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Critical Response to Reading
1. Describe, in your own words, what the problem addressed is and what the 

key contributions are 
2. Respond to the paper 
- How would you add to the work that was presented? 
- What evaluation was not done that should have been? 
- No vague statements like "The paper is well-written" 
- Does the direction of the work make sense? 
- Questions are fine, but they should be specific & show your understanding 
- Keep track of points in favor, points against 
- Should focus on specific parts of the paper, make sure you understand 

everything about that part of the technique/system
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Types of Visualization Papers
• Techniques (Algorithms) 
• Applications (Design Studies) 
• Systems (Toolkits) 
• Evaluation (Summative User Studies) 
• Model (Taxonomy, Formalism, Commentary) 
• +Surveys 

• and Combinations of the above
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General Paper Writing Pitfalls
• What I Did Over My Summer Vacation: a diary is not a paper 
- Should not be chronological 
- Should not dwell on implementation details (which may have taken a long time) 

• Least Publishable Unit: Don’t try to squeeze too many papers out of the 
same project 

• Dense As Plutonium (Inverse of LPU): too dense, and can often miss 
important details of the work due to space 

• Bad Slice and Dice: Dividing papers leads to too much overlap or neither 
paper being standalone
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Laramee’s Suggested Structure
• Introduction (Motivation) 
• Related Work 
• Method (Computational Model) 
• Enhancements/Extensions 
• Implementation 
• Results & Performance 
• Conclusions & Future Work
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Pitfalls
• Stealth Contributions: “Do not leave your contributions implicit or unsaid” 
• I Am So Unique: Don't try to sneak things past reviewers 
• Enumeration Without Justification: Explain why your work is different 
• Straw Man Comparison: Compare against other contemporary solutions  
• But My Friends Liked It: Informal evidence is not compelling 
• Unjustified Tasks: Test tasks that users actually do 
• Story-Free Captions: Use captions to tell the story of your work 
• My Picture Speaks For Itself: Write your take-away points in the captions
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Project Proposal
• Due Today 
• Turn in via Blackboard 
• Write up your ideas as they currently stand 
• Things can change, that's ok! 
• Focus on motivation (why should we care?) and the core idea (how does your 

work improve on existing techniques?)
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Paper Presentation Schedule
• Any concerns with this schedule?

8D. Koop, CSCI 628, Fall 2021

Date Topic Primary Secondary

2021-09-30 Temporal Data Venkata Devesh Reddy Seethi Mohammed Murtuza Shahzad Syed

2021-10-12 Uncertainty Visualization Colin Brown Abdul Rahman Shaikh

2021-10-26 High-Dimensional Data & 
Dimensionality Reduction

Md Ashiqur Rahman Colin Brown

2021-11-04 Machine Learning & Explainable AI Mohammed Murtuza Shahzad Syed Md Ashiqur Rahman

2021-11-16 Multiple Views, Layouts, and 
Interaction

Abdul Rahman Shaikh Venkata Devesh Reddy Seethi



Topic Format
• Three class sessions: 
1. Introduction: background lecture related to topic 
2. Paper Presentations: 

• Primary presents the paper, generally in a positive light 
• Secondary critiques the paper (what could have been improved, etc.) 

3. Discussion: discuss topics related to the paper, ideas, etc. 
• Everyone reads the paper(s), comes ready with questions for presenters

9D. Koop, CSCI 628, Fall 2021



A Declarative Rendering Model for Multiclass Density Maps

Jaemin Jo, Frédéric Vernier, Pierre Dragicevic, and Jean-Daniel Fekete, Senior Member, IEEE
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Fig. 1: Design alternatives for a four-class density map. 1 shows small multiples where each density map is individually presented
with a unique color; 2 stacks the density maps and blends the color at each pixel; 3 shows the color of the pixel with the highest
density; 4 - 6 use regular and irregular weaving patterns; 7 shows a contour plot for each class; and 8 – 14 use rebinning (binning
and aggregation over the density maps) with tiles produced by a random Voronoı̈ tessellation. The aggregated values are rendered in

8 with a flat color showing the highest density, 9 with hatching, 10 with proportional bars, 11 with regular weaving, 12 with a dot
density plot, 13 with bar-chart glyphs, and 14 with circle sizes.

Abstract—Multiclass maps are scatterplots, multidimensional projections, or thematic geographic maps where data points have a

categorical attribute in addition to two quantitative attributes. This categorical attribute is often rendered using shape or color, which

does not scale when overplotting occurs. When the number of data points increases, multiclass maps must resort to data aggregation

to remain readable. We present multiclass density maps: multiple 2D histograms computed for each of the category values. Multiclass

density maps are meant as a building block to improve the expressiveness and scalability of multiclass map visualization. In this

article, we first present a short survey of aggregated multiclass maps, mainly from cartography. We then introduce a declarative

model—a simple yet expressive JSON grammar associated with visual semantics—that specifies a wide design space of visualizations

for multiclass density maps. Our declarative model is expressive and can be efficiently implemented in visualization front-ends such as

modern web browsers. Furthermore, it can be reconfigured dynamically to support data exploration tasks without recomputing the raw

data. Finally, we demonstrate how our model can be used to reproduce examples from the past and support exploring data at scale.

Index Terms—Scalability, multiclass scatterplots, density maps, aggregation, declarative specification, visualization grammar

1 INTRODUCTION

In this article, we are interested in methods to increase the scalability
and expressiveness of 2D multiclass maps (i.e., visual representations
of data that consist of two quantitative attributes, which are mapped
to (x,y), and one categorical attribute). 2D multiclass maps include
scatterplots, multidimensional projections, and thematic geographic
maps, altogether called maps. These maps are supported by all the
multidimensional data visualization and cartographic systems, attesting
their popularity and effectiveness. In nonaggregated maps, the categori-
cal attribute is depicted using a categorical visual variable at each point,
such as color or shape. However, when the number of points increases,
the maps become unreadable because of excessive overplotting, which
can result from structural properties of the data (e.g., multiple points
being heavily clustered), or simply because of the sheer number of
points.
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• Frédéric Vernier is with LIMSI, CNRS, Univ. Paris-Sud, Université
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Massive datasets suitable to be visualized as multiclass maps are
easily available, for example, the RTI U.S. Synthetic Household Popu-
lation™ [50] containing one point per person in the United States (300
million) with their age, sex, race, income, and house location. Large
multiclass maps can also be easily generated by computing the projec-
tion of millions of multidimensional multiclass points using modern
scalable projection systems [39, 48].

