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Visualization Tools & Tradeoffs
• Fast, turnkey approaches 
• Control over all visual elements 

• You can use multiple tools! Think about purpose 
- Exploration 
- Explanation (custom design, handle interaction)
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Scatterplot Matrices and Parallel Coordinates
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Map with Two Variables
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Treemaps
• Containment marks instead of 

connection marks 
• Encodes some attribute of the items 

as the size of the rectangles 
• Not as easy to see the intermediate 

rectangles 
• Scalability: millions of leaf nodes and 

links possible 
• Need a layout algorithm! 
- Slice-and-Dice vs. Squarify 

- Viewing Hierarchy: Cushion Treemap
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Avoid Rainbow Colormaps!
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Animated Transitions
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Animated Transitions
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Composite Visualization Techniques
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[W. Javed and N. Elmqvist, 2012]
D. Koop, CSCI 628, Fall 2021

Technique Visualization A Visualization B Spatial Relation Data Relation

ComVis [24] (Figure 2) any any juxtapose none
Improvise [39] (Figure 3) any any juxtapose none
Jigsaw [36] any any juxtapose none
Snap-Together [30] any any juxtapose none
semantic substrates [34] (Figure 4) node-link node-link juxtapose item-item
VisLink [11] (Figure 5) radial graph node-link juxtapose item-item
Napoleon’s March on Moscow [37] time line view area visualization juxtapose item-item
Mapgets [38] (Figure 6) map text superimpose item-item
GeoSpace [22] (Figure 7) map bar graph superimpose item-item
3D GIS [8] map glyphs superimpose item-item
Scatter Plots in Parallel Coordinates [45] (Figure 8) parallel coordinate scatterplot overload item-dimension
Graph links on treemaps [14] (Figure 9) treemap node-link overload item-item
SparkClouds [21] tag cloud line graph overload item-item
ZAME [13] (Figure 10) matrix glyphs nested item-group
NodeTrix [17] (Figure 11) node-link matrix nested item-group
TimeMatrix [44] matrix glyphs nested item-group
GPUVis [25] Scatterplot glyphs nested item-group

Table 1: Classification of common composite visualization techniques using our design space.

(a) Juxtaposed views. (b) Integrated views. (c) Superimposed views. (d) Overloaded views. (e) Nested views.

Figure 12: Example of composing a scatterplot and bar graph using different methods.

datasets in the same space and using different visualizations, but
also highlights the relational linking between the two datasets.

Nested views provide an efficient approach to link each of the
data values, visualized through the host visualization, to its related
dataset, visualized through client visualizations. This is achieved
by nesting clients inside the visual marks in the host.

• Benefits: Very compact representation, easy correlation.
• Drawbacks: Limited space for the client visualizations, clut-

ter is high, and visual design dependencies are high.
• Applications: Again, situations that call for augmenting a

particular visual representation with additional mapping.

Figure 12(e) shows an example composition of scatterplot and
bar graph visualizations based on this design patter. In the figure,
the scatterplot visualization is acting as a host and bar graph visu-
alizations are nested inside its visual marks.

There is probably not a clear winner among different design pat-
terns while designing an information visualization tool. The correct
choice of design pattern to use for a particular implementation de-
pends on different conditions, such as the available view space, user
knowledge, and the complexity of the underlying dataset. Ideally
speaking, designers should be able to combine any existing visual-
izations to generate a composite visualization view.

8.2 Delimitations

While our above CVV design patterns are general in nature, they
are based solely on the spatial layout of component visualizations.
However, it is possible to envision other ways to combine two or
more visualizations, for example using interaction or animation.
One such example is the use of interactive hyperlinking [6, 43] (or
wormholing) to navigate between different visualization views.

8.3 Discussion

There are several direct benefits to structuring the design space of
composite visualization views in this manner. Classifying existing
techniques into patterns not only helps in understanding these tech-
niques, but also in evaluating their strengths and weaknesses.

