readers are lazy 
- “You are not writing a mystery novel” 
- Upside-down pyramid writing: Important things at start of paper, section, 

paragraph
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[R. Chang, 2019]
D. Koop, CSCI 628, Fall 2021

http://www.cs.tufts.edu/comp/250VIS/lectures/08-how-to-write-vis-papers.pptx


Survey Paper
• "[A]ssist the reader in the hunt for previously published research papers on a 

given topic" 
• Full-length surveys can be 20-30 pages 
• Contributions: 
- A novel classification of the literature (how your classification differs from 

previous surveys, or whether the survey is the first of it’s kind in the field). 
- A compilation of future challenges or trends in the domain. 
- The identification of both mature and less explored research directions in the 

field.
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Liam McNabb and Robert S. Laramee / How to Write a Visualization Survey Paper: A Starting Point

importance and novelty of any paper by the end of the introduction
and the insight and benefits that can be gained from reading it. We
recommend authors strive for approximately three contributions.
These contributions are described in conjunction with the rest of
the first section, to make it clear how the survey paper fits into the
visualization field’s landscape. Examples of a typical contribution
include:

• A novel classification of the literature (how your classification
differs from previous surveys, or whether the survey is the first
of it’s kind in the field).

• A compilation of future challenges or trends in the domain.
• The identification of both mature and less explored research di-

rections in the field.

A good review paper considers key questions in the field. What
has been published so far? Are there any controversies, debates or
contradictions that should be brought to light? Which methodolo-
gies have researchers used, and which appear to be best? Who are
the leading experts in the field? And how the topic fits into the
landscape of visualization. By analyzing questions like these, your
survey presents some clear contributions to discuss.

The contributions of this paper include:

1. The first guidelines (to our knowledge) on how to write a survey
paper in data visualization or visual analytics.

2. Guidelines on the process of preparing a literature survey.
3. A structured survey paper template that can be followed, with

in-depth guidelines describing the content of each section.

Temporal Planning u: We believe a high quality, full survey pa-
per can take approximately a full year (part-time) to incrementally
prepare and write including the literature search. A significant por-
tion of this time concentrates on gathering the related literature on a
given literature review topic. Due to the length of full survey papers
(20-30 pages), it is time-consuming and difficult to undertake mul-
tiple internal full paper reviews and revisions, therefore it is helpful
to distribute the preparation, discussion and intermediate feedback
sessions periodically over the preparation time frame, to reduce the
drafting and corrections process in the final stages. A tested strat-
egy can separate the individual paper browsing and summarization
process from the main survey paper organization [Lar10]. Individ-
ual research paper summaries can be written on a weekly basis for
the first six months, yielding roughly 24 summarized topic papers
before any final decisions have been made on the organization, or
literature classification. This provides a good basis for potential pa-
per classifications to develop.

1.2. Challenges of Writing a Survey

We identify seven main challenges associated with writing a survey
paper.

1. Managing the amount of previously published literature (dis-
cussed throughout this paper)

2. Identifying a starting point (the purpose of this paper)
3. Deciding on a topic (see Scope, Section 1.5)
4. Performing a search (see Search Methodology, Section 1.3)
5. Interpreting individual research papers (see Section 3.1)

Literature Sources

Google Scholar [Goo16]
IEEE Xplore Digital Library [IEE16]
ACM Digital Library
Vispubdata [IHK⇤17]
The Annual EuroVis Conference
IEEE TVCG Journal
IEEE Pacific Visualization Symposium
IEEE VAST Conference
The Annual Eurographics Conference
The Eurographics Digital Library
Journal of Visual Languages & Computing
Information Visualization Journal
Computer Graphics Forum
Computer & Graphics
ACM Computing Surveys

Table 1: A shortlist of literature sources.

6. Deriving a classification of literature on the given topic (see Sec-
tion 3.2)

7. Determining related unsolved problems and future challenges
(see Section 5)

In the following sections, we address some of these central chal-
lenges.

1.3. Literature Search Methodology u

It is important to clearly describe how you search for the papers
cited in the survey. When a reader browses the literature review,
it is likely that you have found research papers that they may not
have seen. A new PhD student usually has not yet discovered all
of the relevant conferences and journals to search. The literature
search methodology provides the names of digital libraries, search
engines, search terms, and literature sources used to find literature
in your survey paper. If we are looking for research papers on the
topic of treemaps, we can use the Google Scholar search engine for
example [Goo16] to search the term "treemap". This gives us (at
the time of writing) over 16,000 related search results. By doing the
same using the IEEE Xplore Digital Library [IEE16], we get 115
items, and using vispubdata [IHK⇤17], we get 58 items. For visu-
alization purposes, the three previously-mentioned search engines
are a great tool. Combined with the use of Google Scholar’s "Cited
by..." option to find related work, you should be able to gather a
fairly complete set of papers. A complete list of sources to search
is provided in Table 1.

The other search consideration is a manual search. When you
have found one matching paper, it is likely that you will find a
number of related research papers in the related work of the given
match. This can be especially useful if there are related survey pa-
pers. If you find the majority of papers this way, providing a break-
down of conferences and journals may be a beneficial method of
presenting your literature search. The goal is to provide enough
information to make your literature search thorough and repro-
ducible.

c� 2019 The Author(s)
Eurographics Proceedings c� 2019 The Eurographics Association.

Finding Sources
• A search can yield thousands of papers 
• Use known "good" papers to locate more 

sources 
• "Cited by…" in Google Scholar
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Geographic Data
• Spatial data (have positions) 
• Cartography: the science of drawing maps 
- Lots of history and well-established procedures 
- May also have non-spatial attributes associated with items  
- Thematic cartography: integrate these non-spatial attributes (e.g. 

population, life expectancy, etc.) 
• Goals:  
- Respect cartographic principles 
- Understand data with geographic references with the visualization principles

5D. Koop, CSCI 628, Fall 2021



Projection Distortion
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[Mathigon]
D. Koop, CSCI 628, Fall 2021

https://mathigon.org/course/circles/spheres-cones-cylinders#sphere-maps
https://mathigon.org/course/circles/spheres-cones-cylinders#sphere-maps


Adding Data to Maps
• Discrete: a value is associated with a specific position 
- Size 
- Color Hue 
- Charts 

• Continuous: each spatial position has a value (fields) 
- Heatmap 
- Isolines

7D. Koop, CSCI 628, Fall 2021



Discrete Quantitative Attribute: Size
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Choropleth (Two Hues)
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Aggregation: 2016 Election by Precinct
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[R. Rohla and Washington Post, 2018]
D. Koop, CSCI 628, Fall 2021

[Interactive Version, NYTimes]

https://www.washingtonpost.com/news/politics/wp/2018/07/30/presenting-the-least-misleading-map-of-the-2016-election/
https://www.nytimes.com/interactive/2018/upshot/election-2016-voting-precinct-maps.html


Aggregation: 2016 Election by Country
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[Washington Post, 2018]
D. Koop, CSCI 628, Fall 2021

https://www.washingtonpost.com/news/politics/wp/2018/07/30/presenting-the-least-misleading-map-of-the-2016-election/


When to Use Choropleth Maps
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[L. C. Muth]
D. Koop, CSCI 628, Fall 2021

https://blog.datawrapper.de/choroplethmaps/


Paper Presentations
• Primary: Provide necessary background, present core ideas, step through 

techniques, discuss experiments and results 
- Channel the original authors as much as possible 

• Secondary: Provide critique: what is problematic, what could be improved, 
where could techniques be extended 

- Channel the reviewers as much as possible 
• Everyone: Read the paper, come with questions and discussion points

13D. Koop, CSCI 628, Fall 2021



Annotated Bibliography
• Likely related to your project, but can be another subject area 
• Wider breadth than just the related work of your project 
• Find 30-40 references, and write a few sentences on how they relate to your 

work/ideas 
- Ok to include papers that show novel variations of a technique, even if the 

paper is not mostly about the subject area! 
- Your annotations are not the abstract of the paper, include relationship with 

the subject area you're focusing on 
• Due next Thursday

14D. Koop, CSCI 628, Fall 2021



A Declarative Rendering Model for Multiclass Density Maps

Jaemin Jo, Frédéric Vernier, Pierre Dragicevic, and Jean-Daniel Fekete, Senior Member, IEEE

1 2 3 4 5 6 7

8 9 10 11 12 13 14

Fig. 1: Design alternatives for a four-class density map. 1 shows small multiples where each density map is individually presented
with a unique color; 2 stacks the density maps and blends the color at each pixel; 3 shows the color of the pixel with the highest
density; 4 - 6 use regular and irregular weaving patterns; 7 shows a contour plot for each class; and 8 – 14 use rebinning (binning
and aggregation over the density maps) with tiles produced by a random Voronoı̈ tessellation. The aggregated values are rendered in

8 with a flat color showing the highest density, 9 with hatching, 10 with proportional bars, 11 with regular weaving, 12 with a dot
density plot, 13 with bar-chart glyphs, and 14 with circle sizes.

Abstract—Multiclass maps are scatterplots, multidimensional projections, or thematic geographic maps where data points have a

categorical attribute in addition to two quantitative attributes. This categorical attribute is often rendered using shape or color, which

does not scale when overplotting occurs. When the number of data points increases, multiclass maps must resort to data aggregation

to remain readable. We present multiclass density maps: multiple 2D histograms computed for each of the category values. Multiclass

density maps are meant as a building block to improve the expressiveness and scalability of multiclass map visualization. In this

article, we first present a short survey of aggregated multiclass maps, mainly from cartography. We then introduce a declarative

model—a simple yet expressive JSON grammar associated with visual semantics—that specifies a wide design space of visualizations

for multiclass density maps. Our declarative model is expressive and can be efficiently implemented in visualization front-ends such as

modern web browsers. Furthermore, it can be reconfigured dynamically to support data exploration tasks without recomputing the raw

data. Finally, we demonstrate how our model can be used to reproduce examples from the past and support exploring data at scale.