To scale scatterplots, several approaches have been proposed, such
as adaptive opacity [15, 30, 32] and aggregation [13, 53]. However,
adaptive opacity does not scale well with the number of categories
since multiple categorical colors become ambiguous when blended,
and aggregation methods such as density plots are limited to purely
bivariate quantitative data. Few techniques have been described to
support the visualization of aggregated multiclass maps, and to our
knowledge, no system supports their visualization in a flexible way.

In this article, we present a declarative model to specify multiclass
density maps, multiple density plots with different classes, applicable
to an arbitrary number of points. Our contributions are:

• a review of visualization techniques for multiclass density maps,
• a conceptual model for describing a wide range of visualizations

of multiclass density maps, and
• a concise declarative grammar and its interpreter to specify their

rendering.
Our model relies on the creation of multiple aggregated data buffers

by visualization library back-ends, while a front-end system (e.g., a
web browser) allows interactively configuring and combining the data

Next Class
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Application Papers
• Visualizations as they are applied to application-specific data 
• Less focus on the originality of the algorithm, more focus on domain-specific 

challenges and decisions 
• Related work should contain domain-specific papers 
• Additional Background section to provide readers outside of the CS domain 

with the necessary background 
• Method may be more focused on the decisions and process and compare 

different approaches 
• Results often revolve around expert study (evaluation from experts that have 

used the proposed visualizations)
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Writing Goals
• Write for the audience.  
- “Don’t just write what you want to say, write what the audience needs to hear.” 

• Get your audience to nod: if the reviewer doesn’t agree or wonders if you’re 
wrong, they are less likely to like your paper 

- Avoid weasel-y words: “Some researchers think…” Who? 
• Make your writing predictable 
- Readers are lazy 
- “You are not writing a mystery novel” 
- Upside-down pyramid writing: Important things at start of paper, section, 

paragraph
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Abstract Template
• sentence 1: background 
• sentence 2: missing gap (e.g. "however, there's a problem blah") 
• sentence 3: why is this bad 
• sentence 4: "In this paper, we propose SystemX" 
• sentence 5, 6 (and/or 7): technical depth on what SystemX is. That is, what is 

the secret sauce that makes SystemX possible? 
• sentence 8: benefits of SystemX, aka the primary contribution of the paper 

(should echo sentence 3 in that SystemX should have addressed the problem)  
• sentence 9: "We evaluate SystemX..." 
• sentence 10: "Our results indicate that (problem stated in sentence 3 is no 

longer a problem)..."
13

[R. Chang]
D. Koop, CSCI 628, Fall 2021

https://valt.cs.tufts.edu/pub/abstract-template.html


Exercise: Write a Pie Chart Paper
• Pretend you just discovered pie charts and want to write an abstract for the 

VIS conference 

• Abstract Template: 
- Background 
- Motivation including problem 
- Summarize technique 
- Contributions 
- Evaluation and Results
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Exercise: Pie Chart Q&A
• What kind of paper is this? 
- Technique  

• Why pie charts? 
- Similar to bar charts in that they show magnitudes per object 
- Better in that they show “parts to whole” relations 
- Aesthetically pleasing and easier to read for some users 

• How do you evaluate pie charts? 
- Study 1: A-B study of pie vs. bar. Quantitative measure that pie is better at 

“parts to whole” 
- Study 2: Qualitative study to show that pie charts are aesthetically pleasing 

and easy to understand
15
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Survey Paper
• "[A]ssist the reader in the hunt for previously published research papers on a 

given topic" 
• Full-length surveys can be 20-30 pages 
• Contributions: 
- A novel classification of the literature (how your classification differs from 

previous surveys, or whether the survey is the first of it’s kind in the field). 
- A compilation of future challenges or trends in the domain. 
- The identification of both mature and less explored research directions in the 

field.
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Survey Paper Challenges
• Managing the amount of previously published literature 
• Identifying a starting point 
• Deciding on a topic 
• Performing a search 
• Interpreting individual research papers 
• Deriving a classification of literature on the given topic 
• Determining related unsolved problems and future challenges
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Liam McNabb and Robert S. Laramee / How to Write a Visualization Survey Paper: A Starting Point

importance and novelty of any paper by the end of the introduction
and the insight and benefits that can be gained from reading it. We
recommend authors strive for approximately three contributions.
These contributions are described in conjunction with the rest of
the first section, to make it clear how the survey paper fits into the
visualization field’s landscape. Examples of a typical contribution
include:

• A novel classification of the literature (how your classification
differs from previous surveys, or whether the survey is the first
of it’s kind in the field).

• A compilation of future challenges or trends in the domain.
• The identification of both mature and less explored research di-

rections in the field.

A good review paper considers key questions in the field. What
has been published so far? Are there any controversies, debates or
contradictions that should be brought to light? Which methodolo-
gies have researchers used, and which appear to be best? Who are
the leading experts in the field? And how the topic fits into the
landscape of visualization. By analyzing questions like these, your
survey presents some clear contributions to discuss.

The contributions of this paper include:

1. The first guidelines (to our knowledge) on how to write a survey
paper in data visualization or visual analytics.

2. Guidelines on the process of preparing a literature survey.
3. A structured survey paper template that can be followed, with

in-depth guidelines describing the content of each section.

Temporal Planning u: We believe a high quality, full survey pa-
per can take approximately a full year (part-time) to incrementally
prepare and write including the literature search. A significant por-
tion of this time concentrates on gathering the related literature on a
given literature review topic. Due to the length of full survey papers
(20-30 pages), it is time-consuming and difficult to undertake mul-
tiple internal full paper reviews and revisions, therefore it is helpful
to distribute the preparation, discussion and intermediate feedback
sessions periodically over the preparation time frame, to reduce the
drafting and corrections process in the final stages. A tested strat-
egy can separate the individual paper browsing and summarization
process from the main survey paper organization [Lar10]. Individ-
ual research paper summaries can be written on a weekly basis for
the first six months, yielding roughly 24 summarized topic papers
before any final decisions have been made on the organization, or
literature classification. This provides a good basis for potential pa-
per classifications to develop.

1.2. Challenges of Writing a Survey

We identify seven main challenges associated with writing a survey
paper.

1. Managing the amount of previously published literature (dis-
cussed throughout this paper)

2. Identifying a starting point (the purpose of this paper)
3. Deciding on a topic (see Scope, Section 1.5)
4. Performing a search (see Search Methodology, Section 1.3)
5. Interpreting individual research papers (see Section 3.1)

Literature Sources

Google Scholar [Goo16]
IEEE Xplore Digital Library [IEE16]
ACM Digital Library
Vispubdata [IHK⇤17]
The Annual EuroVis Conference
IEEE TVCG Journal
IEEE Pacific Visualization Symposium
IEEE VAST Conference
The Annual Eurographics Conference
The Eurographics Digital Library
Journal of Visual Languages & Computing
Information Visualization Journal
Computer Graphics Forum
Computer & Graphics
ACM Computing Surveys

Table 1: A shortlist of literature sources.