However, the design patterns presented in this paper are all based
on evidence from the literature of how existing visualization tools
and techniques use composite views. Therefore, our framework
is inherently limited to current designs, and more descriptive than
generative in nature. Furthermore, this list of patterns is not neces-
sarily exhaustive, and we certainly foresee additional design pat-
terns for composite views to emerge with progress in informa-
tion visualization. It is also not always straightforward to sepa-
rate what is a composite visualization and what is an “atomic” (or
component) visualization, particularly when the compositions on
the visual structures—which is the case for overloaded and nested
views—as opposed to merely on the views. Our approach in the
above text has been to treat as components any technique has been
presented in the literature as a standalone technique.

9 CONCLUSION

We have proposed a novel framework for specifying, designing, and
evaluating compositions of multiple visualizations in the same vi-
sual space that we call composite visualization views. The benefit
of the framework is not only to provide a way to unify a large col-
lection of existing work where visual representations are combined
in various ways, but also to suggest new combinations of visual
representations that may significantly advance the state of the art.
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datasets in the same space and using different visualizations, but
also highlights the relational linking between the two datasets.

Nested views provide an efficient approach to link each of the
data values, visualized through the host visualization, to its related
dataset, visualized through client visualizations. This is achieved
by nesting clients inside the visual marks in the host.

• Benefits: Very compact representation, easy correlation.
• Drawbacks: Limited space for the client visualizations, clut-

ter is high, and visual design dependencies are high.
• Applications: Again, situations that call for augmenting a

particular visual representation with additional mapping.

Figure 12(e) shows an example composition of scatterplot and
bar graph visualizations based on this design patter. In the figure,
the scatterplot visualization is acting as a host and bar graph visu-
alizations are nested inside its visual marks.
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the visual structures—which is the case for overloaded and nested
views—as opposed to merely on the views. Our approach in the
above text has been to treat as components any technique has been
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6 OVERLOADING ! OVERLOADED VIEWS

This design pattern characterizes compositions where one visual-
ization, called the client visualization, is rendered inside another
visualization, called the host, using the same spatial mapping as the
host [26]. Overloaded views (Figures 8 and 9) are similar to super-
imposed views, but with some important differences. Like super-
imposition, the client visualization in this design pattern is overlaid
on the host. However, unlike Superimposed Views, there exists no
one-to-one spatial linking between the two visualizations [12].

While previous design patterns have all operated on specific
views of component visualizations, overloaded views (and also the
next pattern, Nested Views) operate on the visual structure them-
selves. In other words, it is no longer possible to merely use vi-
sual layout operations to organize the views together, but the vi-
sual structures themselves must be modified to combine the com-
ponents. We will see examples of this below.

Figure 10: ZAME [13] (Nested Views). Visual exploration of a

protein-protein interaction dataset in ZAME.

6.1 Scatter Plots in Parallel Coordinates (SPPC)

Yuan et al. [45] presented a system that allows overloading of 2D
scatterplots on a parallel coordinates visualization [18] (Figure 8).
The technique is based on converting the space between pairs of
selected coordinate dimensions in a parallel coordinate plot into
scatterplots through multidimensional scaling [42]. The technique
takes advantage of the fact that parallel coordinate plots do not re-
ally use the space between the parallel dimensional axes, which
means that this space is open for being overloaded.

SPPC is also an example of combining two techniques to com-
pensate for their individual shortcomings. Parallel coordinates are
efficient for visualizing multiple dimensions in a compact 2D vi-
sual representation. However, they make it hard to correlate trends
across multiple dimensions due to their inherent visual clutter. Scat-
terplots, on the other hand, provide an effective way of correlating
trends in any dimension of a dataset [10]. Combining both tech-
niques allows for sharing their advantages.

6.2 Graph Links on Treemaps

Fekete et al. [14] proposed a technique for rendering graphs using a
treemap [20] with overloaded graph links. The idea is based on the
fact that it is possible to decompose a graph into a tree structure and
a set of remaining graph edges that are not included in the tree. This
graph decomposition allows for using a treemap to visualize the tree
structure, and then overload links corresponding to the remaining
graph edges on the treemap visualization. Even though Fekete et al.

call this “overlaying”, the technique is an example of overloading
in our terminology because the graph links are not just a separate
layer on top of the treemap, but they are embedded into the visual
structure of the treemap and use the node positions as anchors.

