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“Computer-based visualization systems provide visual 
representations of datasets designed to help people 

carry out tasks more effectively.”  

— T. Munzner

D. Koop, CSCI 628, Fall 2021
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1 = Quantitative
2 = Nominal
3 = Ordinal

 quantitative
 ordinal
 categorical

Categorial, Ordinal, and Quantitative
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Tasks
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[Munzner (ill. Maguire), 2014]
D. Koop, CSCI 628, Fall 2021

Trends

Actions

Analyze

Search

Query

Why?

All Data

Outliers Features

Attributes

One Many
Distribution Dependency Correlation Similarity

Network Data

Spatial Data
Shape

Topology

Paths

Extremes

Consume
Present EnjoyDiscover

Produce
Annotate Record Derive

Identify Compare Summarize

tag

Target known Target unknown

Location 
known
Location 
unknown

Lookup

Locate

Browse

Explore

Targets

Why?

How?

What?



6

Definition

D. Koop, CSCI 628, Fall 2021



●

●
●

●
●

●

●

●

●

●
●

4 6 8 10 12 14 16 18

4

6

8

10

12

x1

y 1

●
●

●●
●

●

●

●

●

●

●

4 6 8 10 12 14 16 18

4

6

8

10

12

x2

y 2

●
●

●

●
●

●

●
●

●

●
●

4 6 8 10 12 14 16 18

4

6

8

10

12

x3

y 3

●
●

●

●●

●

●

●

●

●

●

4 6 8 10 12 14 16 18

4

6

8

10

12

x4

y 4

Why Visual?

7

[F. J. Anscombe]
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[F. J. Anscombe]
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Mean of x 9

Variance of x 11

Mean of y 7.50

Variance of y 4.122

Correlation 0.816
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Design Example
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[M. Stefaner, 2013]
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http://well-formed-data.net/archives/972/where-the-wild-bees-are


How do we do visualization?
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[Munzner (ill. Maguire), 2014]
D. Koop, CSCI 628, Fall 2021

How?
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Visual Encoding
• How do we encode data visually? 
- Marks are the basic graphical elements in a visualization 
- Channels are ways to control the appearance of the marks 

• Marks classified by dimensionality: 

• Also can have surfaces, volumes 
• Think of marks as a mathematical definition, or if familiar with tools like Adobe 

11D. Koop, CSCI 628, Fall 2021

Points Lines Areas
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[Munzner (ill. Maguire), 2014]
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[Munzner (ill. Maguire), 2014]
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Topic Survey
• Thanks for completing 
• Will be finalizing the topics soon and releasing another survey to rank topics/

dates to present

14D. Koop, CSCI 628, Fall 2021



Next Unit
• Reading & Writing for InfoVis 
• Critiquing InfoVis 
• …but also in general

15D. Koop, CSCI 628, Fall 2021
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Tableau

17D. Koop, CSCI 628, Fall 2021



Vega-Lite

18D. Koop, CSCI 628, Fall 2021



Observable Plot

19D. Koop, CSCI 628, Fall 2021



d3
• http://d3js.org/ 
• Supports data as a core piece of Web elements 
- Correspondence between data and DOM elements 
- Dealing with changing data (joins, enter/update/exit) 
- Data drives the marks and channels 

• Selections (similar to CSS) that allow greater manipulation 
• Integrated layout algorithms, axes calculations, etc. 
• Focus on interaction support 
- Straightforward support for transitions 
- Event handling support for user-initiated changes

20D. Koop, CSCI 628, Fall 2021

http://d3js.org/


Visualization Tools & Tradeoffs
• Fast, turnkey approaches 
• Control over all visual elements 

• You can use multiple tools! Think about purpose 
- Exploration 
- Explanation (custom design, handle interaction)