6. Deriving a classification of literature on the given topic (see Sec-
tion 3.2)

7. Determining related unsolved problems and future challenges
(see Section 5)

In the following sections, we address some of these central chal-
lenges.

1.3. Literature Search Methodology u

It is important to clearly describe how you search for the papers
cited in the survey. When a reader browses the literature review,
it is likely that you have found research papers that they may not
have seen. A new PhD student usually has not yet discovered all
of the relevant conferences and journals to search. The literature
search methodology provides the names of digital libraries, search
engines, search terms, and literature sources used to find literature
in your survey paper. If we are looking for research papers on the
topic of treemaps, we can use the Google Scholar search engine for
example [Goo16] to search the term "treemap". This gives us (at
the time of writing) over 16,000 related search results. By doing the
same using the IEEE Xplore Digital Library [IEE16], we get 115
items, and using vispubdata [IHK⇤17], we get 58 items. For visu-
alization purposes, the three previously-mentioned search engines
are a great tool. Combined with the use of Google Scholar’s "Cited
by..." option to find related work, you should be able to gather a
fairly complete set of papers. A complete list of sources to search
is provided in Table 1.

The other search consideration is a manual search. When you
have found one matching paper, it is likely that you will find a
number of related research papers in the related work of the given
match. This can be especially useful if there are related survey pa-
pers. If you find the majority of papers this way, providing a break-
down of conferences and journals may be a beneficial method of
presenting your literature search. The goal is to provide enough
information to make your literature search thorough and repro-
ducible.

c� 2019 The Author(s)
Eurographics Proceedings c� 2019 The Eurographics Association.

Finding Sources
• A search can yield thousands of papers 
• Use known "good" papers to locate more 

sources 
• "Cited by…" in Google Scholar
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Other Decisions
• Classification of Topics/Papers 
- Often multiple dimensions, tables used 
- One is often topics, others can be data dimensionality 

• Scope of the Survey 
- Beware of being too broad or too narrow 
- Aim to create a scope of 40-50 papers 

• Organization of the Survey 
- Classification helps 
- Break up smaller pieces into similar paragraphs
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patterns and focuses on one or more of them. For analyz-
ing the patterns, the user needs to drill-down and access
details of the data. Visualization technology may be used
for all three steps of the data exploration process: Visual-
ization techniques are useful for showing an overview of the
data, allowing the user to identify interesting subsets. In
this step, it is important to keep the overview visualization
while focusing on the subset using an other visualization
technique. An alternative is to distort the overview visu-
alization in order to focus on the interesting subsets. To
further explore the interesting subsets, the user needs a
drill-down capability in order to get the details about the
data. Note that visualization technology does not only pro-
vide the base visualization techniques for all three steps but
also bridges the gaps between the steps.

II. Classification of Visual Data Mining
Techniques

Information visualization focuses on data sets lacking in-
herent 2D or 3D semantics and therefore also lacking a
standard mapping of the abstract data onto the physical
screen space. There are a number of well known tech-
niques for visualizing such data sets such as x-y plots,
line plots, and histograms. These techniques are useful
for data exploration but are limited to relatively small and
low-dimensional data sets. In the last decade, a large num-
ber of novel information visualization techniques have been
developed, allowing visualizations of multidimensional data
sets without inherent two- or three-dimensional semantics.
Nice overviews of the approaches can be found in a number
of recent books [2] [3] [4] [5]. The techniques can be classi-
fied based on three criteria (see figure 1) [6]: The data to be
visualized, the visualization technique, and the interaction
and distortion technique used.

The data type to be visualized [1] may be
• One-dimensional data, such as temporal data as used in
ThemeRiver (see figure 2 in [7])
• Two-dimensional data, such as geographical maps as
used in Polaris (see figure 3(c) in [8]) and MGV (see figure
9 in [9])
• Multidimensional data, such as relational tables as used
in Polaris (see figure 6 in [8]) and the Scalable Framework
(see figure 1 in [10])
• Text and hypertext, such as news articles and Web doc-
uments as used in ThemeRiver (see figure 2 in [7])
• Hierarchies and graphs, such as telephone calls and Web
documents as used in MGV (see figure 13 in [9]) and the
Scalable Framework (see figure 7 in [10])
• Algorithms and software, such as debugging operations
as used in Polaris (see figure 7 in [8])

The visualization technique used may be classified into
• Standard 2D/3D displays, such as bar charts and x-y
plots as used in Polaris (see figure 1 in [8])
• Geometrically transformed displays, such as landscapes
and parallel coordinates as used in Scalable Framework (see
figures 2 and 12 in [10])

Fig. 1. Classification of Information Visualization Techniques

• Icon-based displays, such as needle icons and star icons
as used in MGV (see figures 5 and 6 in [9])
• Dense pixel displays, such as the recursive pattern and
circle segments techniques (see figures 3 and 4) [11] and the
graph scetches as used in MGV (see figure 4 in [9])
• Stacked displays, such as treemaps [12] [13] or dimen-
sional stacking [14]

The third dimension of the classification is the interac-
tion and distortion technique used. Interaction and
distortion techniques allow users to directly interact with
the visualizations. They may be classified into
• Interactive Projection as used in the GrandTour system
[15]
• Interactive Filtering as used in Polaris (see figure 6 in
[8])
• Interactive Zooming as used in MGV and the Scalable
Framework (see figure 8 in [10])
• Interactive Distortion as used in the Scalable Framework
(see figure 7 in [10])
• Interactive Linking and Brushing as used in Polaris (see
figure 7 in [8]) and the Scalable Framework (see figures 12
and 14 in [10])

Note that the three dimensions of our classification -
data type to be visualized, visualization technique, and in-
teraction & distortion technique - can be assumed to be
orthogonal. Orthogonality means that any of the visual-
ization techniques may be used in conjunction with any of
the interaction techniques as well as any of the distortion
techniques for any data type. Note also that a specific sys-
tem may be designed to support di↵erent data types and
that it may use a combination of multiple visualization and
interaction techniques.