Figure 9 shows the technique being used to visualize a website.
Here, the directory structure, inherent in any website, is visualized
through an underlying treemap and external links are visualized
through overlaid edges. The overlaid edges are not straight lines,
but are curved to highlight source and target locations. The edges
are curved more near the source, hence making it easy to visually
recognize the direction of the link. The tool also supports con-
trolling the visibility of various edges to reduce visual clutter, and
coloring edges based on their attributes.

Figure 11: NodeTrix [17] (Nested Views). This example shows a

visualization of the InfoVis co-authorship network.

7 NESTING ! NESTED VIEWS

Nested views, like overloaded views, are also based on the notion of
host and client visualizations. However, in this design pattern, one
or more client visualizations are nested inside the visual marks of
the host visualizations, based on the relational linking between the
points. Most often, the nesting is performed simply by replacing
the visual marks in the host visualization by nested instances of the
client visualization (Figures 10 and 11). An example of this would
be a scatterplot where the individual marks are barchart glyphs [25].

The nested views pattern provides an effective way of relating
data points in the host visualization to the data visualized through
the client visualizations. Again the users need not divide their atten-
tion between multiple views, and the host visualization is allowed
to use the full available space. However, since the design pattern
embeds one or more visualizations inside a visual mark, the client
visualizations are allocated only a small portion of the host visual-
ization’s visual space, and zooming and panning may be required to
see details. Furthermore, just like overloading, nested views com-
pose the actual visual structures of the components, which typically
requires a more careful design.

One issue to discuss here is the difference between overloading
and nesting. These are different design patterns because nesting
simply replaces the visual marks of the host with the visual structure
of the client, whereas overloading requires a much more integrated
composition of the visual structures of the host and the client.

7.1 ZAME

Nested views are becoming increasingly prominent for visualizing
large-scale datasets using glyph-based methods. ZAME [13], a vi-
sualization system designed to explore large-scale adjacency matrix
graph visualization, uses this approach. The base matrix represen-
tation used in ZAME is a hierarchical aggregation of the underly-
ing dataset. The tool allows the user to zoom in data space, which
amounts to drilling-down and rolling-up in the aggregation hierar-
chy to see more or less details. Abstract glyphs representing aggre-
gated data for each cell in the matrix are nested inside the visual
marks of the matrix to convey information about the aggregation.

Nesting
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[NodeTrix, N. Henry et al., 2007]
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[M. Bostock]
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D. Koop, CSCI 628, Fall 2021
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Spatial Aggregation
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[Penn State, GEOG 486]
D. Koop, CSCI 628, Fall 2021
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The first sample comprises the normal scores for a sample of this size, scaled to range 
from 1.0 to 19.0. Sample 2 is a mixture of two identical symmetric clusters of data 
each of size 49 and centered at 7.4 and 12.6, respectively, together with isolated 
values at the ends of the range. Sample 3 is a mixture of 70 values spaced evenly over 
the range, 15 values at 9.5, and 15 values at 10.5. Sample 4 comprises a value at 1.0, 
24 values at 7.4, 50 approximately evenly spaced values ranging from 7.4 to 12.6, and 
25 approximately evenly spaced values ranging from 12.6 to 19.0.  

 
Figure 1: Histograms and box plot: four samples each of size 100 

In an attempt to improve the box plot to show shape information, Benjamini (1988) 
suggested a “histplot”, obtained by varying the width of the box according to the 
density of the data at the median and quartiles, where these densities are estimated 
from a histogram with a small number of bins. Benjamini (1988) also suggested a 
variation called a “vase plot”, in which the linear segments in the histplot are replaced 
by smooth curves based on a kernel density estimate. Hintze and Nelson (1998) 
suggested a further modification called a “violin plot”, which is essentially the same 
as the vase plot, except that it extends to cover the whole range of the data. 