21D. Koop, CSCI 628, Fall 2021



Arrange Tables

Express Values

Separate, Order, Align Regions

Axis Orientation

Layout Density

Dense Space-Filling

Separate Order Align

1 Key 2  Keys 3 Keys Many Keys
List Recursive SubdivisionVolumeMatrix

Rectilinear Parallel Radial

Arrange Tables

22

[Munzner (ill. Maguire), 2014]
D. Koop, CSCI 628, Fall 2021



Female                  Male

60

50 

40

30

20

10

0     
Female                  Male

60

50 

40

30

20

10

0     

10-year-olds      12-year-olds

60

50 

40

30

20

10

0     

60

50 

40

30

20

10

0     
10-year-olds      12-year-olds

Proper Use of Line and Bar Charts

23

[Adapted from Zacks and Tversky, 1999, Munzner (ill. Maguire), 2014]
D. Koop, CSCI 628, Fall 2021

Panda    Lion          Antelope        Lion          Antelope    



Scatterplot Matrices and Parallel Coordinates
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[Munzner (ill. Maguire), 2014]
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[Pie Chart, Bostock, 2017]
D. Koop, CSCI 628, Fall 2021

https://bl.ocks.org/mbostock/3887235


Judging Pie Charts: Arcs, Angles, or Areas?
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[R. Kosara and D. Skau, 2016]
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How do we judge pie charts?
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[R. Kosara and D. Skau, 2016]
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[M. Ericson, New York Times]
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Rectangular Cartogram
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[New York Times]
D. Koop, CSCI 628, Fall 2021

http://www.apple.com
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Arrange Networks and Trees
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Quantifying the Space-Efficiency
of 2D Graphical Representations of Trees

Michael J. McGuffin and Jean-Marc Robert

Abstract— A mathematical evaluation and comparison of the space-efficiency of various 2D graphical representations of tree struc-
tures is presented. As part of the evaluation, a novel metric called the mean area exponent is introduced that quantifies the distribution
of area across nodes in a tree representation, and that can be applied to a broad range of different representations of trees. Several
representations are analyzed and compared by calculating their mean area exponent as well as the area they allocate to nodes and
labels. Our analysis inspires a set of design guidelines as well as a few novel tree representations that are also presented.

Index Terms—Tree visualization, graph drawing, efficiency metrics.

1 INTRODUCTION

A variety of graphical representations are available for depicting tree
structures (Figure 1), from “classical” node-link diagrams [23, 7], to
treemaps [14, 26, 6, 30], concentric circles [2, 27, 31], and many others
(see [13] for a survey). A major consideration when designing, eval-
uating, or comparing such representations is how efficiently they use
screen space to show information about the tree. To date, however, it is
unclear how to go about evaluating space-efficiency in a way that can
be applied to the large variety of tree representations and that enables a
fair comparison of them. Space-efficiency might be described in terms
of area, aspect ratio, label size, or other measures. However, there is no
accepted standard set of metrics for evaluating the space-efficiency of
tree representations, and it is unclear what approach would be general
enough to be applied to all the forms in Figure 1.

Fig. 1. Several basic kinds of tree representations, here each showing
a complete 3-ary tree of depth 3 as an example. All representations
are drawn to just fit within a 1×1 unit square. A: classical (layered)
node-link [23, 7]. B: a variation on A, where the shape of nodes better
accommodates long labels. C: icicle. D: radial [10, 9]. E: concentric
circles [2, 27, 31]. F: nested circles, similar to [5, 28]. G: treemap [14,
26]. H: indented outline, sometimes called a “tree list”, and common in
file browsers such as Microsoft Explorer.

• Michael J. McGuffin is with École de technologie supérieure, Montréal,
Canada, E-mail: michael.mcguffin@etsmtl.ca.

• Jean-Marc Robert is with École de technologie supérieure, Montréal,
Canada, E-mail: jean-marc.robert@etsmtl.ca.