III. Data Type to be Visualized

In information visualization, the data usually consists
of a large number of records each consisting of a num-
ber of variables or dimensions. Each record corresponds
to an observation, measurement, transaction, etc. Exam-
ples are customer properties, e-commerce transactions, and
physical experiments. The number of attributes can dif-
fer from data set to data set: One particular physical ex-
periment, for example, can be described by five variables,

Keim's InfoVis Classificiation
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Classification
• Try to find 2D classification 
• Dimensions that are well-known are useful 
- Example: Shneiderman's task by data-type 

taxonomy (overview, zoom, filter, details-on-
demand, relate, history, extract) 

• Can structure the classification using unique 
mapping or 1-N mapping 

• Tables are very helpful
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similar papers fall into the same group. Deriving groups, categories,
and dimensions for your classification requires careful thought.

One property of a good classification is that it is easy to properly
place research papers into categories. If you have great difficulty
placing individual research papers into the categories identified in
your classification, this may be a sign that it requires adjustment.

3.3. Identifying Classification Dimensions u

There has been a lot of work invested in generating tax-
onomies. A good classification dimension e.g. subject-category,
data-dimensionality etc, is descriptive and easy to communicate.
Your classification may change during survey drafting. If you find
it difficult to insert literature into a classification, modification
is always an option. We recommend aiming for a 2D classifica-
tion to begin with. If you are looking for ideas, adapting exist-
ing taxonomies or principles can yield useful classification top-
ics. For example, Keim’s technique taxonomy [Kei02] is used
to group visualization techniques into 5 key categories (standard
2D/3D displays, geometrically-transformed displays, iconic dis-
plays, dense pixel displays, and stacked displays) (See Figure 2).
This is used by Ko et al. [KCA⇤16] in their survey of finan-
cial data visualization, where each paper is mapped to these dif-
ferent techniques that are used within the literature. Another op-
tion is automatic taxonomy generation. There is a lot of work
on text extraction [DGBPL00, PBB02] and taxonomy generation
[BOS09, TWCL10, OGG07, VCP07, MFS⇤10, COD18].

We recommend looking for natural recurring topic clusters. If
you follow the temporal planning guide suggested in Section 1 and
extract meaningful meta-data, you may produce some classification
candidates by brainstorming. Some other candidate classifications
are: subject category, data dimensionality, visualization technique,
design dimensionality, field challenge type, user task type, applica-
tion domain, data processing size, performance, visualization de-
sign type, data type, and field of view.

User tasks are a useful and frequently-used classification dimen-
sion. They are the main focus of many survey papers [APS14,
BM13, SNHS13]. For task taxonomies, we recommend reading
Kerracher and Kennedy’s work that focuses on the process and
considerations for visualization task classifications [KK17]. As a
good starting point for tasks, Schneiderman’s task by data-type
taxonomy is recommended [Shn96], where overview, zoom, filter,
details-on-demand, relate, history, and extract are presented as ma-
jor visualization tasks.

3.4. Literature Classification Types u

We base this discussion on the work of McNabb and Laramee
[ML17]. We identify three important characteristics of classifica-
tions: dimension, structure, and mapping schema. For this discus-
sion, D denotes a classification dimension.

The dimensionality organizes the space in which the classifica-
tion is laid out, for example in a table or matrix. A typical classifi-
cation usually has no more than 3 dimensions (2 axes + 1 additional
visual attribute). Common ways to represent an additional attribute
are through color, shape, or symbols. More than 3 dimensions is

D1 D1 D2
L1 L1 3 3

Ln L2 3 3D2
L2 Ln 3 3

(A) (B)

L1,L4,L5
(C) L3,L6,L7,L8D1

L2

Figure 3: Examples of classification schemes using unique-
mapping. D refers to a classification dimension and L refers to a
reviewed item (in most cases, the literature reviewed).

D1 D1 D2

L1
L1,
L2

L1 3 3 3 3

L2 L2 L2 3 3 3 3D2

L1
L1,
L2

Ln 3 3

(A) (B)

L1,L4,L5,L6,L7
(C) L3,L6,L7,L8D1

L2, L6,L7

Figure 4: Examples of classification schemes using 1-N mapping.
D refers to a classification dimension and L refers to a reviewed
item.

definitely possible, however it may be worth considering multiple
representations at this point, if the classification becomes too com-
plex.

A structure represents the organization of the classification.
This category is sub-divided into two types, flat or hierarchical.
Flat structures usually represent subject categories (D) with a dis-
crete linear ordering. Johansson and Forsell present an example of
this with their evaluation of parallel coordinates [JF16] where the
user-task is mapped for each reviewed literature. A hierarchy pro-
vides the subject categories (D) with a more complex arrangement
by grouping overlapping subjects together. Draper et al. use this to
categorize radial visualization techniques [DLR09].

Mapping schema describes how the survey’s reviewed litera-
ture (L) is mapped to classification dimensions (D). We introduce
L to refer to a reviewed item (in most cases, the literature being
reviewed). This is split into three categories, Unique-mapping, 1-n
mapping, and indirect mapping. A unique-mapping schema assigns
each reviewed item (L) once for every dimension e.g. subject cate-
gory, data dimensionality, etc (D). This mapping schema is suitable
for finding areas in the field with extensive or limited work, which
may guide researchers to immature areas for new research.

Figure 3 presents some examples of unique mapping. Exam-
ples (A) and (B) map L to each of D once. However, example (A)
structures the table such that both classification dimensions are rep-
resented by an axis and map L to the appropriate intersection. Ex-
ample (B) maps L to the Y-Axis and each classification dimension
D on the X-Axis. Example (C) links each of the reviewed items

c� 2019 The Author(s)
Eurographics Proceedings c� 2019 The Eurographics Association.
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similar papers fall into the same group. Deriving groups, categories,
and dimensions for your classification requires careful thought.

One property of a good classification is that it is easy to properly
place research papers into categories. If you have great difficulty
placing individual research papers into the categories identified in
your classification, this may be a sign that it requires adjustment.

3.3. Identifying Classification Dimensions u

There has been a lot of work invested in generating tax-
onomies. A good classification dimension e.g. subject-category,
data-dimensionality etc, is descriptive and easy to communicate.
Your classification may change during survey drafting. If you find
it difficult to insert literature into a classification, modification
is always an option. We recommend aiming for a 2D classifica-
tion to begin with. If you are looking for ideas, adapting exist-
ing taxonomies or principles can yield useful classification top-
ics. For example, Keim’s technique taxonomy [Kei02] is used
to group visualization techniques into 5 key categories (standard
2D/3D displays, geometrically-transformed displays, iconic dis-
plays, dense pixel displays, and stacked displays) (See Figure 2).
This is used by Ko et al. [KCA⇤16] in their survey of finan-
cial data visualization, where each paper is mapped to these dif-
ferent techniques that are used within the literature. Another op-
tion is automatic taxonomy generation. There is a lot of work
on text extraction [DGBPL00, PBB02] and taxonomy generation
[BOS09, TWCL10, OGG07, VCP07, MFS⇤10, COD18].