While these methods provide informative and useful displays, in essence they just 
replace the box plot by a kind of histogram, rather than modifying it. The problem 
remains to choose the extent of smoothing, which in turn should depend on the 
sample size.!The box plot has become popular largely because of its simplicity. This 
raises the question: Is there a simple modification of the box plot that provides better 
information about the shape of the distribution, especially bimodality? 

!
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from 1.0 to 19.0. Sample 2 is a mixture of two identical symmetric clusters of data 
each of size 49 and centered at 7.4 and 12.6, respectively, together with isolated 
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Dimensionality Reduction: PCA
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[Principle Component Analysis Explained, Explained Visually, V. Powell & L. Lehe, 2015]
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Here's the plot of the data along the first principal component. Already we can see something is different about Northern Ireland.
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Now, see the first and second principal components, we see Northern Ireland a major outlier. Once we go back and look at the data
in the table, this makes sense: the Northern Irish eat way more grams of fresh potatoes and way fewer of fresh fruits, cheese, fish
and alcoholic drinks. It's a good sign that structure we've visualized reflects a big fact of real-world geography: Northern Ireland is
the only of the four countries not on the island of Great Britain. (If you're confused about the differences among England, the UK
and Great Britain, see: this video.)
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June 21, 2012 / Mike Bostock

Fisheye Distortion

It can be difficult to observe micro and macro features simultaneously with complex graphs. If you
zoom in for detail, the graph is too big to view in its entirety. If you zoom out to see the overall
structure, small details are lost. Focus + context techniques allow interactive exploration of an area

Mouseover to distort the nodes.

Fisheye Distortion
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Cartesian Distortion
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Cartesian Distortion
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The purpose of visualization is about insight, not pictures 

– B. Shneiderman

D. Koop, CSCI 628, Fall 2021
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Visualization Research

D. Koop, CSCI 628, Fall 2021



Visualization Research
• General Goals: "New visual displays, control panels, features, and workflows 

that improve the capabilities of users." 
• Perceptual and Cognitive Theories: help accomplish goals, guide design, aid 

in development of new tools." 
• Evaluation Methods:  
- Quantitative and Qualitative 
- Validate hypotheses, refine theories.
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Areas of Visualization Research
• Tools that make it easier to create visualizations 
• New encodings 
• Knowledge from controlled studies of visualization effectiveness 
• Visualization-based communication 
• Studies of visualization use in the world 
• Formal theories of visualization 
• Applications (Schneiderman)
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Tools that make it easier to create visualizations
• Tableau, Spotfire, D3 were all proposed and developed by visualization 

researchers 
• Not just create visualizations, but effective visualizations 
• Current Trends: 
- Web-based frameworks 
- Declarative, more concise specification (Vega-Lite)
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New Encodings
• Determine what cannot currently be done 
• Think about how new designs can show new, interesting patterns
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on Many Eyes, for instance, we would not have guessed at the 
popularity of religious analyses. Given the broad demand for text 
visualizations, however, it seems like a fruitful area of study. 
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Fig 10: Word Tree showing all occurrences of “I have a dream” in Martin Luther King’s historical speech. 
 
 
 

 
 
 

 
Fig 9. Word tree of the King James Bible showing all occurrences of “love the.” 
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Figure 4. Graphs from position-length experiment. 

tracted by perceiving position along a scale, in this case 
the horizontal axis. The y values can be perceived in a 
similar manner. 

The real power of a Cartesian graph, however, does 
not derive only from one's ability to perceive the x and 
y values separately but, rather, from one's ability to un- 
derstand the relationship of x and y. For example, in Fig- 
ure 7 we see that the relationship is nonlinear and see the 
nature of that nonlinearity. The elementary task that en- 
ables us to do this is perception of direction. Each pair 
of points on the plot, (xi, yi) and (xj, yj), with xi =$ Xj, 
has an associated slope 

(yj - y)(xj - xi). 