One basic metric of space-efficiency is the total area of a representa-
tion. Assuming the representation is bound within a 1×1 square, both
icicle diagrams and treemaps (Figures 1C and 1G) have a total area of
1, and are equally efficient (and both optimal) according to this met-
ric. Likewise, concentric circles and nested circles (Figures 1E and 1F)
both have a total area of π/4 ≈ 0.785 (the area of a circle of diameter
1), and are also equally efficient according to the metric of total area.
However, experience suggests that the representations within each of
these pairs do not scale equally well with larger, deeper trees. This
article shows that there are finer ways of distinguishing efficiency, i.e.
that there is more to space-efficiency than total area.

Treemaps are often described as optimally space-efficient, not just
because they have a total area of 1, but also because they allow for
what we call a weighted partitioning of the area. Nodes can be allo-
cated more or less area, depending on some attribute such as file size,
population, or number of species, and furthermore this weighted par-
titioning can be done without reducing the total area used. These are
indeed desirable properties, however they are not unique to treemaps.
Figure 2 shows that icicle diagrams also allow for a weighted parti-
tioning of area, and incidentally have no need for margins between the
borders of nodes as treemaps often do.

Furthermore, although a weighted partitioning is useful for showing
the relative sizes of nodes in Figures 2A and 2C, an unfortunate side
effect is that labels on small nodes are very difficult to read. If users
are more interested in seeing the identity of all nodes rather than their
relative sizes, an alternative approach would be to give equal weight to
each leaf node (Figures 2B and 2D), improving the overall legibility
of nodes. (Although not shown in the figure, the labels could also be
augmented to numerically show the “size” attribute of each node.) In
terms of label size or legibility, Figures 2B and 2D are clearly prefer-
able, but even they still result in much whitespace around certain la-
bels, suggesting that a more space-efficient (in terms of label size)
representation might be possible.

Clearly, it would be useful to have some way to quantitatively dis-
tinguish the four possibilities in Figure 2, e.g. in terms of their respec-
tive scalability and the sizes of their labels. If total area is the only
metric of space-efficiency used, and “optimal” space-efficiency is de-
fined as a total area of 1 (possibly partitioned by weight), then we
have no way of distinguishing these four cases. If alternative metrics
of space-efficiency are used, such as those investigated in this article,
it is not clear initially if treemaps, or any other representation, will still
turn out to be optimal with respect to such alternative metrics.

This article identifies several metrics related to space-efficiency,
and performs the first rigorous analysis and comparison of the space-
efficiency of most of the basic tree representation styles in the infor-
mation visualization literature, including all those in Figure 1. Some
of the key ideas involved are (1) the use of a metric of the size of the
smallest nodes (i.e. the leaf nodes) in the representation, in addition to
a metric of total area; (2) analyzing the area of labels on the nodes,
which implicitly takes into account both the size and aspect ratio of
the nodes, measuring how much “useful” area they contain; and (3)
analyzing how these metrics behave asymptotically, as the tree grows

Tree Visualizations
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Treemaps
• Containment marks instead of 

connection marks 
• Encodes some attribute of the items 

as the size of the rectangles 
• Not as easy to see the intermediate 

rectangles 
• Scalability: millions of leaf nodes and 

links possible 
• Need a layout algorithm! 
- Slice-and-Dice vs. Squarify 

- Viewing Hierarchy: Cushion Treemap
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https://observablehq.com/@dakoop/treemap


Set Visualizations
• How to show the intersection of sets?
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[Wikipedia]
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object to path (ellipses and text); stroke to path (text only)

Untangling Euler Diagrams
Nathalie Henry Riche and Tim Dwyer

Fig. 1. Compact Rectangular Euler Diagram(left) and Euler Diagram with Duplications(right)