Index Terms—Scalability, multiclass scatterplots, density maps, aggregation, declarative specification, visualization grammar

1 INTRODUCTION

In this article, we are interested in methods to increase the scalability
and expressiveness of 2D multiclass maps (i.e., visual representations
of data that consist of two quantitative attributes, which are mapped
to (x,y), and one categorical attribute). 2D multiclass maps include
scatterplots, multidimensional projections, and thematic geographic
maps, altogether called maps. These maps are supported by all the
multidimensional data visualization and cartographic systems, attesting
their popularity and effectiveness. In nonaggregated maps, the categori-
cal attribute is depicted using a categorical visual variable at each point,
such as color or shape. However, when the number of points increases,
the maps become unreadable because of excessive overplotting, which
can result from structural properties of the data (e.g., multiple points
being heavily clustered), or simply because of the sheer number of
points.

• Jaemin Jo is with with Seoul National University, Republic of Korea
E-mail: jmjo@hcil.snu.ac.kr

• Frédéric Vernier is with LIMSI, CNRS, Univ. Paris-Sud, Université
Paris-Saclay. E-mail: frederic.vernier@limsi.fr

• Pierre Dragicevic and Jean-Daniel Fekete are with Inria
E-mail: firstname.lastname@inria.fr

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

Massive datasets suitable to be visualized as multiclass maps are
easily available, for example, the RTI U.S. Synthetic Household Popu-
lation™ [50] containing one point per person in the United States (300
million) with their age, sex, race, income, and house location. Large
multiclass maps can also be easily generated by computing the projec-
tion of millions of multidimensional multiclass points using modern
scalable projection systems [39, 48].

To scale scatterplots, several approaches have been proposed, such
as adaptive opacity [15, 30, 32] and aggregation [13, 53]. However,
adaptive opacity does not scale well with the number of categories
since multiple categorical colors become ambiguous when blended,
and aggregation methods such as density plots are limited to purely
bivariate quantitative data. Few techniques have been described to
support the visualization of aggregated multiclass maps, and to our
knowledge, no system supports their visualization in a flexible way.

In this article, we present a declarative model to specify multiclass
density maps, multiple density plots with different classes, applicable
to an arbitrary number of points. Our contributions are:

• a review of visualization techniques for multiclass density maps,
• a conceptual model for describing a wide range of visualizations

of multiclass density maps, and
• a concise declarative grammar and its interpreter to specify their

rendering.
Our model relies on the creation of multiple aggregated data buffers

by visualization library back-ends, while a front-end system (e.g., a
web browser) allows interactively configuring and combining the data

Paper
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What is a Multi-class Map?
• Data:  
- 2 quantitative attributes mapped to x-position and y-position 
- 1 categorical attribute 

• Can be:  
- (1) scatterplots,  
- (2) multidimensional projections, 
- (3) thematic geography (maps!)
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Dasymetric Dot Density
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[K. Field]
D. Koop, CSCI 628, Fall 2021

http://carto.maps.arcgis.com/apps/webappviewer/index.html?id=8732c91ba7a14d818cd26b776250d2c3


Multiclass Density Maps (MDMs)
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What is a Density Map?
• Problem: too many points 
• Solution: Aggregate! 
- In 2D: 2D histogram
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Multiclass Density Map "Examples"
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[D. B. Sparks]
D. Koop, CSCI 628, Fall 2021

https://dsparks.wordpress.com/2011/10/24/isarithmic-maps-of-public-opinion-data/


Multiclass Density Map "Examples"
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[GOOD]
D. Koop, CSCI 628, Fall 2021

http://magazine.good.is/infographics/america-s-richest-counties-and-best-educated-counties


Multiclass Density Map "Examples"
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[GOOD]
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http://magazine.good.is/infographics/america-s-richest-counties-and-best-educated-counties


Multiclass Density Map "Examples"

22

[J. Bertin via ICACI]
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https://mapdesign.icaci.org/tag/semiology/


Fig. 6. Experiment 2 stimuli, 6 variables. From top to bottom: Blending
6 colors, 2-pixel size noise, visual angle 3 minutes; 4-pixel size noise,
visual angle 6 minutes.

variables in each state. The second condition included 51 displays
in which colors coexisted in an area by following a 2 pixel size noise
pattern and finally for the third condition the colors coexisted by cov-

ering different levels of a 4 pixel size noise pattern. The patterns were
made by filling the area of the map by a noise pattern of the appropriate
size and posterizing the pattern into 2, 3, 4 and 6 different levels while
equalizing the image histogram to get approximately the same num-
ber of pixels for each of the gray level values. This procedure ensured
that there were approximately the equal number of pixels belonging to
each of the coexisting colors(variables) in the states.

In order to remove the effect of any learning, for each of cases of the
2 variables, 3 variables, 4 variables and 6 variables we chose a random
swapping of the values belonging to each state while at the same time
ensuring that for each of the overlapping conditions, the same maps
were used in making the blend, small size noise and big size noise
versions.

In order to present a set of cognitively organized tasks to the
observers, each observer was shown a random order of the following
sets: all the blended images, all the small noise images and all the
large size noise images. Within each of the blended, small noise and
big noise groups, they randomly saw all the 2 variables, 3 variables, 4
and 6 variables respectively.

Procedure
Due to the large number of displays we were not able to test all
the states nor were we able to include repeated measures. The
instruction guided the participants to only look at the state of Iowa
and make their color evaluations by adjusting up to six sliders each of
which corresponding to one of the overlapping or coexisting variables.

Participants
Eighteen people (four females fourteen males, aged 21-38) partici-
pated in this experiment. Six of the participants were from university
of Minnesota, six were recruited from Gettysburg College and six
from NCSU.

4.2 Data Analysis and General Results

As shown in Figure 7 the results from experiment 2 indicate that the
error rates were significantly lower when the original color informa-
tion was available via the high frequency texture than when the colors
were blended. In the case of the blended representation, error rates
steadily rose as the number of components increased (a trend that we
found statistically significant in an ANOVA analysis). We observed
weak evidence of a similar effect in the case of the woven textures, but
it was not statistically significant.

An ANOVA analysis with a standard 95% confidence interval com-
pared two conditions: the type of color mixing (blending, small noise
textures, large noise textures) and the number of variables in the map
(2, 3, 4, or 6). Median accuracy for the target colors was used as a per-
formance metric (see Section 3.3 describing Experiment 1’s results for
a full explanation of how color accuracy was calculated). The ANOVA
analysis showed that both the type of color mixing and the number
of variables had a significant main effect (mixing type: F = 16.68
and p = 0.0035; number of variables: F = 52.51 and p < 0.001).
Within mixing types, Tukey’s HSD analysis found that at the 95%
level, blending was significantly different from, and worse than, weav-
ing.

When looking at blended colors, the parwise comparison showed
that 3 or 4 variables were significantly less accurate than 2 variables,
and 6 variables was significantly less accurate than 3 or 4 variables.
For both the small and the large noise textures, 6 variables was signif-
icantly less accurate than 2, 3, or 4 variables.

However the performance with 2,3 and 4 were not significantly dif-
ferent for either of the noise sizes. Subdividing results by number of
variables (2, 3, 4, and 6), blending was significantly less accurate than
noise textures in all four cases, while there were no significant differ-
ences in accuracy between the small and large noise textures in any of
the four cases.

Interestingly, despite the conviction of the participants that the col-
ors could not be differentiated from each other in the case of blending
more than 2 variables, all the participants were still able to perform

Multiclass Density Map "Examples"
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[H. Hagh-Shenas, 2007]
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Fig. 6. Experiment 2 stimuli, 6 variables. From top to bottom: Blending
6 colors, 2-pixel size noise, visual angle 3 minutes; 4-pixel size noise,
visual angle 6 minutes.

variables in each state. The second condition included 51 displays
in which colors coexisted in an area by following a 2 pixel size noise
pattern and finally for the third condition the colors coexisted by cov-

ering different levels of a 4 pixel size noise pattern. The patterns were
made by filling the area of the map by a noise pattern of the appropriate
size and posterizing the pattern into 2, 3, 4 and 6 different levels while
equalizing the image histogram to get approximately the same num-
ber of pixels for each of the gray level values. This procedure ensured
that there were approximately the equal number of pixels belonging to
each of the coexisting colors(variables) in the states.

In order to remove the effect of any learning, for each of cases of the
2 variables, 3 variables, 4 variables and 6 variables we chose a random
swapping of the values belonging to each state while at the same time
ensuring that for each of the overlapping conditions, the same maps
were used in making the blend, small size noise and big size noise
versions.

In order to present a set of cognitively organized tasks to the
observers, each observer was shown a random order of the following
sets: all the blended images, all the small noise images and all the
large size noise images. Within each of the blended, small noise and
big noise groups, they randomly saw all the 2 variables, 3 variables, 4
and 6 variables respectively.

Procedure
Due to the large number of displays we were not able to test all
the states nor were we able to include repeated measures. The
instruction guided the participants to only look at the state of Iowa
and make their color evaluations by adjusting up to six sliders each of
which corresponding to one of the overlapping or coexisting variables.

Participants
Eighteen people (four females fourteen males, aged 21-38) partici-
pated in this experiment. Six of the participants were from university
of Minnesota, six were recruited from Gettysburg College and six
from NCSU.