The eye-brain system is capable of extracting such a 
slope by perceiving the direction of the line segment join- 
ing (xi, yi) and (xj, yj). We conjecture that the perception 
of these slopes allows the eye-brain system to imagine 
a smooth curve through the points, which is then used to 
judge the pattern. For example, in Figure 7 one can per- 
ceive that the slopes for pairs of points on the left side 
of the plot are greater than those on the right side of the 
plot, which is what enables one to judge that the rela- 
tionship is nonlinear. 

That the elementary task of judging directions on a 
Cartesian graph is vital for understanding the relationship 
of x and y is demonstrated in Figure 8. The same x and 
y values are shown by paired bars. As with the Cartesian 

MURDER RATES, 1978 
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Figure 5. Statistical map with shading. 
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Figure 2. Sample distribution function of 1978 murder rate. 

judging position along a common scale, which in this case 
is the horizontal scale. 

Bar Charts 

Figures 3 and 4 contain bar charts that were shown to 
subjects in perceptual experiments. The few noticeable 
peculiarities are there for purposes of the experiments, 
described in a later section. 

Judging position is a task used to extract the values of 
the data in the bar chart in the right panel of Figure 3. 
But now the graphical elements used to portray the 
data-the bars-also change in length and area. We con- 
jecture that the primary elementary task is judging po- 
sition along a common scale, but judgments of area and 
length probably also play a role. 

Pie Charts 

The left panel of Figure 3 is a pie chart, one of the most 
commonly used graphs for showing the relative sizes of 
the parts of a whole. For this graph we conjecture that 
the primary elementary visual task for extracting the nu- 
merical information is perception of angle, but the areas 
and arc lengths of the pie slices are variable and probably 
are also involved in judging the data. 

Divided Bar Charts 

Figure 4 has three div'ided bar charts (Types 2, 4, and 
5). For each of the three, the totals of A and B can be 
compared by perceiving position along the scale. Position 
judgments can also be used to compare the two bottom 

diviionsin ech cse; or Tpe 2the otto divsin 
are arkd wth ots.Allothr vluesmus becomare 
by he lemntay tsk f prcevin difernt ar enghs 

examples are the two divisions marked with dots in Type 
4 and the two marked in Type 5. 

Statistical Maps With Shading 

A chart frequently used to portray information as a 
function of geographical location is a statistical map with 
shading, such as Figure 5 (from Gale and Halperin 1982), 
which shows the murder data of Figure 2. Values of a 
real variable are encoded by filling in geographical re- 
gions using any one of many techniques that produce 
gray-scale shadings. In Figure 5 the technique illustrated 
uses grids drawn with different spacings; the data are not 
proportional to the grid spacing but, rather, to a compli- 
cated function of spacing. We conjecture that the primary 
elementary task used to extract the data in this case is 
the perception of shading, but judging the sizes of the 
squares formed by the grids probably also plays a role, 
particularly for the large squares. 

Curve-Difference Charts 

Another class of commonly used graphs is curve-dif- 
ference charts: Two or more curves are drawn on the 
graph, and vertical differences between some of the 
curves encode real variables that are to be extracted. One 
type of curve-difference chart is a divided, or aggregate, 
line chart (Monkhouse and Wilkinson 1963), which is typ- 
ically used to show how parts of a whole change through 
time. 

Figure 6 is a curve-difference chart. The original was 
drawn by William Playfair; because our photograph of 
the original was of poor quality, we had the figure re- 
drafted, trying to keep as close to the original as possible. 
The two curves portray exports from England to the East 
Indies and imports to England from the East Indies. The 
vertical distances between the two curves, which encode 
the export-import imbalance, are highlighted. The quan- 
titative information about imports and exports is ex- 
tracted by perceiving position along a common scale, and 
the information about the imbalances is extracted by per- 
ceiving length, that is, vertical distance between the two 
curves. 

