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What is Information Visualization (InfoVis)?
• Compared to… 
- Statistical Graphics 
- Infographics 
- Scientific Visualization
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Mortality rates in the Crimean War from April 1854 to March 1856
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British Army Size in the Crimean War from April 1854 to March 1856
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Gelman & Unwin's Version of Crimean War Data
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Nightingale's Coxcomb Diagram
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Infographics Embellish Boring Plots?
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more sense to classify visualization techniques based on the
design models they use, rather than on the data itself.

3.4  Constructing User Models

Users sometimes have clear preconceived ideas about the object
of study. For example, a weather forecaster who views the same
types of data day after day probably has specific expectations
about the data structure and may even have initial expectations
about the data values based on the previous day’s weather.

In other cases, user models may be sketchy because little is
known about the object of study. Constructing a user model is a
complex process that may include making assumptions about the
data and the display algorithm, developing hypotheses, searching
for evidence to support or contradict hypotheses, and refining the
model [18]. User models are developed and refined by interacting
with data via visualization tools. Interactions are guided by
questions/hypotheses posed by users as they go through the
process. Users iteratively utilize their conceptual models to ask
questions and choose visualization techniques and then refine
their models as more information becomes available. For more
details about conceptual model development in general, see [18].

4.  PROPOSED TAXONOMY

We categorize visualization techniques based on their design
model. This approach differs from traditional classifications
based on data type. To our knowledge, design models have not
been used as the basis of a visualization taxonomy. Furthermore,
user models are closely related to design models because users
will choose visualization techniques that match their ideas and
intentions; thus, our taxonomy emphasizes the human side of
visualization. Hence, characterizing the visualization field based
on models rather than the data itself is our first main contribution. 

4.1  High Level Taxonomy Structure

The high-level structure of our proposed taxonomy is outlined in
Table 1. We classify design models according to two criteria:

1. Whether the model assumes the object of study is discrete or
continuous.

2. How much the visualization designer chooses display
attributes (spatialization, timing, colour, etc.).

4.1.1  Discrete / Continuous Classification

Visualization algorithms are classified according to whether their
design model is discrete or continuous (see the rows in Table 1).
We believe this provides a simple, clear division that puts similar
techniques together. Although classification of data based on
whether it is continuous or discrete is well known, we offer two
novel ideas: (1) we use the continuous/discrete division at the
top-level of a taxonomy of visualization techniques, and (2) we
characterize design models (not data) as continuous or discrete.
This division based on continuous/discrete design models is the
second major contribution of our paper.

Continuous models assume that data can be interpolated,
whereas discrete models assume data cannot be interpolated.
Interval and ratio data can be interpolated, but users could choose
not to do so; thus, interval and ratio data can be visualized by
either continuous or discrete model techniques as desired by the
user. Nominal and ordinal data can often only be visualized by
discrete model techniques since interpolation is not meaningful.
For example, there is no meaningful value between male and
female or between apple and banana. 

Converting from a continuous model to a discrete model is a
matter of leaving data points as discrete entities (not interpo-
lating), sampling a continuous function, or aggregating data
points into bins or categories. The reverse process, converting

Table 1:  High-level visualization taxonomy, illustrated by examples. Design models are classified based on whether they are 
discrete or continuous and by how much the algorithm designer chooses display attributes (spatialization, timing, colour, and 

transparency). Examples show different constraints on spatialization.

 Display Attributes 
 Given Constrained Chosen 

Co
nt

in
uo

us
 

Images (e.g., medical) 

Fluid / gas flow, pressure 
distributions 

Molecular structures (distributions 
of mass, charge, etc.) 

Globe – distribution data  
(e.g., elevation levels) 

Distortions of given / continuous 
ideas (e.g., flattened medical 
structures, 2D geographic maps, 
fish-eye lens views) 

Arrangement of numeric  
variable values 

Continuous (high-dimensional) 
mathematical functions 

Continuous time-varying data,  
when time is mapped to a spatial 
dimension 

Regression analyses 

D
isc

re
te

 

Classified data / images (e.g., 
segmented medical images) 

Air traffic positions 

Molecular structures (exact 
positions of components) 

Globe – discrete entity data  
(e.g., city locations) 

Distortions of given / discrete  
ideas (e.g., 2D geographic maps, 
fish-eye lens views) 