We recommend looking for natural recurring topic clusters. If
you follow the temporal planning guide suggested in Section 1 and
extract meaningful meta-data, you may produce some classification
candidates by brainstorming. Some other candidate classifications
are: subject category, data dimensionality, visualization technique,
design dimensionality, field challenge type, user task type, applica-
tion domain, data processing size, performance, visualization de-
sign type, data type, and field of view.

User tasks are a useful and frequently-used classification dimen-
sion. They are the main focus of many survey papers [APS14,
BM13, SNHS13]. For task taxonomies, we recommend reading
Kerracher and Kennedy’s work that focuses on the process and
considerations for visualization task classifications [KK17]. As a
good starting point for tasks, Schneiderman’s task by data-type
taxonomy is recommended [Shn96], where overview, zoom, filter,
details-on-demand, relate, history, and extract are presented as ma-
jor visualization tasks.

3.4. Literature Classification Types u

We base this discussion on the work of McNabb and Laramee
[ML17]. We identify three important characteristics of classifica-
tions: dimension, structure, and mapping schema. For this discus-
sion, D denotes a classification dimension.

The dimensionality organizes the space in which the classifica-
tion is laid out, for example in a table or matrix. A typical classifi-
cation usually has no more than 3 dimensions (2 axes + 1 additional
visual attribute). Common ways to represent an additional attribute
are through color, shape, or symbols. More than 3 dimensions is

D1 D1 D2
L1 L1 3 3

Ln L2 3 3D2
L2 Ln 3 3

(A) (B)

L1,L4,L5
(C) L3,L6,L7,L8D1

L2

Figure 3: Examples of classification schemes using unique-
mapping. D refers to a classification dimension and L refers to a
reviewed item (in most cases, the literature reviewed).

D1 D1 D2

L1
L1,
L2

L1 3 3 3 3

L2 L2 L2 3 3 3 3D2

L1
L1,
L2

Ln 3 3

(A) (B)

L1,L4,L5,L6,L7
(C) L3,L6,L7,L8D1

L2, L6,L7

Figure 4: Examples of classification schemes using 1-N mapping.
D refers to a classification dimension and L refers to a reviewed
item.

definitely possible, however it may be worth considering multiple
representations at this point, if the classification becomes too com-
plex.

A structure represents the organization of the classification.
This category is sub-divided into two types, flat or hierarchical.
Flat structures usually represent subject categories (D) with a dis-
crete linear ordering. Johansson and Forsell present an example of
this with their evaluation of parallel coordinates [JF16] where the
user-task is mapped for each reviewed literature. A hierarchy pro-
vides the subject categories (D) with a more complex arrangement
by grouping overlapping subjects together. Draper et al. use this to
categorize radial visualization techniques [DLR09].

Mapping schema describes how the survey’s reviewed litera-
ture (L) is mapped to classification dimensions (D). We introduce
L to refer to a reviewed item (in most cases, the literature being
reviewed). This is split into three categories, Unique-mapping, 1-n
mapping, and indirect mapping. A unique-mapping schema assigns
each reviewed item (L) once for every dimension e.g. subject cate-
gory, data dimensionality, etc (D). This mapping schema is suitable
for finding areas in the field with extensive or limited work, which
may guide researchers to immature areas for new research.

Figure 3 presents some examples of unique mapping. Exam-
ples (A) and (B) map L to each of D once. However, example (A)
structures the table such that both classification dimensions are rep-
resented by an axis and map L to the appropriate intersection. Ex-
ample (B) maps L to the Y-Axis and each classification dimension
D on the X-Axis. Example (C) links each of the reviewed items

c� 2019 The Author(s)
Eurographics Proceedings c� 2019 The Eurographics Association.
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Figure 7: A famous example of time flattening: Napoleon’s
march to Moscow by Joseph Minard [Tuf86].

(a) (b)

Figure 8: Other examples of time flattening: (a) Detail of the
map of the cholera outbreak in London 1854, by Dr. John
Snow. Piled bars mark the number of death per house. (b)
Connected scatterplot showing the relationship between in-
flation rate and unemployment in Spain from 1990 to 2000.

Many maps that show temporal data can be seen as time-
flattened space-time cubes. But the time flattening technique
is not limited to geographical data, and has been employed in
a large variety of information visualization systems as well
as in static data graphics. Figure 8(b) for example, shows the
evolution of inflation rate and unemployment in Spain from
1990 to 2000. This diagram can be seen as time-flattened
version of a space-time cube representing a 2D scatter plot
with a single data point evolving over time.

2.3. Discrete Time Flattening

Time

21 3

Figure 9: The discrete time flattening operation.

Discrete time flattening is similar to time flattening, but
instead of merging all time slices into an image, a selection
of time slices is made before combining them (Figure 9).

An analogy for discrete time flatting is multiple expo-
sure photography, where several photos are taken at different
times and blended into a single image. Etienne-Jules Marey
pioneered this technique in 1882 with an instrument (the
chronophotographic gun) that records 12 photos per second
on the same film, and used it to visualize human and ani-
mal motion [Mar78]. Modern art has also employed a simi-
lar technique to convey movement, e.g., Marcel Duchamp’s
“Nude Descending a Staircase, No. 2”.

Figure 10: An example of discrete time flattening. For a bet-
ter infographic by Megan Jaegerman, see [Tuf].

Tufte [Tuf86] comments on several examples of info-
graphics that employ discrete time flattening. He calls them
sequences. One of his famous examples is the life cycle of
the Japanese beetle [Tuf86]. Figure 10 is a sequence show-
ing a dancer’s move. Discrete time flattening has also been
used for summarizing videos [BDH04].

2.4. Colored Time Flattening

Time Time

21 3

Figure 11: The colored time flattening operation.

The colored time flattening operation is similar to the
time flattening operation, but time slices are assigned a color
before being combined (Figure 11). Although this opera-
tion does not map to any photography technique we know
of, similar results could in principle be obtained by rapidly
switching color filters during a long-exposure photography.

Two examples of visualizations obtained by colored time
flattening are shown in Figure 12: (a) a dynamic graph where
old links (in red) are distinguished from new links (in blue)
[CKN⇤03]; (b) Chinese characters where first strokes (in
black) are distinguished from later strokes (in red) [Wik13].
Minard’s map (Figure 7) also makes use of a simplified form
of colored time flattening, since the army’s forward march
and return are distinguished using two different colors.

c� The Eurographics Association 2014.
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2. A space-time cube does not need to involve spa-
tial data. Many visualizations (e.g., scatterplots, bar charts
or node-link diagrams) convey abstract, non-spatial data
[Mun08]. Nevertheless, they all occupy a 2D space. When
data changes over time, such as in GapMinder’s animated
2D scatterplots [Ros06], each animation frame can be con-
ceptually thought of as a slice of a space-time cube. In the
term space-time cube, space therefore refers to an abstract
2D substrate that is used to visualize data at a specific time.