4.2 Data Analysis and General Results

As shown in Figure 7 the results from experiment 2 indicate that the
error rates were significantly lower when the original color informa-
tion was available via the high frequency texture than when the colors
were blended. In the case of the blended representation, error rates
steadily rose as the number of components increased (a trend that we
found statistically significant in an ANOVA analysis). We observed
weak evidence of a similar effect in the case of the woven textures, but
it was not statistically significant.

An ANOVA analysis with a standard 95% confidence interval com-
pared two conditions: the type of color mixing (blending, small noise
textures, large noise textures) and the number of variables in the map
(2, 3, 4, or 6). Median accuracy for the target colors was used as a per-
formance metric (see Section 3.3 describing Experiment 1’s results for
a full explanation of how color accuracy was calculated). The ANOVA
analysis showed that both the type of color mixing and the number
of variables had a significant main effect (mixing type: F = 16.68
and p = 0.0035; number of variables: F = 52.51 and p < 0.001).
Within mixing types, Tukey’s HSD analysis found that at the 95%
level, blending was significantly different from, and worse than, weav-
ing.

When looking at blended colors, the parwise comparison showed
that 3 or 4 variables were significantly less accurate than 2 variables,
and 6 variables was significantly less accurate than 3 or 4 variables.
For both the small and the large noise textures, 6 variables was signif-
icantly less accurate than 2, 3, or 4 variables.

However the performance with 2,3 and 4 were not significantly dif-
ferent for either of the noise sizes. Subdividing results by number of
variables (2, 3, 4, and 6), blending was significantly less accurate than
noise textures in all four cases, while there were no significant differ-
ences in accuracy between the small and large noise textures in any of
the four cases.

Interestingly, despite the conviction of the participants that the col-
ors could not be differentiated from each other in the case of blending
more than 2 variables, all the participants were still able to perform

https://www.csc2.ncsu.edu/faculty/healey/download/infovis.07.pdf


Scalability
• data size related to the number of data points and categories, 
- 100 million points or more with tens of categories 

• perceptual processing related to the ability to perform some tasks efficiently 
given a data size, and 

• computation speed related to the time to compute an image from a 
visualization technique given a data size 

- refresh rate between 25ms to 10s, depending on interaction type
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Splatterplots: Scatterplot Summarization
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5.3 Tree Cover Type Data Set
This standard data set from the UCI machine learning
repository [37] is derived from a cartographic survey of the
Roosevelt National Forest of Colorado and contains over
half a million instances, each with several different normal-
ized cartographic measurements, separated into seven
different kinds of tree cover types. A quick look at the
summary statistics of the data set reveals that two of the tree
cover types, Lodgepole Pine and Spruce, are in much higher
abundance than the others. One question we could ask is if
there are any specific patterns and trends in the data that
can help us decipher why this is. To explore this question,

we plot the top two cover types, against the bottom two,
Cottonwood/Willow and Aspen.

One of the advantages to using Splatterplots is that even
when the display size is small, we can still perceive general
trends in the data. This is especially useful when looking at
splatterplot matrices (Fig. 14a).

An inspection of the Splatterplot matrix (SPLAM) reveals
that elevation tends to spread out and separate the four
groups. Looking closely at the first column, we can also see
that the ranges of the groups along H Hydrology
(horizontal distance to nearest water source) varies.
Fig. 15a examines this more closely.

The large splatterplot confirms the judgement made
from the small plot in the SPLAM. It also reveals the full
extent of the data in each group. We can see that even
though the dense regions of all the groups tend to have a
pretty narrow range of H Hydrology, Lodgepole (purple),
and Spruce (red) spread out much further than the other
two cover types. If we also examine the plot of Elevation
versus V Hydrology (Fig. 15b), we can see that the same
types of patterns emerge. In fact, if we plot H Hydrology
versus V Hydrology, another pattern becomes clear.

From Fig. 16, we can see that Cottonwood and Apsen
have a much smaller range of distances to water than
Lodgepole and Spruce. From the analysis of the data, we
can start to form some hypothesis about why there are so
many more Lodgepole and Spruce cover types than
Cottonwood and Aspen. Cottonwood seems to like lower
elevations and be close to water sources. This could
probably mean that Cottonwood require more moisture to
grow and are more fragile trees. Aspen trees seem to be a bit
more tolerant to water source distance, but seem particu-
larly picky on elevation. This could be to the preference of a
type of soil, or temperature. In contrast, while Lodgepole
and Spruce seem to concentrate in specific regions elevation
and water source distances, both of these tree types seem a
lot more tolerant of large changes to these variables. One
might hypothesize that Spruce and Lodgepole are sturdier,

1534 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 19, NO. 9, SEPTEMBER 2013

Fig. 12. Applying different scatter-data visualization techniques to a data set generated by sampling a differently located Gaussian for each of eight
groups. Only Splatterplots are able to convey the circular nature of each set, the degree of overlap, and the existence of outliers

Fig. 13. A Splatterplot of fatal car crash locations in 2005 (blue) and
2010 (red). This demonstrates the technique working on a data set with
a spatial embedding. The views contrast dense and sparse regions
allowing the similarities of the subgroups to be seen.

Fig. 11. Applying Splatterplots to the pollen data set. Dense regions are notable in large-scale views, and details are exposed by zooming.

Authorized licensed use limited to: Northern Illinois University. Downloaded on March 04,2020 at 19:05:27 UTC from IEEE Xplore.  Restrictions apply. 

Splatterplot: Summarization Changes During Zoom
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5.3 Tree Cover Type Data Set
This standard data set from the UCI machine learning
repository [37] is derived from a cartographic survey of the
Roosevelt National Forest of Colorado and contains over
half a million instances, each with several different normal-
ized cartographic measurements, separated into seven
different kinds of tree cover types. A quick look at the
summary statistics of the data set reveals that two of the tree
cover types, Lodgepole Pine and Spruce, are in much higher
abundance than the others. One question we could ask is if
there are any specific patterns and trends in the data that
can help us decipher why this is. To explore this question,

we plot the top two cover types, against the bottom two,
Cottonwood/Willow and Aspen.

One of the advantages to using Splatterplots is that even
when the display size is small, we can still perceive general
trends in the data. This is especially useful when looking at
splatterplot matrices (Fig. 14a).

An inspection of the Splatterplot matrix (SPLAM) reveals
that elevation tends to spread out and separate the four
groups. Looking closely at the first column, we can also see
that the ranges of the groups along H Hydrology
(horizontal distance to nearest water source) varies.
Fig. 15a examines this more closely.

The large splatterplot confirms the judgement made
from the small plot in the SPLAM. It also reveals the full
extent of the data in each group. We can see that even
though the dense regions of all the groups tend to have a
pretty narrow range of H Hydrology, Lodgepole (purple),
and Spruce (red) spread out much further than the other
two cover types. If we also examine the plot of Elevation
versus V Hydrology (Fig. 15b), we can see that the same
types of patterns emerge. In fact, if we plot H Hydrology
versus V Hydrology, another pattern becomes clear.

From Fig. 16, we can see that Cottonwood and Apsen
have a much smaller range of distances to water than
Lodgepole and Spruce. From the analysis of the data, we
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5.3 Tree Cover Type Data Set
This standard data set from the UCI machine learning
repository [37] is derived from a cartographic survey of the
Roosevelt National Forest of Colorado and contains over
half a million instances, each with several different normal-
ized cartographic measurements, separated into seven
different kinds of tree cover types. A quick look at the
summary statistics of the data set reveals that two of the tree
cover types, Lodgepole Pine and Spruce, are in much higher
abundance than the others. One question we could ask is if
there are any specific patterns and trends in the data that
can help us decipher why this is. To explore this question,

we plot the top two cover types, against the bottom two,
Cottonwood/Willow and Aspen.

One of the advantages to using Splatterplots is that even
when the display size is small, we can still perceive general
trends in the data. This is especially useful when looking at
splatterplot matrices (Fig. 14a).

An inspection of the Splatterplot matrix (SPLAM) reveals
that elevation tends to spread out and separate the four
groups. Looking closely at the first column, we can also see
that the ranges of the groups along H Hydrology
(horizontal distance to nearest water source) varies.
Fig. 15a examines this more closely.

The large splatterplot confirms the judgement made
from the small plot in the SPLAM. It also reveals the full
extent of the data in each group. We can see that even
though the dense regions of all the groups tend to have a
pretty narrow range of H Hydrology, Lodgepole (purple),
and Spruce (red) spread out much further than the other
two cover types. If we also examine the plot of Elevation
versus V Hydrology (Fig. 15b), we can see that the same
types of patterns emerge. In fact, if we plot H Hydrology
versus V Hydrology, another pattern becomes clear.

From Fig. 16, we can see that Cottonwood and Apsen
have a much smaller range of distances to water than
Lodgepole and Spruce. From the analysis of the data, we
can start to form some hypothesis about why there are so
many more Lodgepole and Spruce cover types than
Cottonwood and Aspen. Cottonwood seems to like lower
elevations and be close to water sources. This could
probably mean that Cottonwood require more moisture to
grow and are more fragile trees. Aspen trees seem to be a bit
more tolerant to water source distance, but seem particu-
larly picky on elevation. This could be to the preference of a
type of soil, or temperature. In contrast, while Lodgepole
and Spruce seem to concentrate in specific regions elevation
and water source distances, both of these tree types seem a
lot more tolerant of large changes to these variables. One
might hypothesize that Spruce and Lodgepole are sturdier,
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6 CONCLUSION

Splatterplots provide a new technique for displaying point
data that scales well with the number of points. As the number
of points grows larger, the amount of information to be
presented exceeds what can be displayed. Splatterplots
explicitly abstract the data to fit within a screen-space
information density bound. By showing dense regions of
points as contour-bounded filled areas and subsampling the
number of points outside these areas, Splatterplots preserve
the ability to see overall shapes and trends, relationships
between sets, and a sense of the range of outliers—even as the
number of data points greatly exceeds the number of pixels.
Detailed information hidden by these abstractions can be
revealed through interactive navigation, made possible at

interactive rates through an efficient GPU-accelerated im-
plementation.