Cartesian Graphs and Why They Work 

Figure 7 is a Cartesian graph of paired values of two 
variables, x and y. The values of x can be visually ex- 

40 
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Figure 3. Graphs from position-angle experiment. 
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Evaluating the Impact of Binning 2D Scalar Fields
Lace Padilla, P. Samuel Quinan, Miriah Meyer, and Sarah H. Creem-Regehr

Fig. 1: Experimental stimuli for five binning conditions: A. Continuous, B. 10m binning, C. 20m binning, D. 30m binning, E. 40m
binning

Abstract— The expressiveness principle for visualization design asserts that a visualization should encode all of the available data,
and only the available data, implying that continuous data types should be visualized with a continuous encoding channel. And yet,
in many domains binning continuous data is not only pervasive, but it is accepted as standard practice. Prior work provides no clear
guidance for when encoding continuous data continuously is preferable to employing binning techniques or how this choice affects
data interpretation and decision making. In this paper, we present a study aimed at better understanding the conditions in which
the expressiveness principle can or should be violated for visualizing continuous data. We provided participants with visualizations
employing either continuous or binned greyscale encodings of geospatial elevation data and compared participants’ ability to complete
a wide variety of tasks. For various tasks, the results indicate significant differences in decision making, confidence in responses, and
task completion time between continuous and binned encodings of the data. In general, participants with continuous encodings were
faster to complete many of the tasks, but never outperformed those with binned encodings, while performance accuracy with binned
encodings was superior to continuous encodings in some tasks. These findings suggest that strict adherence to the expressiveness
principle is not always advisable. We discuss both the implications and limitations of our results and outline various avenues for
potential work needed to further improve guidelines for using continuous versus binned encodings for continuous data types.

Index Terms—Geographic/Geospatial Visualization, Qualitative Evaluation, Color Perception, Perceptual Cognition

1 INTRODUCTION

A foundational design principle in visualization is the expressiveness
principle, which states that a visual encoding should express all of the
relationships in the data, and only the relationships in the data [24, 35].
For a continuous data type, this implies that a continuous encoding
channel is a good choice. In practice, however, domains such as car-
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tography [43] and meteorology [36] have strong conventions that visu-
alize continuous data with a discrete encoding. These domains rely on
visual channels, such as color and saturation to encode a continuous
function defined over two-dimensional space, known as a 2D scalar
field. They commonly do so by employing discrete colormaps or con-
tour lines, also called isarithmic maps [43].

Existing literature provides little guidance about encoding contin-
uous, 2D scalar fields with binned colormaps, or how this design de-
cision affects data interpretation and decision making. Research into
properties of colormaps for encoding continuous data types has largely
focused on continuous colormaps [2, 28, 38, 48]. This line of research
provides guidance on how to capture properties of the data, such as
divergence around a center point [48] or emphasis on one end of the
data range [2]. These papers go so far as proposing corresponding
binned colormaps, but do not make claims, or even discuss, their ef-
ficacy for continuous data. Work on transfer function design has also
proposed methods for binning colors, but with a focus on volumetric
scalar fields, with the underlying goal of classifying materials or fea-
tures [12], as opposed to directly understanding the continuous nature

Knowledge from studies of visualization effectiveness
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faster to complete many of the tasks, but never outperformed those with binned encodings, while performance accuracy with binned
encodings was superior to continuous encodings in some tasks. These findings suggest that strict adherence to the expressiveness
principle is not always advisable. We discuss both the implications and limitations of our results and outline various avenues for
potential work needed to further improve guidelines for using continuous versus binned encodings for continuous data types.
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1 INTRODUCTION
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tography [43] and meteorology [36] have strong conventions that visu-
alize continuous data with a discrete encoding. These domains rely on
visual channels, such as color and saturation to encode a continuous
function defined over two-dimensional space, known as a 2D scalar
field. They commonly do so by employing discrete colormaps or con-
tour lines, also called isarithmic maps [43].