Abstract—In many common data analysis scenarios the data elements are logically grouped into sets. Venn and Euler style diagrams
are a common visual representation of such set membership where the data elements are represented by labels or glyphs and sets are
indicated by boundaries surrounding their members. Generating such diagrams automatically such that set regions do not intersect
unless the corresponding sets have a non-empty intersection is a difficult problem. Further, it may be impossible in some cases if
regions are required to be continuous and convex. Several approaches exist to draw such set regions using more complex shapes,
however, the resulting diagrams can be difficult to interpret. In this paper we present two novel approaches for simplifying a complex
collection of intersecting sets into a strict hierarchy that can be more easily automatically arranged and drawn (Figure 1). In the first
approach, we use compact rectangular shapes for drawing each set, attempting to improve the readability of the set intersections. In
the second approach, we avoid drawing intersecting set regions by duplicating elements belonging to multiple sets. We compared
both of our techniques to the traditional non-convex region technique using five readability tasks. Our results show that the compact
rectangular shapes technique was often preferred by experimental subjects even though the use of duplications dramatically improves
the accuracy and performance time for most of our tasks. In addition to general set representation our techniques are also applicable
to visualization of networks with intersecting clusters of nodes.

Index Terms—Information Visualization, Euler diagrams, Set Visualization, Graph Visualization

1 INTRODUCTION

Grouping data elements in sets (or clusters) is a common task in many
analysis scenarios. For example, when analyzing documents, lin-
guists often group words into semantic categories and topics. Simi-
larly, when analyzing social networks, sociologists group people into
communities and study their relationships. There is a wide range of
techniques to compute sets (or clusters) based on similarity data [22].
The topic of this paper is visual representations of data elements such
that their set membership is shown by region boundaries. When sets
intersect in complex ways, this type of representation becomes a chal-
lenging problem in information visualization.

The common visual representation of sets are Venn and Euler style
diagrams [14]. Venn diagrams represent all sets and their possible
intersections with overlapping elliptical shapes. Euler diagrams are a
relaxation of Venn diagrams in which the shapes corresponding to sets
are not required to overlap if their corresponding intersection is empty.
We identify two main challenges when drawing Euler diagrams:
1) Complexity of set regions. Gestalt theory [27] suggests that con-
vexity of regions plays a key role in perception [23] and in our ability

• Nathalie Riche is with Microsoft Research, E-mail: nath@microsoft.com.

• Tim Dwyer is with Microsoft Corp., E-mail: timdwyer@microsoft.com.

Manuscript received 31 March 2010; accepted 1 August 2010; posted online

24 October 2010; mailed on 16 October 2010.

For information on obtaining reprints of this article, please send

email to: tvcg@computer.org.

to complete shapes when partially occluded [28]. In addition, a few
experimental results show that Euler Diagrams with convex shapes are
more effective [3]. However, it can be a difficult challenge to draw Eu-
ler diagrams using convex set regions such that there are no overlaps
between regions where the corresponding sets have an empty intersec-
tion [33].
2) Drawing data elements. Most work on drawing Euler diagrams
focuses on classifying the sets in a particular dataset as drawable un-
der constraints such as elliptical or convex regions [6]. Such work is
rarely concerned with the problem of ensuring that sufficient space is
provided inside the regions to show item labels or glyphs. Although
there are applications (for example in biology) where only the sets
themselves and their intersections need be shown [24], visually repre-
senting the data elements belonging to the sets is important in more
general information visualization applications. For example, when
analyzing communities in social networks or when studying articles
grouped by keywords, it is important to identify which elements are in
multiple sets.

Recent work in Information Visualization has attempted to address
the challenge of drawing both sets and data elements. Simonetto et

al. [31] describe how to automatically generate drawings with sets
represented as non-convex regions as well as placing labelled ele-
ments inside these regions automatically. They demonstrate how their
technique can draw previously undrawable Euler Diagrams. A sec-
ond article from Collins et al. [7] presents a technique to generate
set boundaries given a fixed layout of their elements. This technique
can recompute boundaries around items involved in the same set effi-
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Human Color Perception

35

[via M. Meyer]
D. Koop, CSCI 628, Fall 2021

Metamerism: same three responses == same color



Avoid Rainbow Colormaps!
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[Borland & Taylor, 2007]
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