The key feature of Splatterplots, that information is
abstracted based on screen-space limits to enforce readability,
is also a limitation. Abstraction removes detail that may be
important to the viewer. The choices in Splatterplots
emphasize conveying shape and set relations, at the expense
of providing details of density and specific point positions.
Specific points can be revealed through zooming. However,
for some applications, different tradeoffs may be advanta-
geous. Splatterplots allow the user to explore the density
through interactive control of the aggregation parameter.
However, user control over parameters emphasizes another
limitation: Changes to the parameter effect the shapes of the
dense regions. The impact of this issue is lessened because
Splatterplots have few parameters; these parameters are easy
to control because they are defined in screen (rather than
data) space; and the displays can be updated at interactive
rates allowing experimentation with parameters.

Another limitation of Splatterplots is that most abstrac-
tion is done on individual data subgroups, which may
potentially lead to visual complexity due to the interactions
between subgroups. Fig. 19 shows an example of this
phenomenon. Notice how in Fig. 19a each of the separate
contours is relatively smooth and has easy to perceive
features. However, once the contours are displayed on the
same plot, the contours interact in nonobvious ways,
creating a large number of visually salient and distracting
features. Increasing the amount of smoothing during KDE
greatly diminishes and performing shape optimization
reduce these problems and makes the resulting Splatterplot
more comprehensible. However, we rely on user tuning of
the abstraction parameters to find the appropriate balance
of data fidelity and readability.

While Splatterplots scale well in the number of points,
they are limited in their scaling in the number of subgroups.
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Fig. 18. Top seven genres plotted at once. Notice how Prin1 separates
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These trends are more difficult to pick out in the scatter plot.
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visual complexity in the final view.
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Class Buffer Model
• Binning (back-end): data buffers aka 2D histograms 
• Preprocessing: data buffer operations like smoothing 
• Styling: add visual properties to data buffers to get class buffers 
• Rebinning: partition into tiles and aggregate 
• Assembly: single density map image 
- uses masking, mixing, hatching, glyphs 

• Rendering: add backgrounds, legends, etc. 

• Most work is done on the front-end (except binning)
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Fig. 3: The six stages of the Class Buffer model.

• a color that will determine the color scale used to visually represent
the class (see Fig. 1);

• a hatching angle, in case hatching is used (see Fig. 1- 9 );
• a scale that will be used to transform the counts before encoding

them visually (e.g., linear scale, log scale, or square-root scale).
All these visual properties are specified on the front-end using a

grammar that will be detailed in Sect. 4.8. All the visual properties
have default values. For example, by default, we assign a color from
ColorBrewer’s qualitative color scales [21] to each class buffer. How-
ever, controlling the color assignment is often important, as in Fig. 2-a
where the parties have well-known colors. Besides channel-specific
visual properties, this declarative grammar contains information on
data buffers (e.g., a URI to data buffers on a server) and specifies global
options for the pipeline (e.g., how color scales should be blended or
how tiles should be defined for the next stage).

4.4 Rebinning
The rebinning stage (Fig. 3-4) first partitions the W ⇥H grid into M
tiles. A tile is a set of cells in the W ⇥H grid, and the set of all tiles is
referred to as a tiling. Tilings are defined such that there is no overlap
between tiles and the union of all tiles is the whole W ⇥H grid. The
simplest tiling is pixel tiling, where each tile consists of a single cell
of the W ⇥H grid (i.e., M = W ⇥H). Other tilings contain tiles that
span multiple cells. Such tilings can be either regular (e.g., a set of
2⇥2 rectangles as in Fig. 3-4) or irregular (e.g., regions in a choropleth
map). Fig. 1- 8 – 14 are examples of irregular tilings, while Fig. 1- 1 – 3

use pixel tiling. Tiles can be defined based on geometrical primitives
or using the URI of a TopoJSON [6] specification to define geographic
administrative boundaries for choropleth maps.

After a tiling has been constructed, the rebinning process creates and
assigns a data vector to each of the M tiles. A data vector is a vector
of length N that stores a count for each class, called the aggregated
count. That is, all binned pixels from class i that belong to the tile t
are aggregated into a single value and stored in the ith element of the
data vector of t. Possible aggregate functions include sum (i.e., the
counts of the binned pixels are summed), min, mean, max, and density
(sum divided by area). Again, counts can take noninteger values. When
pixel tiling is used, aggregation amounts to simply copying counts from
binned pixels into data vectors.

Finally, the rebinning stage virtually normalizes all aggregated
counts between 0 and 1, according to the options assigned during
the styling stage (e.g., using a linear, log, square root, or equi-depth
histogram scale). These counts are called normalized counts. Con-
cretely, it defines a scale object that maps the range of counts to [0,1].
This scale object is later reused for the legend.

4.5 Assembly
The assembly stage (Fig. 3-5) turns the tiles and data vectors into an
image with an opacity (alpha) channel, which we refer to as a density
map image. Much of the visualization process occurs in this stage.

There are four broad types of assembly operations: masking, mixing,
hatching, and generating glyphs.

The first type of assembly operation, masking, assigns a mask to
each of the N class buffers. A mask is a W ⇥H grid of opacity values,
and the N masks are defined so that the sum of opacity values across all
classes is 1 for each of the pixels. Then each tile is rendered N times
with a uniform color. The color corresponds to the color previously
assigned to the class in the styling stage, and its opacity is set to the
normalized count stored in the data vector. The N tiles are finally
alpha-blended using the opacity values stored in the masks. Masks are
essentially used for producing weaving patterns, such as illustrated in
Fig. 1- 4 – 6 . In these examples, the mask opacity values are either 0 or
1, and the masks are used to define “patches.” Patches can be polygons,
such as triangles, rectangles (Fig. 1- 4 ), or hexagons (Fig. 1- 5 ). They
can be randomly assigned to class buffers (Fig. 1- 6 ) or follow a regular
pattern (Fig. 1- 4 ). Weaving guarantees that each pixel in the density
map image is assigned a unique class. When no masking is specified,
conflicts can be resolved using other types of assembly operations.

The mixing operation combines tiles by blending them. Similar
to masking, each tile is rendered N times, again with a uniform color
corresponding to the class and an opacity value equal to the normalized
count. However, the colors are mixed across the entire tile instead of
being masked. A straightforward mixing approach consists in averag-
ing all colors (see Fig. 1- 2 for an example). Other mixing methods
can be used; for example, additive mixing sums each RGB channel
of the N colors, thus generating bright colors for high-density regions.
Multiplicative mixing does the opposite, yielding dark colors for high-
density regions (see Fig. 6b for an example). It is also possible to take a
winner-takes-all approach, where only the class with the highest count
is chosen (see Fig. 1- 8 for an example). Finally, we also define a
loser-takes-all approach, where only the class with the lowest nonzero
count is chosen, but its color intensity is inverted; low color values
become vivid. This mixing method can boost the visibility of outliers.

Tiles can also be rendered with a hatching operation, which fills
each tile with evenly spaced lines. Typically, normalized count is en-
coded with line thickness, while class is encoded using line orientation,
color, or texture. The hatches can be combined across classes either
by stacking them side by side within each tile (as in Fig. 2c-left) or by
superimposing them (as in Fig. 1- 10 ).

Finally, tiles can be rendered using a more conventional visualization
pipeline, i.e., by generating glyphs. Glyphs are miniature visualiza-
tions that encode all N normalized counts in the data vector and are
typically displayed at the center of each tile. For example, in Fig. 1- 13 ,
a bar chart is placed inside each tile, conveying the density for each
class. Meanwhile, Fig. 1- 14 uses a “punchcard” style, where densities
are mapped to circle radii. In our implementation, all such glyphs
can be specified in Vega-Lite [43], a high-level JSON grammar for
visualization. Note that finding a “good” location for the glyphs is not
always trivial. We currently compute the largest rectangle in polygon
for each tile and place the glyph at the center of that rectangle.

Class Buffer Model
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Legends
• Automatically generated 
• key: name and color for classes 
• scale: counts → visual attributes 
• explanation: how colors are mixed (not for hatching/masking)
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The assembly operation is optional. When no assembly operation
has been specified, each tile is rendered using a uniform translucent
color as previously described, and the process outputs N density map
images instead of a single one, leaving the conflict resolution to the
final rendering stage.

4.6 Rendering
The final rendering stage turns the density map image(s) into a final
image that can be directly displayed on the screen (Fig. 3-6). In case
the classes were already assembled in the previous stage, the density
map image is simply rendered on a background. The background color
defines the lower end of the color scales used in the final visualiza-
tion. For example, a white background produces color scales where
zero or minimum density is mapped to white (as in Fig. 1). While
backgrounds can be uniform, they can also consist of cartographic
backgrounds that provide extra annotations such as city locations and
names. Alternatively, annotations can be rendered on top of the density
map image. The rendering stage augments the rendered density maps
with any extra visual element necessary to improve readability and
interpretability. This stage is responsible for rendering optional contour
plots (see Fig. 1- 7 ), tile boundaries, the x and y axes, and the legend
(discussed in more detail in the next section). Finally, it decides on
where to render the density map image and at what scale (e.g., in case
of pixel magnification). In the case of multiple density map images
(i.e., no assembly), each density map image is rendered at different
locations (i.e., a small multiples approach, see Fig. 1- 1 ).