Arrangement of ordinal or  
numeric variable values 

Discrete time-varying data,  
when time is mapped to a spatial 
dimension 

Arbitrary entity-relationship data 
(e.g., file structures) 

Arbitrary multi-dimensional data 
(e.g., employment statistics) 

 

Visualization Organized by Data and Display Attributes
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Kosara’s Definition of Information Visualization
• It is based on (non-visual) data 
• It produces an image 
• The result is readable and recognizable
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a) b) c)

Figure 1. The gamut of data-based visualization. a) Parallel Sets [12] show data about the people
on the Titanic, and are readable and recognizable as a visualization; b) Ambient visualization [18]
visualizing a bus schedule are readable but require more effort and are not readily recognizable as a
visualization; c) Music visualization like MilkDrop [23] is also based on data, but not readable.

4.1 The Sublime

One aesthetic criterion of particular interest is the sub-
lime. The sublime can be understood as that which inspires
awe, grandeur, and evokes a deep emotional and/or intel-
lectual response. Works of art generally possess a sublime
quality, making them enigmatic and captivating at the same
time. Sack [16] equates its opposite, the anti-sublime, with
user friendliness, which is a central concept in computer
science. In fact, visualization is generally understood to be
a part of human-centered computing [11], and techniques
that are published at the main conferences and in journals
usually need to be evaluated in user studies [13]. They are
thus designed to remove any sublimity, and instead foster
immediate understanding.

While the sublime is just one criterion in aesthetics, it
is an incredibly useful one for this discussion. The data-
based visualization examples discussed above and shown in
Figure 1 can be easily classified using a measure of their
sublimity: while the classical technical information visu-
alization is entirely anti-sublime, artistic visualizations are
primarily sublime.

The sublime subsumes the two criteria of readability and
recognizability, since for a work of art to be sublime, it can-
not be easily readable (or user friendly). It must present
enough of an enigma to keep an audience interested with-
out being easy to solve. The opposite is obviously true for
a tool that is designed to aid in data analysis.

4.2 Pragmatic Visualization

Pragmatic visualization is what we term the technical
application of visualization techniques to analyze data. The
goal of pragmatic visualization is to explore, analyze, or
present information in a way that allows the user to thor-
oughly understand the data. Card et al. describe this process
as knowledge crystallization [3], and the recent initiatives in
visual analytics [19] have used the slogan Detecting the Ex-

pected, Discovering the Unexpected
TM.

Visual efficiency is of course a key criterion for work in
visualization. The goal is to produce images that convey the
data as quickly and effortlessly as possible. User studies are
conducted to measure the speed and accuracy of users, and
to compare different methods and tasks [13].

Pragmatic <-> Artistic Visualization
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Visualization Rules
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more pronounced effect on beliefs and behaviour. Transfer noise is 
minimized, allowing relevant information to be processed more 
easily.  

Yet the benefits associated with the efficiency benefits of 
personalization are problematized by findings that show that 
applying graphical adaptation features to interface design can 
optimize performance on particular tasks, but often comes at the 
cost of deeper understanding of the tool’s full functionality [26]. 
Hence some forms of personalization may become a crutch rather 
than a panacea for deeper understanding. Using tailoring to 
increase engagement and processing of visualized information is 
most likely to bring benefits where there are significant risks that 
users may not be sufficiently motivated to use the visualization in 
the first place. 

Figure 3: Guessing game version of an interactive health data 
visualization [22]. 

2.2.4 Challenge and Game-play 
 

Interest in external stimuli like visualizations can also arise from a 
challenging environment that demands high attention and an 
intention to explore. Like novelty, stimulation and challenge are a 
prerequisite of personal development through the development of 
knowledge and skills, which in turn is a basic human need (e.g., 
[57]). Introducing visual difficulties offer a promising way to 
leverage a user’s desire to be challenged in interaction.  