Thus it is important to stress that this article is not about
space-time cube visualizations, and that 3D space-time cube
representations like the one in Figure 3 only represent a very
small subset of the techniques we aim to cover.

In addition, our conceptual framework does not consider
how space-time cubes are built, e.g., whether or not 2D scat-
terplots should be used to represent the value of country in-
dicators at any given time. Instead, it assumes that a con-
ceptual 3D space-time cube is already given, and focuses
on how this cube can be transformed to accommodate 2D
media like computer displays and paper while remaining
legible. We show how such transformations are enough to
capture most known techniques for visualizing rich tempo-
ral datasets. We mostly focus on datasets that involve two
dimensions plus time (e.g., spatio-temporal data, dynamic
graphs, scatterplots, videos, or any two-dimensional numer-
ical data varying over time), although we later discuss how
our model can be extended to other dimensionalities.

We first review common temporal data visualization tech-
niques, and explain how they can be all seen as operations on
a conceptual space-time cube. We then describe our frame-
work in more detail by providing definitions of key concepts,
as well as a taxonomy of elementary operations and how
they can be combined. We then review temporal data explo-
ration systems that show how a range of space-time cube op-
erations can be supported on a single system through inter-
activity. Finally, we discuss the limitations of our framework
and suggest avenues for future work.

2. Static Visualizations as Space-Time Cube Operations

In this section we illustrate how space-time cube operations
can be used to describe a range of common static visual-
ization techniques for temporal data, all meant for screen
or paper media. We focus on a small but representative se-
lection of examples from the literature, and describe oper-
ations informally, often using analogies from photography
techniques and art.

The conceptual space-time cube we use to describe all
techniques has three major axes: a time axis, and two or-
thogonal axes we call data axes. The 2D plane formed by
the two data axes is referred to as the data plane. While in
Haegerstrand’s original illustration the time axis is vertical,
in our illustrations time goes from left to right.

2.1. Time Cutting

Time

1 2

Figure 5: The time cutting operation.

A time cutting operation consists in extracting a particu-
lar temporal snapshot from the cube to be presented to the
viewer. Figure 5 illustrates this operation: the left part (1)
shows the initial space-time cube and the temporal snapshot
that is being extracted, while the right part (2) shows the re-
sulting image that is presented to the viewer.

For example, consider a photographer who captures a par-
ticular instant of a moving scene. If the scene being viewed
is represented as a space-time cube (i.e., all possible pictures
are piled up to form a cube), then taking a photograph is
equivalent to applying a time cutting operation on this cube.

In information visualization, an image produced by time
cutting is typically called a time slice. But a temporal visual-
ization rarely consists in a single time slice. As we will see
in Section 3, time cutting is typically either performed mul-
tiple times and used in combination with other operations, or
is used in combination with animation and interaction.

2.2. Time Flattening

Time

1 2

Figure 6: The time flattening operation.

Time flattening collapses the space-time cube along its
time axis, by merging all time slices into a single 2D im-
age (Figure 6). An analogy is long exposure photography,
which collapses several seconds, minutes or even hours of a
natural scene into a single image.

One of the earliest uses of time flattening is Minard’s
illustration of Napoleon’s march towards Moscow (Figure
7). The illustration shows on a single image the state of
Napoleon’s army (position, size, key events) at different
points in time during the Russian campaign in 1812 [Tuf86].
Another early example is Dr. John Snow’s map showing
where deaths from cholera occurred in London in 1854 (Fig-
ure 8(a)). The map shows events from several days aggre-
gated over time.

c� The Eurographics Association 2014.
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Geospatial Visualization
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Geographic Data
• Spatial data (have positions) 
• Cartography: the science of drawing maps 
- Lots of history and well-established procedures 
- May also have non-spatial attributes associated with items  
- Thematic cartography: integrate these non-spatial attributes (e.g. 

population, life expectancy, etc.) 
• Goals:  
- Respect cartographic principles 
- Understand data with geographic references with the visualization principles
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Map Projection
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Flattening the Sphere?
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Lambert Conformal Conic Projection
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Standard Projections
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Projection Distortion

30

[Mathigon]
D. Koop, CSCI 628, Fall 2021

https://mathigon.org/course/circles/spheres-cones-cylinders#sphere-maps
https://mathigon.org/course/circles/spheres-cones-cylinders#sphere-maps


map, this circle transforms into an ellipse, known as the
Tissot indicatrix, with semi-axes with lengths a and b. If a 5
b for all locations, then angles between lines on the globe
are maintained after projection: The projection is con-
formal. The classic example is the Mercator projection.
Locally, conformality preserves shapes, but for larger areas
distortions occur. For example, in the Mercator projection
shapes near the poles are strongly distorted.

If ab 5 C for all locations on the map, then the
projection has the equal-area property: Areas are preserved
after projection. Examples are the sinusoidal, Lambert’s
cylindrical equal area and the Gall–Peters projection.

The problem is that for a double curved surface no
projection is possible that is both conformal and equal-area.
Along a curve on the surface, such as the equator, both
conditions can be met; however, at increasing distance from
such a curve the distortion accumulates. Therefore,
depending on the purpose of the map, one of these
properties or a compromise between them has to be
chosen. Concerning distortion, uniform distances are
another aspect to be optimised. Unfortunately, no map
projections are possible such that distances between any
two positions are depicted on a similar scale, but one can
aim at small variations overall or at proper depiction along
certain lines.

Besides these constraints from differential geometry, map
projection also has to cope with a topological issue. A
sphere is a surface without a boundary, whereas a finite flat
area has to be bounded. Hence, a cartographer has to
decide where to cut the globe and to which curve this cut
has to be mapped. Many choices are possible. One option,
used for azimuthal projections, is to cut the surface of the
globe at a single point, and to project this to a circle,
leading to very strong distortions at the boundary. The
most popular choice is to cut the globular surface along a
meridian, and to project the two edges of this cut to an
ellipse, a flattened ellipse or a rectangle, where in the last
two cases the point-shaped poles are projected to curves.