4.7 Legends
To be usable, a multiclass density map needs a legend. Our current
implementation of the Class Buffer model automatically generates
simple legends (Fig. 4). Our legends consist of three parts: (1) a key
that maps class colors to class names, (2) a scale to help retrieve counts,
and (3) an optional explanation of how mixing is done.

The key, present in all our legends, lists the name and color that
is assigned to each class buffer. The scale shows how counts map to
visual attributes. In most cases, it consists of a set of color ramps (Fig. 4
[a–c]). The color ramps linearly interpolate between the colors of the
lowest and the highest count and add ticks that are equally distant in
the data domain. Thus, if a nonlinear scale has been specified, the ticks
are unevenly spaced in the legend, indicating that the scale is nonlinear
(Fig. 4 (b,c)). For glyph-based assemblies, the scale consists of one or
several glyphs with numerical labels, such as the miniature bar chart in
Fig. 4d or the circle-radius scale in Fig. 4e.

The last explanation area illustrates which mixing function (e.g.,
max as in Fig. 4a or mean as in Fig. 4b) was used for color mixing. We
considered using an Euler diagram or InfoCrystal [47] representation
to visualize all possible combinations of class colors. However, in our
case, the luminance level of class colors can vary depending on density,
and it is hard to simultaneously visualize the mixture of multiple colors
at different luminance levels. More generally, visualizing a multivariate
color scale with more than two variables is impossible, because it would
require the volumetric visualization of a cube or hypercube. Thus, we
only show the bivariate color scale derived from the first two class
buffers. Although this approach does not support value retrieval, it
explains how colors are mixed. We do not provide a similar explanation
for techniques such as masking and hatching because the way classes
are combined can be deduced by looking at the visualization itself.
For example, in Fig. 4c, class buffers are spatially separated through
weaving and do not involve any hidden mixing.

These techniques are meant to provide basic support for legends, and
can be improved or extended. For example, the key and scale could be
combined, as it is commonly the case in visualization and map legends.

4.8 Implementation
Our implementation is available, with example datasets, at
https://github.com/e-/Multiclass-Density-Maps and exam-
ples can also be explored at https://jaeminjo.github.io/
Multiclass-Density-Maps/.

(a) (b) (c) (d) (e)

Fig. 4: Auto-generated legends for multiclass density maps

{"description"?: <string>,
"background"?: <Color>,

"data": {"url": <url> | "dataSpec": <DataSpec>},
"smooth"?: {"radius": <number>},
"reencoding"?: {
"label"?: <LabelSpec>,

"color"?: <ColorSpec>,

"hatching"?: <HatchingSpec>},
"rescale"?: {
"type": "linear"|"log"|"pow"|"sqrt"|"cbrt"|"equidepth",

"rebin"?: {
"type": "none"|"square"|"rect"|"topojson"|"voronoi",

"aggregation": "mean"|"max"|"sum"|"min"|"density",

"width"?: <number>, "height"?: <number>,

"size"?: <number>, "topojson"?: <TopoJSONSpec>,

"url"?: <string>, "feature"?: <string>,

"points"?: <Point[]>, "stroke"?: <Color>},
"compose"?: {
"mix": "none"|"invmin"|"mean"|"max"| "blend"|

"weavingrandom"|"weavingsquare"|"weavinghex"|

"weavingtri"|"propline"|"hatching"|"separate"|

"glyph"|"dotdensity"|"time",

"mixing"?: "additive"|"subtractive"|"multiplicative",

"size"?: <number>, "widthprop"?: <string|number>,

"colprop"?:<boolean>, "order"?: <number[]>,

"glyphSpec"?: <GlyphSpec>, "interval"?: <number>},
"levels"?: <number>

},
"contour"?: {
"stroke": <number>, "lineWidth"?: <number>,

"values"?: <number[]>, "blur"?: <number> },
"legend"?: <LegendSpec>, "stroke"?: <StrokeSpec>,

"axis"?: <AxisSpec>}

Fig. 5: Syntax of Class Buffer specifications

Our Class Buffer model is implemented in approximately 5,000
lines of TypeScript, a strongly typed language that can be transpiled
into JavaScript. We render the tile glyphs using Vega-Lite [43], which
is conveniently also written in TypeScript. We also rely on the D3
library [7] for contours and cartographic projections.

Interpreting a specification takes between a few hundred millisec-
onds to one second depending on the complexity of the operations
to perform, not counting the time to transfer the data, including data
buffers and the TopoJSON file if needed. Currently, data buffers can
be sent as 2D arrays in the JSON format or as gray-scale 16-bit PNG
files.The data buffers in the JSON format are usually heavily com-
pressed by the gzip compression of the HTTP protocol when enabled,
as in our example gallery. Changing a specification and reinterpeting it
is usually much faster since data is not transferred, and intermediate
operations, such as rebinning, can be cached if the tiling is not changed,
which is common for maps.

Modern browsers support three graphic libraries: SVG, Canvas,
and WebGL. Our implementation is meant to be easy to read and
extend; therefore it uses the Canvas, which is faster than SVG but



The assembly operation is optional. When no assembly operation
has been specified, each tile is rendered using a uniform translucent
color as previously described, and the process outputs N density map
images instead of a single one, leaving the conflict resolution to the
final rendering stage.

4.6 Rendering
The final rendering stage turns the density map image(s) into a final
image that can be directly displayed on the screen (Fig. 3-6). In case
the classes were already assembled in the previous stage, the density
map image is simply rendered on a background. The background color
defines the lower end of the color scales used in the final visualiza-
tion. For example, a white background produces color scales where
zero or minimum density is mapped to white (as in Fig. 1). While
backgrounds can be uniform, they can also consist of cartographic
backgrounds that provide extra annotations such as city locations and
names. Alternatively, annotations can be rendered on top of the density
map image. The rendering stage augments the rendered density maps
with any extra visual element necessary to improve readability and
interpretability. This stage is responsible for rendering optional contour
plots (see Fig. 1- 7 ), tile boundaries, the x and y axes, and the legend
(discussed in more detail in the next section). Finally, it decides on
where to render the density map image and at what scale (e.g., in case
of pixel magnification). In the case of multiple density map images
(i.e., no assembly), each density map image is rendered at different
locations (i.e., a small multiples approach, see Fig. 1- 1 ).

4.7 Legends
To be usable, a multiclass density map needs a legend. Our current
implementation of the Class Buffer model automatically generates
simple legends (Fig. 4). Our legends consist of three parts: (1) a key
that maps class colors to class names, (2) a scale to help retrieve counts,
and (3) an optional explanation of how mixing is done.

The key, present in all our legends, lists the name and color that
is assigned to each class buffer. The scale shows how counts map to
visual attributes. In most cases, it consists of a set of color ramps (Fig. 4
[a–c]). The color ramps linearly interpolate between the colors of the
lowest and the highest count and add ticks that are equally distant in
the data domain. Thus, if a nonlinear scale has been specified, the ticks
are unevenly spaced in the legend, indicating that the scale is nonlinear
(Fig. 4 (b,c)). For glyph-based assemblies, the scale consists of one or
several glyphs with numerical labels, such as the miniature bar chart in
Fig. 4d or the circle-radius scale in Fig. 4e.

The last explanation area illustrates which mixing function (e.g.,
max as in Fig. 4a or mean as in Fig. 4b) was used for color mixing. We
considered using an Euler diagram or InfoCrystal [47] representation
to visualize all possible combinations of class colors. However, in our
case, the luminance level of class colors can vary depending on density,
and it is hard to simultaneously visualize the mixture of multiple colors
at different luminance levels. More generally, visualizing a multivariate
color scale with more than two variables is impossible, because it would
require the volumetric visualization of a cube or hypercube. Thus, we
only show the bivariate color scale derived from the first two class
buffers. Although this approach does not support value retrieval, it
explains how colors are mixed. We do not provide a similar explanation
for techniques such as masking and hatching because the way classes
are combined can be deduced by looking at the visualization itself.
For example, in Fig. 4c, class buffers are spatially separated through
weaving and do not involve any hidden mixing.

These techniques are meant to provide basic support for legends, and
can be improved or extended. For example, the key and scale could be
combined, as it is commonly the case in visualization and map legends.

4.8 Implementation
Our implementation is available, with example datasets, at
https://github.com/e-/Multiclass-Density-Maps and exam-
ples can also be explored at https://jaeminjo.github.io/
Multiclass-Density-Maps/.
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Fig. 4: Auto-generated legends for multiclass density maps

{"description"?: <string>,
"background"?: <Color>,

"data": {"url": <url> | "dataSpec": <DataSpec>},
"smooth"?: {"radius": <number>},
"reencoding"?: {
"label"?: <LabelSpec>,

"color"?: <ColorSpec>,

"hatching"?: <HatchingSpec>},
"rescale"?: {
"type": "linear"|"log"|"pow"|"sqrt"|"cbrt"|"equidepth",

"rebin"?: {
"type": "none"|"square"|"rect"|"topojson"|"voronoi",

"aggregation": "mean"|"max"|"sum"|"min"|"density",

"width"?: <number>, "height"?: <number>,

"size"?: <number>, "topojson"?: <TopoJSONSpec>,

"url"?: <string>, "feature"?: <string>,

"points"?: <Point[]>, "stroke"?: <Color>},
"compose"?: {
"mix": "none"|"invmin"|"mean"|"max"| "blend"|

"weavingrandom"|"weavingsquare"|"weavinghex"|

"weavingtri"|"propline"|"hatching"|"separate"|

"glyph"|"dotdensity"|"time",

"mixing"?: "additive"|"subtractive"|"multiplicative",

"size"?: <number>, "widthprop"?: <string|number>,

"colprop"?:<boolean>, "order"?: <number[]>,

"glyphSpec"?: <GlyphSpec>, "interval"?: <number>},
"levels"?: <number>

},
"contour"?: {
"stroke": <number>, "lineWidth"?: <number>,

"values"?: <number[]>, "blur"?: <number> },
"legend"?: <LegendSpec>, "stroke"?: <StrokeSpec>,

"axis"?: <AxisSpec>}

Fig. 5: Syntax of Class Buffer specifications

Our Class Buffer model is implemented in approximately 5,000
lines of TypeScript, a strongly typed language that can be transpiled
into JavaScript. We render the tile glyphs using Vega-Lite [43], which
is conveniently also written in TypeScript. We also rely on the D3
library [7] for contours and cartographic projections.