Existing literature provides little guidance about encoding contin-
uous, 2D scalar fields with binned colormaps, or how this design de-
cision affects data interpretation and decision making. Research into
properties of colormaps for encoding continuous data types has largely
focused on continuous colormaps [2, 28, 38, 48]. This line of research
provides guidance on how to capture properties of the data, such as
divergence around a center point [48] or emphasis on one end of the
data range [2]. These papers go so far as proposing corresponding
binned colormaps, but do not make claims, or even discuss, their ef-
ficacy for continuous data. Work on transfer function design has also
proposed methods for binning colors, but with a focus on volumetric
scalar fields, with the underlying goal of classifying materials or fea-
tures [12], as opposed to directly understanding the continuous nature
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Knowledge from studies of visualization effectiveness
• Controlled experiments often focus on visual building blocks 
• Need not only very controlled, focused experiments. Can be impacted by 
- Different encodings 
- Framings 
- User predispositions or prior beliefs 

• Holistic studies of new visualization techniques
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Supporting Visual Analytics
• Exploratory Data Analysis 
• Sensemaking & Meaning-making 
• Interpretability of Machine Learning Models
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3.2 Qualitative Analysis  
To inform the design of a tool that suggests good story structures 
with insights on the strategies of professional designers, we conduct-
ed a qualitative analysis of the structural aspects of 42 examples of 
explicitly-guided (i.e., unambiguously linearly ordered) professional 
narrative visualizations. The study poses several questions about 
sequencing in professional narrative visualization presentations:  
• What types of changes (transition types) drive between-

visualization transitions in linear narrative visualizations? 
• Are there general characteristics that are shared among the 

common types of transitions?  
• How do strategies for local (visualization-to-visualization) 

transitions compare to global transitions (patterns involving 
multiple local transitions)?    

3.2.1 Study Design 
42 narrative visualizations created between 2006 and 2012 were 
compiled (full list in supplementary file). We seeded the set with 
visualizations in an independently-curated sample of New York 
Times (NYT) and Guardian interactives [23]. Additional examples 
came from visualization blogs and repositories (e.g., visualizing.org) 
and well-known news sources (e.g., BBC).  We included only visual-
izations with non-ambiguous sequencing cues like numbered slides 
or steps across linked views, a “Next,” “→,” or “Continue” button, or 
a “Play” button for a self-running video or slideshow. These features 
had to occur without additional navigational choices. Interactive 
slideshows formed the largest format in our sample (23/42), with 
other presentations including animated data videos (7/42) and inter-
active timelines (6/42), live narrated visualization presentations 
(1/42), and static slideshows archived online but originally intended 
for live presentation (5/42).  

While the individual states that comprise a visualization sequence 
are fairly unambiguous in a slideshow-style presentation, the constit-
uent states of smooth animated narrative visualizations are more 
difficult to identify. A visualization state has been defined as a set of 
parameters applied to data [14], or the settings of interface widgets in 
a visualization environment along with the application content [11]. 
We define a narrative visualization state as an informationally-
distinct visual representation and transitions as state changes after 
[10]. Our definition of a state does not consider different portions of 
a single static visualization to be unique states. Though static visuali-
zations are likely to be processed sequentially (such as if labels sug-
gest that users examine data in a particular order), coding these 
would require more arbitrary judgments on how to divide static 
graphs. While a slideshow composed of unique static slides often 

divides into one state per slide, a single slide can represent multiple 
states if it contains animation within single numbered slides. Rather 
than counting the states in smooth animations, we focus on noting 
changes from one transition form to another. For instance, we are 
interested in when a series of chronological transitions showing pop-
ulation estimates for different time slices (possibly spanning many 
states) changes to another transition form. The time-based transition 
sequence might give way to a transition where the measure or meas-
ure changes to GDP per capita while time stays constant.  

Coding proceeded as follows: two coders first informally ana-
lyzed visualizations in the set with a focus on those aspects of the 
presentations that suggested how consecutive states in a data story 
are prioritized or ordered. Over several iterations, various categories 
of state-to-state order emerged. A coding protocol that captured these 
aspects was created and discussed by both coders. Visual interaction 
strategies that appeared relevant to sequencing, such as animated 
transitions between states, were also noted. Ten visualizations were 
randomly drawn from the set and coded independently by both cod-
ers, and the protocol updated upon reconciliation of disagreements. 
The remaining visualizations were then coded independently. 