The use of interrupts reduces distortion. For the
production of globes, minimal distortion is vital for
production purposes; hence gore maps are used, where
the world is divided in for instance twelve gores. Goode’s
homolosine projection (1923) is an equal-area projection,
composed from twelve regions to form six interrupted
lobes, with interrupts through the oceans. The projection
of the earth on unfolded polyhedra instead of rectangles or
ellipses is an old idea, going back to Da Vinci and Dürer. All
regular polyhedra have been proposed as suitable candi-
dates. Some examples are Cahill’s Butterfly Map (1909,
octahedron) and the Dymaxion Map of Buckminster Fuller,
who used a cuboctahedron (1946) and an icosahedron
(1954). Steve Waterman has developed an appealing
polyhedral map, based on sphere packing.

Figure 1 visualises the trade-off to be made when dealing
with distortion in map projection. An ideal projection
should be equal-area, conformal, and have no interrupts;
however, at most, two of these can be satisfied simulta-
neously. Such projections are shown here at the corners of a
triangle, whereas edges denote solutions where one of the
requirements is satisfied. Existing solutions can be posi-
tioned in this solution space. Examples are given for some

cylindrical projections, with linear parallels and meridians.
Most of the existing solutions, using no interrupts, are
located at the bottom of the triangle. In this article, we
explore the top of the triangle, which is still terra incognita,
using geographic terminology. Or, in other words, we
discuss projections that are both (almost) equal area and
conformal, but do have a very large number of interrupts.

Related issues have been studied intensively in the fields
of computer graphics and geometric modelling, for
applications such as texture mapping, finite-element surface
meshing, and generation of clothing patterns. The problem
of earth mapping is a particular case of the general surface
parameterisation problem. A survey is given by Floater and
Hormann (2005). Finding strips on meshes has been
studied in the context of mesh compression and mesh
rendering, for instance by Karni et al. (2002). Bounded-
distortion flattening of curved surfaces via cuts was studied
by Sorkine et al. (2002). The work presented here has a
different scope and ambition as this related work. The
geometry to be handled is just a sphere. The aim is to
obtain zero distortion, and we accept a large number of
cuts. Finally, we aim at providing an integrated framework,
offering fine control over the results, and explore the effect
of different choices for the depiction of the surface of the
earth.

METHOD

We project the globe on a polyhedral mesh, label edges as
cuts or folds, and unfold the mesh. We assume that the
faces of the mesh are small compared with the radius of the
globe, such that area and angular distortion are almost
negligible. We first discuss the labelling problem. A mesh
can be considered as a (planar) graph G 5 (V, E), consisting
of a set of vertices V and undirected edges E that connect
vertices. Consider the dual graph H 5 (V’, E’), where each
vertex denotes a face of the mesh, and each edge
corresponds to an edge of the original graph, but now

Figure 1. Distortion in map projection

Unfolding the Earth: Myriahedral Projections 33Projection Classification
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[J. van Wijk, 2008]
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RECURSIVE SUBDIVISION

For the graticular projections, thin strips of faces are
attached to one single strip or face. This is a degenerated
tree structure. In this section, we consider what results are
obtained when a more balanced pattern is used. To this
end, we start with Platonic solids for the projection of the
globe, and recursively subdivide the polygons of these
solids. This approach has been used before for encoding
and handling geospatial data (Dutton, 1996).

At each level i, each edge is split and the new centres,
halfway on the greater circle connecting the original
endpoints, are connected. As a result, for instance each
triangle is replaced at each level by four smaller triangles.
Other subdivision schemes can also be used, for instance
triangles can be subdivided into nine smaller ones.

The edge weights are set as follows. We associate with
each edge three numbers w0, w1, and wc, where the first two
correspond with the endpoints and the latter with the
centre position. For new edges, w0 r i, w1 r i, and wc r
iz1. If an edge e is split into two edges e’ and e’’, we use
linear interpolation for the new values

w
0

0/w0, w
0

1/wc, w
0

c/(w0zwc)=2;

w
00

0/wc, w
00

1/w1, w
00

c/(wczw1)=2:

As a result, the weights are highest close to the centre of
original edges. Finally, we use wc as the edge weight for the
edges of the final mesh, plus a graticule weight w with small
values for Wl and Ww to select the aspect.

The resulting unfolded maps are, at first sight, somewhat
surprising (Figure 5). One would expect to see interesting
fractal shapes, however, at the second level of subdivision
the gaps are already almost invisible (Figure 6). Indeed, the
structure of the cuts is self-similar, however, for higher
levels of subdivision and smaller triangles, the surface of the
sphere quickly approaches a plane, which has Hausdorff
dimension 2. Only when areas would be removed, such as
the centre triangles in the Sierpinski triangle, a fractal shape
would be obtained.

As a step aside, fractal surfaces and foldouts do not match
well either. Unfolding, for instance, a recursively sub-
divided surface with displaced midpoints leads to a large
number of fold-overs (Figure 7).

As another step aside, let us consider optimal mapping on
Platonic solids. We consider a map optimal when the cuts
do not cross continents. To find such mappings, we assign
to each edge a weight proportional to the amount of land
cut, computed by sampling the edges at a number of
positions (here we used 25) and looking up if land or sea is
covered in a texture map of the earth. Next, the map is
unfolded using the standard method and the sum of
weights of cut edges is determined. This procedure is
repeated for a large number of orientations of the mesh,
searching for a minimal value. We used a sequence of three
rotations to vary the orientation of the mesh, and used steps
of 1u per rotation. Results are shown in Figure 8.

Figure 4. Polyconical projection, derived from a 1u graticule,
64 800 polygons

Figure 5. Recursive subdivision of Platonic solids, using five levels
of subdivision, 4096220 480 polygons

Figure 6. Close-up of icosahedral projection

Figure 7. Folding out a fractal surface gives a mess

36 The Cartographic Journal

Subdividing regular polyhedra
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Adding Data to Maps
• Discrete: a value is associated with a specific position 
- Size 
- Color Hue 
- Charts 

• Continuous: each spatial position has a value (fields) 
- Heatmap 
- Isolines
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Discrete Categorical Attribute: Shape
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Discrete Categorical Attribute: Shape
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Discrete Quantitative Attribute: Color Saturation
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Discrete Quantitative Attribute: Size
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Discrete Quantitative Attributes: Bar Chart
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Continuous Quantitative Attribute: Color Hue
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Time as the attribute
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Isolines
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Isolines
• Scalar fields: 
- value at each location 
- sampled on grids 

• Isolines use derived data from the scalar field 
- Interpret field as representing continuous values 
- Derived data is geometry: new lines that represent the same attribute value 