Interpreting a specification takes between a few hundred millisec-
onds to one second depending on the complexity of the operations
to perform, not counting the time to transfer the data, including data
buffers and the TopoJSON file if needed. Currently, data buffers can
be sent as 2D arrays in the JSON format or as gray-scale 16-bit PNG
files.The data buffers in the JSON format are usually heavily com-
pressed by the gzip compression of the HTTP protocol when enabled,
as in our example gallery. Changing a specification and reinterpeting it
is usually much faster since data is not transferred, and intermediate
operations, such as rebinning, can be cached if the tiling is not changed,
which is common for maps.

Modern browsers support three graphic libraries: SVG, Canvas,
and WebGL. Our implementation is meant to be easy to read and
extend; therefore it uses the Canvas, which is faster than SVG but
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Specification

"smooth": {"radius": 1},
"rescale": {"type": "log"},
"compose": {"mix": "mean"},
"stroke": {
"type": "topojson",

"url": "us.json",

"feature": "states",

"color": "rgba(0, 0, 0, 0.3)"}

Specification

"rebin": {
"type": "topojson",

"url": "us.json",

"feature": "counties"},
"rescale": { "type": "log" },
"compose": {
"mix": "blend",

"mixing": "multiplicative"}

Specification

"rebin": {
"type": "topojson",

"url": "franceD.json",

"feature": "poly"},
"compose": {
"mix": "propline",

"size": 18,

"widthprop": "percent"}

(a) (b) (c)

Specification

"rebin": // US rebinning

"compose": {
"mix": "hatching", "size": 4,

"widthprop": "percent",

"colprop": true}

Specification

"rebin": // US rebinning

"compose": {
"mix": "weavingrandom",

"size": 2}

Specification

"rebin": // US rebinning

"compose": { "mix": "glyph",
"glyphSpec": {
"template": "bars",

"width": 20, "height": 24}}

(d) (e) (f)

Fig. 6: Revisited examples of multiclass density maps (Fig. 2). The Class Buffer model can express various designs of multiclass density maps
using a single declarative visualization grammar. Underlying data is synthetic.

Specification

"compose": {"mix": "max"},
"rescale": {"type": "equidepth"}

Specification

"compose": {"mix": "invmin"},
"rescale": {"type": "sqrt"},
"rebin": {"type": "square",
"size": 2, "aggregation": "min"}

Fig. 7: The notMNIST dataset [11] projected using LargeVis [48]. On the left side, colors are blended to reveal global clusters. On the right side,
the color of a class with the minimum density is chosen (invmin), revealing outliers and algorithm artifacts.
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A Declarative Rendering Model for Multiclass Density Maps

Jaemin Jo, Frédéric Vernier, Pierre Dragicevic, and Jean-Daniel Fekete, Senior Member, IEEE

1 2 3 4 5 6 7

8 9 10 11 12 13 14

Fig. 1: Design alternatives for a four-class density map. 1 shows small multiples where each density map is individually presented
with a unique color; 2 stacks the density maps and blends the color at each pixel; 3 shows the color of the pixel with the highest
density; 4 - 6 use regular and irregular weaving patterns; 7 shows a contour plot for each class; and 8 – 14 use rebinning (binning
and aggregation over the density maps) with tiles produced by a random Voronoı̈ tessellation. The aggregated values are rendered in

8 with a flat color showing the highest density, 9 with hatching, 10 with proportional bars, 11 with regular weaving, 12 with a dot
density plot, 13 with bar-chart glyphs, and 14 with circle sizes.

Abstract—Multiclass maps are scatterplots, multidimensional projections, or thematic geographic maps where data points have a

categorical attribute in addition to two quantitative attributes. This categorical attribute is often rendered using shape or color, which

does not scale when overplotting occurs. When the number of data points increases, multiclass maps must resort to data aggregation

to remain readable. We present multiclass density maps: multiple 2D histograms computed for each of the category values. Multiclass

density maps are meant as a building block to improve the expressiveness and scalability of multiclass map visualization. In this

article, we first present a short survey of aggregated multiclass maps, mainly from cartography. We then introduce a declarative

model—a simple yet expressive JSON grammar associated with visual semantics—that specifies a wide design space of visualizations

for multiclass density maps. Our declarative model is expressive and can be efficiently implemented in visualization front-ends such as

modern web browsers. Furthermore, it can be reconfigured dynamically to support data exploration tasks without recomputing the raw

data. Finally, we demonstrate how our model can be used to reproduce examples from the past and support exploring data at scale.

Index Terms—Scalability, multiclass scatterplots, density maps, aggregation, declarative specification, visualization grammar

1 INTRODUCTION

In this article, we are interested in methods to increase the scalability
and expressiveness of 2D multiclass maps (i.e., visual representations
of data that consist of two quantitative attributes, which are mapped
to (x,y), and one categorical attribute). 2D multiclass maps include
scatterplots, multidimensional projections, and thematic geographic
maps, altogether called maps. These maps are supported by all the
multidimensional data visualization and cartographic systems, attesting
their popularity and effectiveness. In nonaggregated maps, the categori-
cal attribute is depicted using a categorical visual variable at each point,
such as color or shape. However, when the number of points increases,
the maps become unreadable because of excessive overplotting, which
can result from structural properties of the data (e.g., multiple points
being heavily clustered), or simply because of the sheer number of
points.
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Massive datasets suitable to be visualized as multiclass maps are
easily available, for example, the RTI U.S. Synthetic Household Popu-
lation™ [50] containing one point per person in the United States (300
million) with their age, sex, race, income, and house location. Large
multiclass maps can also be easily generated by computing the projec-
tion of millions of multidimensional multiclass points using modern
scalable projection systems [39, 48].

To scale scatterplots, several approaches have been proposed, such
as adaptive opacity [15, 30, 32] and aggregation [13, 53]. However,
adaptive opacity does not scale well with the number of categories
since multiple categorical colors become ambiguous when blended,
and aggregation methods such as density plots are limited to purely
bivariate quantitative data. Few techniques have been described to
support the visualization of aggregated multiclass maps, and to our
knowledge, no system supports their visualization in a flexible way.

In this article, we present a declarative model to specify multiclass
density maps, multiple density plots with different classes, applicable
to an arbitrary number of points. Our contributions are:

• a review of visualization techniques for multiclass density maps,
• a conceptual model for describing a wide range of visualizations

of multiclass density maps, and
• a concise declarative grammar and its interpreter to specify their

rendering.
Our model relies on the creation of multiple aggregated data buffers

by visualization library back-ends, while a front-end system (e.g., a
web browser) allows interactively configuring and combining the data
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Specification

"smooth": {"radius": 1},
"rescale": {"type": "log"},
"compose": {"mix": "mean"},
"stroke": {
"type": "topojson",

"url": "us.json",

"feature": "states",

"color": "rgba(0, 0, 0, 0.3)"}

Specification

"rebin": {
"type": "topojson",

"url": "us.json",

"feature": "counties"},
"rescale": { "type": "log" },
"compose": {
"mix": "blend",

"mixing": "multiplicative"}

Specification

"rebin": {
"type": "topojson",

"url": "franceD.json",

"feature": "poly"},
"compose": {
"mix": "propline",

"size": 18,

"widthprop": "percent"}

(a) (b) (c)

Specification

"rebin": // US rebinning

"compose": {
"mix": "hatching", "size": 4,

"widthprop": "percent",

"colprop": true}

Specification

"rebin": // US rebinning

"compose": {
"mix": "weavingrandom",

"size": 2}

Specification

"rebin": // US rebinning

"compose": { "mix": "glyph",
"glyphSpec": {
"template": "bars",

"width": 20, "height": 24}}

(d) (e) (f)

Fig. 6: Revisited examples of multiclass density maps (Fig. 2). The Class Buffer model can express various designs of multiclass density maps
using a single declarative visualization grammar. Underlying data is synthetic.

Specification

"compose": {"mix": "max"},
"rescale": {"type": "equidepth"}

Specification

"compose": {"mix": "invmin"},
"rescale": {"type": "sqrt"},
"rebin": {"type": "square",
"size": 2, "aggregation": "min"}

Fig. 7: The notMNIST dataset [11] projected using LargeVis [48]. On the left side, colors are blended to reveal global clusters. On the right side,
the color of a class with the minimum density is chosen (invmin), revealing outliers and algorithm artifacts.
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(a) Support for Democratic vs. Republican
candidates in 2008 [46].

(b) Percentage of high school graduates, of college grad-
uates, and median house income in 2009 [22].

(c) Number of workers per sector of economy (primary,
secondary, tertiary) in 1954 by Bertin [4].

(d) Detail of a map of New-York City showing the distri-
bution of nationalities across districts in 1890 [25, 40].

(e) Six socioeconomic indicators in each of
the twelve Midwestern US states [19].

(f) Detail of a map showing average sales per farm
for each US state in 1919, 1924, and 1929 [10].