Additionally, we analyzed global structuring tactics spanning 
longer sequences of visualizations in a presentation. Coding first at 
the local level of visualization-to-visualization transitions allowed us 
to work up to observations at a global presentational level in a final 
collaborative coding. This entailed reviewing the combinations of 
transitions that occurred in each presentation to note patterns indicat-
ing global sequencing strategies.   

3.2.2 Design Implications 
Several insights that emerged from our analysis inform the design of 
an algorithmic approach that we describe below for identifying se-
quencing possibilities in narrative visualization. The first implication 
consists of a set of transition types characterizing the difference be-
tween the data shown in one visualization and another that directly 
follows it (see Table 1). A key aspect of the types we observed is that 
each represents a single change in one dimension of a data represen-
tation from one slide (visualization) to the next. As such, the types 
imply a data-dependent intention behind sequencing choices. Five 
primary categories of transition types that share this characteristic 
emerged from coding. In Dialogue transitions, a question asked in 
one state is followed by a visualization that answers that question. 
Temporal transitions involve orderings of visualization states based 
on a time variable associated with the data in each (see Fig. 2). These 
include standard chronology as well as moving from back in time 
from one visualization to the next (reverse chronological) or forward 
in time to a visualization that shows a future projection (e.g., future 
chronological). In Causal transitions, one visualization state follows 
another to explicitly hypothesize a causal relationship. For example, 

Table 1. Transition Types with Sample Prevalence.  

Category Transition Types Sample 
Frequency 

Total  

Dialogue Question & Answer (4/42) 16.7% 
Who, What, When, 
Where, Why, How 

(3/42) 

Temporal Simple chronological (29/42) 88.1% 
Reverse chronological (11/42) 
Future chronological (12/42) 

Causal Explicit Cause (7/42) 23.8% 
Alternative Reality (3/42) 

Granularity General to Specific (28/42) 71.4% 
Specific to General (16/42)  

Comparison Dimension Walk (20/42) 64.3% 
Measure Walk (19/42) 

Spatial Spatial Proximity (10/42) 23.8% 
 

 

Fig. 1. Parallelism in sequencing in the NYTʼs “Copenhagen: Emis-
sions, Treaties, and Impacts: Possible Impacts” interactive [3]. Three 
general-to-specific transitions detail three possible climate outcomes 
(drought, flooding, crop shortage), which at a higher level comprise a 

measure walk sequence. 

Visualization-based Communication
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Design Studies
• Studies of visualization in the world 
• Often involve collaboration with domain specialists 
• Specific problems in that domain that can provide lessons for other domains 

as well
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Formal Theories of Visualization
• Grammar of Graphics 
• Discrete/Continuous Taxonomy 
• Algebraic Visualization
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What should Visualization Research be about?
• "[V]isualization is a method for contextualizing data, enabling people to apply 

their prior experiences and perceptual and cognitive abilities to draw 
conclusions about phenomena in the real world" — J. Hullman 

• Perception and cognition 
• Not only that Vis A is better than Vis B, but why
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Visualization Research Boundaries?
• Interactive illustration 
• Satellite imagery 
• Sketching and analogical reasoning 
• Understanding aesthetics independent of analytical utility 
• Tables 
• Uncertainty Vis: Worse than Nothing?
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Grand Challenges
• Amplifying human cognition in the exploration of data.  
- Data science 
- Explainable artificial intelligence  
- Information visualization is vital to successful outcomes for both topics. 

• Improve storytelling capacity for the general public 
• Engage users to explore on their own 
• Support researchers in understanding causality 
• Shift from rationalism, which assumes that algorithms are the answer, to 

empiricism, which assumes that continuous exploration, persistent 
questioning, and vigorous dialog will promote a deeper understanding of our 
world.
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Shneiderman's Advice to a Ph.D. Student
• "Start by working on a real problem—one that you have or that you get from 

someone else. Working on real problems leads to better theories and better 
tools."
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