• Scalability: dozens of levels 
• Other encodings?
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Choropleth (Two Hues)
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Choropleth Map
• Data: geographic geometry data & one quantitative attribute per region 
• Tasks: trends, patterns, comparisons 
• How: area marks from given geometry, color hue/saturation/luminance 
• Scalability: thousands of regions 

• Design choices: 
- Colormap 
- Region boundaries (level of summarization)
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Choropleth (Two Hues)
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Problem?
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Adding Saturation
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Area Marks and Color Hue & Saturation
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Aggregation: 2016 Election by Precinct
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https://www.washingtonpost.com/news/politics/wp/2018/07/30/presenting-the-least-misleading-map-of-the-2016-election/
https://www.nytimes.com/interactive/2018/upshot/election-2016-voting-precinct-maps.html


Aggregation: 2016 Election by State
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[Washington Post, 2018]
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https://www.washingtonpost.com/news/politics/wp/2018/07/30/presenting-the-least-misleading-map-of-the-2016-election/


Aggregation: 2016 Election by Country
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[Washington Post, 2018]
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https://www.washingtonpost.com/news/politics/wp/2018/07/30/presenting-the-least-misleading-map-of-the-2016-election/


When to Use Choropleth Maps
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[L. C. Muth]
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https://blog.datawrapper.de/choroplethmaps/


Maps: What trends do you see?
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[Desaturated by D. Koop, M. Ericson, New York Times]
D. Koop, CSCI 628, Fall 2021

Number of Votes Cast



Don't Just Create Population Maps!
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[xkcd]
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https://xkcd.com/1138/


Size Encoding
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[M. Ericson, New York Times]
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Dasymetric Dot Density
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[K. Field]
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http://carto.maps.arcgis.com/apps/webappviewer/index.html?id=8732c91ba7a14d818cd26b776250d2c3


Glyphs: xkcd's Map
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[xkcd]
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https://xkcd.com/1939/


Cartograms
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[B. Hennig]
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http://www.viewsoftheworld.net/?p=5003


Cartograms
• Data: geographic geometry data & two 

quantitative attributes (one part-of-whole) 
• Derived data: new geometry derived from the 

part-of-whole attribute 
• Tasks: trends, comparisons, part-of-whole 
• How: area marks from derived geometry, 

color hue/saturation/luminance 
• Scalability: thousands of regions 
• Design choices: 
- Colormap 
- Geometric deformation
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[New York Times]
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http://www.apple.com
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Party flip

>50%
nonincumbent
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District totals by category
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189 17 6 14 21 44 144

Hexagonal Cartogram
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[FiveThirtyEight, 2018]
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https://projects.fivethirtyeight.com/2018-midterm-election-forecast/house/


A Declarative Rendering Model for Multiclass Density Maps

Jaemin Jo, Frédéric Vernier, Pierre Dragicevic, and Jean-Daniel Fekete, Senior Member, IEEE

1 2 3 4 5 6 7

8 9 10 11 12 13 14

Fig. 1: Design alternatives for a four-class density map. 1 shows small multiples where each density map is individually presented
with a unique color; 2 stacks the density maps and blends the color at each pixel; 3 shows the color of the pixel with the highest
density; 4 - 6 use regular and irregular weaving patterns; 7 shows a contour plot for each class; and 8 – 14 use rebinning (binning
and aggregation over the density maps) with tiles produced by a random Voronoı̈ tessellation. The aggregated values are rendered in

8 with a flat color showing the highest density, 9 with hatching, 10 with proportional bars, 11 with regular weaving, 12 with a dot
density plot, 13 with bar-chart glyphs, and 14 with circle sizes.

Abstract—Multiclass maps are scatterplots, multidimensional projections, or thematic geographic maps where data points have a

categorical attribute in addition to two quantitative attributes. This categorical attribute is often rendered using shape or color, which

does not scale when overplotting occurs. When the number of data points increases, multiclass maps must resort to data aggregation

to remain readable. We present multiclass density maps: multiple 2D histograms computed for each of the category values. Multiclass

density maps are meant as a building block to improve the expressiveness and scalability of multiclass map visualization. In this

article, we first present a short survey of aggregated multiclass maps, mainly from cartography. We then introduce a declarative

model—a simple yet expressive JSON grammar associated with visual semantics—that specifies a wide design space of visualizations

for multiclass density maps. Our declarative model is expressive and can be efficiently implemented in visualization front-ends such as

modern web browsers. Furthermore, it can be reconfigured dynamically to support data exploration tasks without recomputing the raw

data. Finally, we demonstrate how our model can be used to reproduce examples from the past and support exploring data at scale.

Index Terms—Scalability, multiclass scatterplots, density maps, aggregation, declarative specification, visualization grammar

1 INTRODUCTION

In this article, we are interested in methods to increase the scalability
and expressiveness of 2D multiclass maps (i.e., visual representations
of data that consist of two quantitative attributes, which are mapped
to (x,y), and one categorical attribute). 2D multiclass maps include
scatterplots, multidimensional projections, and thematic geographic
maps, altogether called maps. These maps are supported by all the
multidimensional data visualization and cartographic systems, attesting
their popularity and effectiveness. In nonaggregated maps, the categori-
cal attribute is depicted using a categorical visual variable at each point,
such as color or shape. However, when the number of points increases,
the maps become unreadable because of excessive overplotting, which
can result from structural properties of the data (e.g., multiple points
being heavily clustered), or simply because of the sheer number of
points.
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Massive datasets suitable to be visualized as multiclass maps are
easily available, for example, the RTI U.S. Synthetic Household Popu-
lation™ [50] containing one point per person in the United States (300
million) with their age, sex, race, income, and house location. Large
multiclass maps can also be easily generated by computing the projec-
tion of millions of multidimensional multiclass points using modern
scalable projection systems [39, 48].

To scale scatterplots, several approaches have been proposed, such
as adaptive opacity [15, 30, 32] and aggregation [13, 53]. However,
adaptive opacity does not scale well with the number of categories
since multiple categorical colors become ambiguous when blended,
and aggregation methods such as density plots are limited to purely
bivariate quantitative data. Few techniques have been described to
support the visualization of aggregated multiclass maps, and to our
knowledge, no system supports their visualization in a flexible way.

In this article, we present a declarative model to specify multiclass
density maps, multiple density plots with different classes, applicable
to an arbitrary number of points. Our contributions are:

• a review of visualization techniques for multiclass density maps,
• a conceptual model for describing a wide range of visualizations

of multiclass density maps, and
• a concise declarative grammar and its interpreter to specify their

rendering.
Our model relies on the creation of multiple aggregated data buffers

by visualization library back-ends, while a front-end system (e.g., a
web browser) allows interactively configuring and combining the data

Next Class
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