One implementation of visual difficulties supported by work in 
social computing and InfoVis is through elements of game play, 
such as rules and goals. These have been used in social computing 
applications like games with a purpose (GWAP) (e.g., [24]), and 
online movie recommender systems, where they have been shown 
to increase user contributions [6]. Within InfoVis, incorporating 
challenges or problem solving tasks into visualization tools has 
been suggested to help turn visual data analytics into a game-like 
activity and motivate exploration of data [28]. More recently, 
Diakopoulos et al. [22] used game elements like rules and goals in 
an information visualization of health data. An online experiment 
showed that gamification led to demonstrable effects on 
exploration of the visualization, insights and learning, and 
enjoyment of the experience. In particular a guessing game led to 
significantly more exploratory behavior (e.g., unique health 
parameters visualized, hover activity, volume of interaction with 
slider feature), learning (e.g., number of insights, self-reported 
learning), and enjoyment (self-reported reliability ratings). The 
guessing game frame is one implementation of a prediction task 
such as that suggested by Hegarty et al. [32] as a way of deepening 
understanding by inducing internal visualization.  

3 APPLYING VISUAL DIFFICULTIES IN INFOVIS 
An important conclusion to be drawn from Sections 2 and 3 is that 
designing visualizations with lasting effects on knowledge 

formation may not be achieved simply by easing users’ effort and 
providing high levels of flexible interaction. In many cases, 
effective visualization practice requires navigating tradeoffs 
between the benefits of active processing through learning 
obstructions on the one hand, and the benefits of representation 
efficiency through more immediate pattern detection on the other. 
In this section, we demonstrate how the visual difficulties 
perspective can be applied to the “talking points” or common 
design concerns addressed by  efficiency-based principles. A series 
of design implications intended to act as guiding goals for 
designers interested in using visual difficulties in their designs are 
then laid out. Additionally, we consider the implications for 
evaluation, and suggest ways in which InfoVis evaluation models 
can be adapted to account for benefits of visual difficulties.  

3.1 Revisiting Common InfoVis Concerns 
Table 1 summarizes how the visual difficulties findings on 
common InfoVis concerns compare to recommendations from the 
cognitive efficiency view. 
 
 Cognitive efficiency Visual difficulties 

C
og

ni
tiv

e 
op

er
at

io
ns

 Minimize the 
cognitive steps 
required to process 
visualization 

Induce constructive, self-directed 
cognitive activity on the part of the user 

D
at

a-
in

k 
ra

tio
 

Maximize the ratio of 
data to ink 

Design representations that are most 
likely to engage a user to actively process 
the information 

O
rg

an
iz

at
io

n Choose the format 
which makes 
important information 
most visually salient 

Choose the format that best stimulates 
deep cognitive reflection on the important 
data 

A
ni

m
at

io
n Use animation to 

quickly and 
intuitively visualize 
important processes 

Use static representations to induce 
interval visualization processing around 
causal mechanisms; consider animation in 
cases where mental animation lies beyond 
users’ capacities 

La
be

lin
g Use labels rather than 

legends to optimize 
immediate clarity 

Use legends to stimulate deeper reflection 
on data 

 

Table 1: Efficiency versus difficulties recommendations in InfoVis. 

3.1.1 Cognitive operations 
Cognitive efficiency research proposes minimizing the number of 
cognitive steps required by a graph (see Section 2.1). The visual 
difficulties work suggests that cognitive steps do not accurately 
capture learning by a user (including comprehension and recall). 
Instead, researchers seek to increase the depth of cognitive 
operations. Classifying users’ statements in response to a graph 
based on whether they represent low- or high-quality self-
explanations [55] or spurring internal visualization manipulations 
[32] are several ways that this has been accomplished.  

3.1.2 Visual representation – Data-Ink Ratio 
Charts with higher data-ink ratios have conventionally been 
equated with ‘embellishment’ or ‘decoration’ (see Section 2.2.1). 
However, in a meta-analysis of 39 experiments, Carswell [15] 
found no support for the data-ink rule.  The visual difficulties 
perspective provides evidence that low data-ink ratios may be 
functional in cases where the extra ink is used to personalize, 

2218 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 12, DECEMBER 2011
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About this course
• Course web page is authoritative: 
- http://faculty.cs.niu.edu/~dakoop/cs628-2021fa/ 
- Schedule, Readings, Assignments will be posted online 
- Check the web site before emailing me 

• Lectures: TuTh 9:30-10:45am in PM 252 
• This is an Advanced (Tier 2) Graduate Course 
- Present and discuss cutting-edge topics 
- Work on research problems 

• Requires participation: readings and discussions
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Office Hours & Email
• Office hours will be held in person 
- Tu: 1:45-3pm, Th: 10:45am-12pm, or by appointment 