Fig. 2: Examples of multiclass density maps. Various techniques have been used to visualize multiclass density maps, such as bivariate (a) and
trivariate (b) maps, exhaustive maps [4] (c), hatching (d), weaving (e), and glyphs (f).

density maps are computed, one per class, and assigned a categorical
color (a hue). The visualization space is then segmented by a grid with
each cell showing one of the density maps. Similar to Attribute Blocks,
Weaving [19] has been designed to visualize multiclass data over choro-
pleth maps (Fig. 2e). One colored choropleth map is created for each
class, and the final image is composed by stacking the choropleth maps
using a regular grid where each cell shows a density map of a randomly
chosen class. Superimposing symbols (or, glyphs) on a map is also
commonly used to visualize multiclass data in cartography (Fig. 2f).
For example, Brewer and Compbell [9] introduce varied point sym-
bols, such as a pie chart with two wedges, to visualize bivariate data
on maps. As follow up studies, Nelson evaluates the performance of
those symbols [36], and Lamb [26] presents a layout algorithm that
automatically removes the overlap between the symbols. Finally, dot
distribution maps (or dot density maps) [17] look similar to sampling,
but they generate a random uniform pattern over aggregated areas to
convey density (Fig. 1- 12 ). Each dot represents a constant number of
data points, and the user needs to remember that meaning.

To summarize, various techniques have been proposed in the litera-
ture and visualization packages for multiclass maps. However, to deal
with the large number of tasks the user may want to do with this type
of maps, having a unifying conceptual model that can describe those
methods and realize new promising methods is required.

3 EXAMPLES FROM CARTOGRAPHY

In this section, we discuss a few representative examples of multiclass
density maps, shown in Fig. 2. Our visualizations are taken from car-
tography, because this significant discipline often needed to visualize
multiclass density data, so it has rich examples. However, as we dis-
cussed before, multiclass density maps do not need to be cartographic.
For example, they can include the combinations of multiple scatterplots
showing abstract data [12].

The first example by David B. Sparks [46] shows data from the
2008 Cooperative Congressional Election Study (CCES), where 30,000
randomly-sampled US residents were asked to report their support for

Democratic vs. Republican candidates (Fig. 2a). Areas with strong
Democratic and Republican support are in blue and red, respectively. In
addition, colors in densely populated areas are highly saturated, while
areas with low population density appear “washed out.” While the
divergent red-blue scale does not encode density information (but a
mean response on a seven-point scale), this map can alternatively be
seen as a mixture of two density maps: one showing the density of
Democratic supporters (and encoded on a white-blue scale) and one
showing the density of Republican supporters (and encoded on a white-
red scale). Therefore, this map can be conceptually seen as a multiclass
density map with two classes.

The second example is a US map by Gregory Hubacek [22], showing
the percentage of high school graduates (in magenta), college graduates
(in yellow), and the median house income (in cyan) in 2009. The legend
uses small multiples, a simple and common technique for multiclass
density maps. The large map combines the three maps using subtractive
color blending (e.g., as when stacking colored filters on a white surface).
Regions that are high in all three indicators are black, while regions
that are high in only one or two of the indicators have a recognizable
color. Even though the third class (median house income) does not
involve density data, the same technique can in principle be used to
produce pure multiclass density maps with three classes.

The two maps of France in Fig. 2c are obtained from Jacques Bertin’s
book Semiology of Graphics [4]. Both maps show the number of French
workers per geographic department in 1954, broken down into three
economic sectors: the primary (agriculture), the secondary (industry),
and the tertiary (commerce, transports, services). In the left map, the
sectors are encoded in yellow (I), red (II), and black (III). In the right
map, they are encoded in cyan (I), magenta (II), and black (III). While
the left map only shows proportions, the right map shows absolute
counts. Bertin called these maps “exhaustive maps” [4]. Following our
terminology, they are multiclass density maps with three classes. These
designs provide a good overview of the data, and likely better support
local comparisons and value retrieval than the two previous designs.

Fig. 2d illustrates an even older example of a multiclass density
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Specification

"smooth": {"radius": 1},
"rescale": {"type": "log"},
"compose": {"mix": "mean"},
"stroke": {
"type": "topojson",

"url": "us.json",

"feature": "states",

"color": "rgba(0, 0, 0, 0.3)"}

Specification

"rebin": {
"type": "topojson",

"url": "us.json",

"feature": "counties"},
"rescale": { "type": "log" },
"compose": {
"mix": "blend",

"mixing": "multiplicative"}

Specification

"rebin": {
"type": "topojson",

"url": "franceD.json",

"feature": "poly"},
"compose": {
"mix": "propline",

"size": 18,

"widthprop": "percent"}

(a) (b) (c)

Specification

"rebin": // US rebinning

"compose": {
"mix": "hatching", "size": 4,

"widthprop": "percent",

"colprop": true}

Specification

"rebin": // US rebinning

"compose": {
"mix": "weavingrandom",

"size": 2}

Specification

"rebin": // US rebinning

"compose": { "mix": "glyph",
"glyphSpec": {
"template": "bars",

"width": 20, "height": 24}}

(d) (e) (f)

Fig. 6: Revisited examples of multiclass density maps (Fig. 2). The Class Buffer model can express various designs of multiclass density maps
using a single declarative visualization grammar. Underlying data is synthetic.

Specification

"compose": {"mix": "max"},
"rescale": {"type": "equidepth"}

Specification

"compose": {"mix": "invmin"},
"rescale": {"type": "sqrt"},
"rebin": {"type": "square",
"size": 2, "aggregation": "min"}

Fig. 7: The notMNIST dataset [11] projected using LargeVis [48]. On the left side, colors are blended to reveal global clusters. On the right side,
the color of a class with the minimum density is chosen (invmin), revealing outliers and algorithm artifacts.
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Benefits
• Expensive Computation (binning) done up front so various visual encodings 

can be explored 
- Synthetic Census Data: 300 million x 5 classes ~11 seconds on laptop 

• Interactive Data Exploration 
- Can filter out rows 
- Deal with more dimensions
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Limitations
• Other map features missing (e.g. landmarks) 
• No guidance on best use 
• Uses Canvas instead of WebGL
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Fig. 3. These plots are based on the Tree Cover in Colorado dataset. It has seven different tree types: spruce and fir, lodgepole pine,

ponderosa pine, cottonwood / willow, aspen, douglas fir, and krummholz. In the scatterplot (a), details about the distribution of classes

are hard to discern due to overplotting. The second visualization (b) is created using binned aggregation. It allows to compare bin density encoded

by the pie sizes. In addition, class diversity is also shown by the pie charts. The third visualization (c) shows class identity within each bin and

provides better information about minority classes. The fourth visualization (d) shows distributions for two classes ( and ) based on a bar chart

design. It allows us to compare their respective distributions.

each bin, sampled based on the distribution of classes within the
bin, but at least one data point per class. It allows us to see classes
that have very low frequency compared to others.

From Figure 3c we can see that the most prominent type
of trees in an environment varies with elevation level. We then
wonder whether elevation level can help us separate between
different tree types (task 12: identify correlation – class). While
there is a lot of overlap generally between types, we can see from
Figure 2c, for example, that ponderosa pines do not grow above
2800m, while krummholz starts to appear at about 3300m.
Figure 2b also allows us to quickly spot regions of high (or low)
density—such as the high concentration of trees at 2800–3200
meters, very close to the nearest water source (task 13: numerosity
comparison – bin).

The next questions we might ask is whether both tree types
in the area contribute equally to this peak, or whether this is due
to one particular type (task 14: numerosity comparison – class).
From unnormalized frequencies in Figure 3d, we can see that
there are actually two overlapping density peaks in lodgepole
pines, and, at slightly higher altitude levels spruce/fir that both
combine to this peak in tree density. Another question we might

have for the dataset are general boundaries of tree growth (task
15: understand distances – bin). From Figure 3c we can see that
cottonwood, douglas firs, and and ponderosa pines need water
close by (700 meters to the nearest water source), while the other
four types are much less dependent on close surface water. The
plot also shows that most trees have a preferred elevation range
in which they grow, with bands of roughly 500-600 meters of
altitude and large overlaps between the different tree types across
those regions (task 16: understand distances – class).

5 DESIGN SPACE

To collect designs for binned scatterplots, we searched for existing
solutions from publications in the visualization and cartography
fields. We then systematically created extensions and adaptions of
them to cover additional data and tasks. For each of the designs
discussed that have been used previously, we refer to relevant
publications. In addition, we also discuss studies and other sources
that provide insight about the effectiveness of design aspects.

Grammar Complexity and Coverage?
• Complexity of specification 
- Dependencies between parts? 

• Which new techniques work well? 
• Do other techniques (e.g. Heimerl's 

Tree Cover) work with the grammar?
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Guidance
• Vega-Lite has general defaults 
• MDM Class Buffer often has paired guidance (hard to know what works)
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Meaningful Result?
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Meaningful Result?

47

[J. Jo et al.]
D. Koop, CSCI 628, Fall 2021



4

Task Bin-centric Class-centric

Explore neighborhood 1 Explore properties of bins in a neighborhood 2 Explore properties of classes in a neighborhood
Search for known motif 3 Find known pattern across bins 4 Find known pattern across classes

br
ow

si
ng

Explore data 5 Unusual patterns within or across bins, global trends
between bins

6 Unusual patterns within or across classes, global
trends within or between classes

Characterize distribution 7 Do bins close to each other have similar properties?
Or within a certain area or range of values?

8 Does a class occupy certain areas of the plot? Does
its distribution have a particular shape? Do classes
correlate in certain areas?