• Please adhere to university regulations (Protecting the Pack) 
• You do not need an appointment to stop by during scheduled office hours 
• If you wish to meet virtually, please schedule an appointment 
• If you need an appointment, please email me with details about what you 

wish to discuss and times that would work for you 
• Many questions can be answered via email. Please consider writing an 

email before scheduling a meeting.
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Expectations
• Be engaged: 
- Active participation 
- Constructive participation 

• Work independently: self-directed and sustained 
• Work collaboratively: learn from each other 
• Put effort into this course:  
- Must put significant work in each week 
- Do not try to do everything before a deadline 
- Grading does not depend on fully successful research outcome
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Interest Survey
• To be released soon on Blackboard 
• Questions about your research background, interests, and topic preferences 

• Identify topics and then schedule paper presentations
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Writing
• Annotated Bibliography 
• Survey Paper 
• Project Paper 

• Focus on improving writing quality and style 
• Use LaTeX (Overleaf can provide assistance here) 
• Would like to see your work turn into publications

16D. Koop, CSCI 628, Fall 2021
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“Computer-based visualization systems provide visual 
representations of datasets designed to help people 

carry out tasks more effectively.”  

— T. Munzner

D. Koop, CSCI 628, Fall 2021
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NYC Subway 
Fare Data



D. Koop, CIS 680, Fall 2019

Definition

“Computer-based visualization systems provide visual 
representations of datasets designed to help people carry out 
tasks more effectively.”
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Multidimensional Table

Value in cell
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Geometry (Spatial)

Position

Dataset Types
Dataset Types
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Fieldattribute

item

Data Items & Attributes
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Attributes

Attribute Types

Ordering Direction

Categorical Ordered

Ordinal Quantitative

Sequential Diverging Cyclic

Attribute Types
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1 = Quantitative
2 = Nominal
3 = Ordinal

 quantitative
 ordinal
 categorical

Categorial, Ordinal, and Quantitative
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1 = Quantitative
2 = Nominal
3 = Ordinal

 quantitative
 ordinal
 categorical

Categorial, Ordinal, and Quantitative
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Definition

“Computer-based visualization systems provide visual 
representations of datasets designed to help people carry out 
tasks more effectively”
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Tasks
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Present EnjoyDiscover
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Browse

Explore
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Visualization for Consumption
• Discover new knowledge 
- Generate new hypothesis or verify existing one 
- Designer doesn’t know what users need to see 
- "why doesn't dictate how" 

• Present known information 
- Presenter already knows what the data says 
- Wants to communicate this to an audience 
- May be static but not limited to that 

• Enjoy 
- Similar to discover, but without concrete goals 
- May be enjoyed differently than the original purpose

26D. Koop, CSCI 627/490, Fall 2020



Definition

“Computer-based visualization systems provide visual 
representations of datasets designed to help people carry out 
tasks more effectively”

27D. Koop, CSCI 627/490, Fall 2020



Why Visual?

28

[F. J. Anscombe]
D. Koop, CSCI 627/490, Fall 2020

I II III IV
x y x y x y x y
10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58
8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76

13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71
9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84

11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47
14.0 9.96 14.0 8.10 14.0 8.84 8.0 7.04
6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25
4.0 4.26 4.0 3.10 4.0 5.39 19.0 12.50

12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56
7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91
5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89
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I II III IV
x y x y x y x y
10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58
8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76

13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71
9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84

11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47
14.0 9.96 14.0 8.10 14.0 8.84 8.0 7.04
6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25
4.0 4.26 4.0 3.10 4.0 5.39 19.0 12.50

12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56
7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91
5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89

Mean of x 9

Variance of x 11

Mean of y 7.50

Variance of y 4.122

Correlation 0.816
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Visual Pop-out

30

[C. G. Healey]
D. Koop, CSCI 627/490, Fall 2020

http://www.csc.ncsu.edu/faculty/healey/PP/


Visual Perception Limitations

31

[C. G. Healey]
D. Koop, CSCI 627/490, Fall 2020

http://www.csc.ncsu.edu/faculty/healey/PP/


Definition

“Computer-based visualization systems provide visual 
representations of datasets designed to help people carry out 
tasks more effectively”

32D. Koop, CSCI 627/490, Fall 2020



Design Example

33

[M. Stefaner, 2013]
D. Koop, CSCI 627/490, Fall 2020

http://well-formed-data.net/archives/972/where-the-wild-bees-are


Impact of Design Choices: y-axis Scale

34

[S. Hayward, 2015]
D. Koop, CSCI 628, Fall 2021

http://www.powerlineblog.com/archives/2015/10/the-only-global-warming-chart-you-need-from-now-on.php


Impact of Design Choices: y-axis Scale
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[@bizweekgraphics]
D. Koop, CSCI 628, Fall 2021

https://twitter.com/bizweekgraphics/status/676533647567114240


Impact of Design Choices: y-axis Scale
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[S. Hayward, 2015]
D. Koop, CSCI 628, Fall 2021

http://www.powerlineblog.com/archives/2015/10/the-only-global-warming-chart-you-need-from-now-on.php


Impact of Design Choices: color

37

[A. Kitaoka]
D. Koop, CSCI 627/490, Fall 2020

https://twitter.com/AkiyoshiKitaoka/status/842556026142375936


Impact of Design Choices: color
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[A. Kitaoka]
D. Koop, CSCI 627/490, Fall 2020

Red,  
yellow,  
blue 

Purple, 
orange 
do not 
exist! 

https://twitter.com/AkiyoshiKitaoka/status/842556026142375936


Domain situation
You misunderstood their needs

You’re showing them the wrong thing

Visual encoding/interaction idiom
The way you show it doesn’t work

Algorithm
Your code is too slow

Data/task abstraction

Design

38

[Munzner (ill. Maguire), 2014]
D. Koop, CSCI 628, Fall 2021



D. Koop, CIS 680, Fall 2019

Definition

“Computer-based visualization systems provide visual 
representations of datasets designed to help people carry out 
tasks more effectively”

39



How do we do visualization?

40

[Munzner (ill. Maguire), 2014]
D. Koop, CSCI 628, Fall 2021

How?
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Visual Encoding
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[Gapminder, Wealth & Health of Nations]
D. Koop, CSCI 628, Fall 2021

https://www.gapminder.org/tools/#_chart-type=bubbles
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[Gapminder, Wealth & Health of Nations]
D. Koop, CSCI 627/490, Fall 2020

https://www.gapminder.org/tools/#_chart-type=map


Visual Encoding
• How do we encode data visually? 
- Marks are the basic graphical elements in a visualization 
- Channels are ways to control the appearance of the marks 

• Marks classified by dimensionality: 

• Also can have surfaces, volumes 
• Think of marks as a mathematical definition, or if familiar with tools like Adobe 

43D. Koop, CSCI 628, Fall 2021

Points Lines Areas



Horizontal

Position

Vertical Both

Color

Shape Tilt

Size

Length Area Volume

Visual Channels
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[Munzner (ill. Maguire), 2014]
D. Koop, CSCI 627/490, Fall 2020



D. Koop, CIS 680, Fall 2019

Definition

“Computer-based visualization systems provide visual 
representations of datasets designed to help people carry out 
tasks more effectively”
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Expressiveness and Effectiveness
• Expressiveness Principle: all data from the dataset and nothing more 

should be shown 
- Do encode ordered data in an ordered fashion 
- Don’t encode categorical data in a way that implies an ordering 

• Effectiveness Principle: the most important attributes should be the most 
salient 

- Saliency: how noticeable something is 
- How do the channels we have discussed measure up?

46D. Koop, CSCI 627/490, Fall 2020



Magnitude Channels: Ordered Attributes Identity Channels: Categorical Attributes

Spatial region

Color hue

Motion

Shape
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Channels by Effectiveness
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[Munzner (ill. Maguire), 2014]
D. Koop, CSCI 628, Fall 2021
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MEMORABLE

FORGETTABLE

What about Memorability or Engagement?

48

[M. Borkin et al., InfoVis 2015]
D. Koop, CSCI 627/490, Fall 2020



Design Guidelines
• Tufte: 
- Show data variation, not design variation 
- Clear, detailed, and thorough labeling and appropriate scales 
- Size of the graphic effect should be directly proportional to the numerical 

quantities ("lie factor")

49D. Koop, CSCI 628, Fall 2021



Design Analysis: What is Wrong Here?

50D. Koop, CSCI 628, Fall 2021