Identify anomalies 9 Identify bins that are outliers based on the general
distribution

10 Identify classes or subsets of classes that are outliers
in a certain region

Identify correlation 11 Determine level of correlation of bin properties
along both dimensions

12 Determine level of correlation for class members
along both dimensions

Numerosity comparison 13 Compare density in different regions of the space 14 Compare class density in different regions of the
space

ag
gr

eg
at

e-
le

ve
l

Understand distances 15 Understand a given spatialization and the coverage
of the bins

16 Understand a given spatialization and the coverage
of classes

TABLE 1

Tasks for binned scatterplots, based on the general scatterplot tasks compiled and categorized by Sarikaya and Gleicher [55]. We reduced the

original, larger set of tasks to those that capture high-level data characteristics according to the definition by Schulz et al. [57]. For binned

scatterplots, each of the resulting tasks can have a bin-centric or a class-centric scope.

and design guidelines with associated tasks from examples in the
literature.

Informed by the guidelines in Kerracher and Kennedy [32],
we validate our task classification through examining existing
taxonomies and instantiating abstract tasks on concrete analyses.
Closely related to our paper, Sarikaya and Gleicher [55] provide a
space of analysis tasks, data characteristics, and design decisions
derived from existing examples in the literature. Their guidance is
generalized to the entire space of scatterplot designs, suggesting a
need for more specific analysis for particular scenarios such as for
multi-class binning. Jo et al. [29] generate a grammar for deriving
numerous binned designs, highlighting decisions of encoding type
and normalization. This work, however, stops short of drawing
relationships between design decisions and the types of analysis
tasks they support. We seek to fill this gap with this work.

4 TASKS FOR BINNED 2D DATA

In this section, we derive the task definitions listed in Table 1
based on a set of abstract tasks. We then ground each of these
tasks in an example using a dataset.

4.1 Task List
Tasks for 2D point data that was aggregated by binning are con-
nected to the more general tasks for regular scatterplots, for which
an analysis and categorization of tasks has been published [55].
The task space that we derive and discuss in this section, is
an extended subset of this larger collection of tasks that can be
supported by general, unbinned scatterplots. We refine the derived
set of tasks according to the task design space of Schulz et al. [57],
and ground each of these abstract tasks in a concrete example from
the previously introduced data sets.

Based on a review of relevant literature, Sarikaya and Gle-
icher [55] collect and categorize a set of 12 tasks that users
do with scatterplots. Those tasks are grouped into three differ-
ent categories, comprising object-centric tasks, browsing, and
aggregate-level tasks. The first type, object-centric, focuses on
single data objects, and includes identifying and finding the
location of a particular object. In other words, object-centric tasks
cover all the low-level data characteristics of Schulz et al.’s task

design space [57]. The second category, browsing, comprises tasks
focused on either single data items or higher level structures
such as clusters, and thus targets low- as well as high-level data
characteristics. The third category, aggregate-level tasks, focus
entirely on high-level data characteristics. When working with
binned scatterplots, the data analyst has decided that aggregating
the data is the best way to perform the task at hand. Since the
aggregation step abstracts away from single items, leaving only
high-level data characteristics, we can reduce the set of potential
tasks supported by a binned scatterplot to browsing and aggregate-
level tasks.

Binned representations of multi-class data introduces two new
visual elements that analysis tasks can target, bins and classes. The
dimension that captures this is called the scope (or cardinality) of
a task [57]. Each of the tasks in our space can either be targeted
at bins (bin-centric), or at classes (class-centric). Extending the
task set along this dimension is helpful for tasks supported by
binned representation of 2D data, since it significantly influences
the adequacy of designs to serve a task. Table 1 lists all resulting
tasks and diversifies them into a bin-centric and a class-centric
version. In addition, a more extensive table, mapping all of the
abstract tasks to high-level data characteristics and example tasks
discussed in the following section is available as supplemental
material (see also §7 for a discussion of task completeness).

4.2 Task Examples

We have already seen examples for the first six tasks from Table 1
back in §2. Here, we introduce two additional datasets and show
designs and examples for the remaining tasks.
Early Modern Drama Collection contains the full text of 1,242
dramas from the years 1576–1700. The texts are categorized into
nine different genres, including tragedy, tragicomedy, and
others (see caption of Figure 2). Both dimensions have been
generated using topic modeling to extract eight distinct topics
based on the document-level co-occurrences of words across the
corpus. A topic is represented as a list of weighted words that
are used in documents to talk about the topic. We then picked
two topics as dimensions to lay out the documents, based on the
amount of words that each of the documents contains from the

What about Tasks? (Bin and Class Tasks)
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Bin Shape:  Triangle         Rectangle       Hexagon

Bin Size:         Homogeneous    Heterogeneous

Bin Boundaries:      Explicit    Implicit

Scale:                   Linear                                   Logarithmic

Composition: Juxtaposition              Superposition

Distribution:  Majority                 Blending

    Grayscale    Weaving

    Tone+Position        Density+Angle

    Pie Chart   Point   Bar Chart

Fig. 4. Design space for binned scatterplots. The first three categories

are relevant for the representation of bins, while the last three categories

deal with the representation of classes and class distributions.

5.1 Representing Bins
The first three design dimensions discuss choices to generate and
represent bins and their properties within the 2D space.

5.1.1 Shape
All of the designs that we discuss are based around visual
representations of the bins generated during the first part of the
abstraction process. For this reason, the choice of bin shape,
which is part of the output of the first step of binning, depends
on statistical and distributional characteristics of the data, as well
as perceptual properties of the resulting visualization. In addition
to choosing an effective shape for the data and task at hand,
designers should also take care in choosing the scale of axes, as
the perception of distribution can be affected by the positioning of
bins.

There are only three shapes to tessellate a 2D space: triangles,
rectangles, and hexagons. Scott [58] suggests that triangular bins
should be avoided since dividing the space up into triangles results
in a higher expected per-point position error than alternatives.
In addition, triangles require rotations of the shape. Rectangular
bins provide good contrast between orthogonal and diagonal
neighbors [8], making them a good choice if the alignment with
vertical or horizontal neighbors are important. They are the only
shape with a constant interval along both axes, making them a
good choice if either the task requires reading off intervals with
a certain precision from the plot, or the chosen intervals have
semantic meaning (such as temporal or spatial units). Hexagons
are particularly common on maps, and are considered aesthetically
superior to alternatives [16]. They are better at representing local
neighborhoods of bins [9], making them a good choice for bin-
centric tasks that focus on local structure, such as tasks 1 and
2: explore neighborhood – bin/class. Hexagons also introduce the
least expected error between a point and the bin center, resulting in
the least expected distortion of density counts [58]. They are thus
also well-suited for tasks that involve the identification of fine-
grained local density gradients, such as tasks 9 and 10: identify
anomalies – bin/class, or tasks 11 and 12: identify correlation –
bin/class.

5.1.2 Size
Similar to bin shape, its size is also influenced by data charac-
teristics and visual properties of the resulting display. Its choice
determines the number of bins, limiting or enhancing the spatial
fidelity of the visualization. For designs that are based on multiple
plots (see discussion about comparison in §5.2), bin size can either
be homogeneous or heterogeneous across the plots. The latter
allows designers to choose different spatial resolutions for each
class, but complicates the mapping between plots (more in §5.4).

Binning creates a 2D histogram of the data space, where bin
size controls the degree of aggregation that is applied to the data.
It determines what details users are able to discern about the data.
Methods that find optimal solutions for a large range of different
datasets have been studied by Wand [71] and Knuth [33].

Another aspect of bin size are perceptual aspects of the visual
representations of the bins, which is governed by the available
screen space for the visualization. Smaller bin sizes reduces
the fidelity of communicating both spatial and class-proportional
information within each bin—this greatly affects class-specific
tasks, such as task 14: numerosity comparison – class, or bin-
centric ones that compare inbalanced class proportions, such as
bin-centric tasks 1: explore neighborhood, 5: explore data, or 7:
characterize distribution). The available space also affects color
perception [64]. Therefore, there is a balance in trade-offs between
maximizing the number of bins to reduce spatial aliasing (smaller
bin size), but large enough to convey distributional information for
each bin (larger bin size).

5.1.3 Bin Boundaries
Bins that have no explicit boundaries have to contain glyphs to
communicate distributional information (much like QTonS [72],
an overlay for a scalar field), such as the pie glyphs in Figure 3b.
An advantage of boundary-less designs is reduced clutter. For
this reason, depending on the complexity and visual properties
of the glyphs, smaller glyph sizes can be accommodated which
are beneficial to tasks that profit from high spatial resolution (e.g.,
tasks 9 and 10: identify anomalies – bin/class, and 11 and 12:
identify correlation – bin/class). However, missing bin boundaries
make it harder to gauge the exact area a bin covers, hindering tasks
that depend on this (e.g., tasks 7 and 8: characterize distribution
– bin/class).

An example for a design that explicitly encodes the spatial
boundaries of bins is shown in Figure 2b. In addition to making
bin intervals easier to read off the plot, explicit boundaries also
help with mapping bins across different plots [69], for example
when using juxtaposed designs (as discussed in §5.2). Another
advantage of bin boundaries is that they introduce bins as separate
visual elements into the plot, making it easier to support additional
user interaction with them (see §5.4).

5.2 Composition
In this section, we discuss encoding classes and class distributions
for each of the bins, and ways of composing this class-specific
information into a multi-class density map.
Class Identity The designs we discuss encode bin position in the
data space as position in the plot. Thus, while position would be a
very salient channel for encoding identity [42], it is already in use
for the two primary data attributes. From the remaining choices,
Livingston et al. [40] find that color is quite effective. This is
by far the most popular choice in the literature, with few historic

Other Ideas
• What about focusing on tasks? 
• Thinking about other visual 

properties?
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