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than 6,000 data sets at once. While the layout method of the Name-
Voyager was not novel—it used a standard stacked graph layout, 
with some level-of-detail calculations—the popular response to the 
applet suggested that stacked graphs have the ability to engage mass 
audiences.

A follow-up design to the NameVoyager, described in [20], 
showed hierarchical time series. That is, it used interactivity and 
color to display time series that were arranged into categories and 
subcategories. In the Many Eyes system [17], this technique was 
made broadly available on the web.

A final related work is the Revisionist [7] visualization of changes 
in source code over time. While not technically a stacked graph, the 
geometry is related since each line of code is represented by a curved 
stripe. Revisionist minimizes visual distortion by having a curved 
baseline that allows the visualization to roughly align identical lines 
of code between releases.

3 LAST.FM AND THE NEW YORK TIMES

3.1 Listening History - Last.fm

Listening History was created by the first author for a class 
project at Carnegie Mellon University. The six-week assignment was 
to collect and display a data set in an interesting and novel way. As 
described in the introduction, Listening History [4] visualizes trends 
in an individual’s music listening, as derived from data in the last.
fm service. The x-axis represents time and each stripe represents an 
artist. The thickness of a stripe shows the number of times that songs 
from the artist were listened to in a given week. The color, as detailed 
in section 5, encodes two dimensions: the saturation is determined by 
the overall number of times an artist is listened, and the hue is related 
to the earliest date at which one of the artist’s songs were heard.

A critical design goal for this visualization was to create a graphic 
that did not look scientific or mathematical, but rather felt organic 
and emotionally pleasing. In section 5 we will see that, ironically, 
achieving this goal relied on significant computation. A side effect 
of the algorithm is the signature asymmetry between the top and 
bottom curves which form the organic shape and, as discussed later, 
minimizes internal distortion.

At the end of the course, a few large-scale posters, some over 12 
feet long, were printed as holiday gifts. The reaction of the recipients 
provides evidence, if anecdotal, that the graphic succeeded in elicit-
ing strong emotional reactions when people saw their own listening 
history. People often remarked at the ability to see critical life events 
reflected in their music listening habits.

One pointed to the beginning and end of three separate relation-
ships, and how his listening trends changed dramatically. Another 
noted the moment when her dog had died, and the resulting impact 
on the next month of listening. A third pointed out his dramatic differ-
ences between summer and winter listening trends. As in the Themail 
system of Viégas et al. [18], the visualization of historical and per-
sonal data seemed effective at eliciting reflective storytelling. 

After Listening History was made public, there was high 
demand for personalized versions of these graphics by other last.fm 
members. In fact this demand was so strong that a number of imita-
tors emerged, including Maya’s Extra Stats [12] and Godwin’s Last 
Graph [13] Interestingly, these services and other imitators use the 
simpler ThemeRiver layout and a simpler color scheme.

The popularity of these imitators (Last Graph has created visu-
alizations for more than 24,000 users) suggests the hypothesis that 
stacked graphs have an ability to communicate large amounts of data 
to the general public in an intriguing and satisfactory way.

3.2 New York Times - Box Office Revenue

The Box Office Revenue graph, created by the first author and the 
graphics department of the Times [2,6] highlighted the dichotomy 
between box office hits and Oscar nominations, discussed in the orig-
inal article. The printed graphic ran vertically to best use the avail-
able space, time running top to bottom; the online version ran left 
to right. To allow a quick reading of the graph, coloring was much 
simpler than in Listening History: a discrete palette signified ranges 
of overall revenue. Furthermore, stroke lines were added because of 
issues with print registration.

The online response to these graphics was intense and rapid. 
Many blogs and social websites featured long lists of comments dis-
cussing data-points shown in the graph. As with the NameVoyager, 
blog posters and their commenters engaged in a social style of data 
analysis and critique of the new visual form. What follows are anec-
dotes discussing these visualizations, which provide a rough sense of 
the breadth and intensity of the online response.

Individual bloggers often found particular discoveries and pointed 
them out to their readers. For example, one said:

C1: note the double spike on ‘Harry Potter an the Order of the 
Phoenix’. And the long hump on ‘Alvin and the Chipmunks’. 
‘Juno’ also has an interesting curve as it did almost nothing for 
a month before popping out later in it’s run. Though that may be 
because it was released in just enough theaters to become Oscars fig 1 – section from Listening History of primary author

fig 2 – films from the summer of 2007

Streamgraphs
• Visualize movie ticket sales by time 
• Stack films that are in theaters on top of 

each other 
• Area = the total sales 
• "You can see Oscar contenders attract a 

smaller audience than the holiday and 
summer blockbusters and kind of slowly 
build an audience." — N. Yau, FlowingData
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Streamgraphs
• [Gelman & Unwin] Instead use two plots: 

1. Total sales over time 
2. Trajectories for individual movies 

• "Discussion burst out across the Web . . . 
that I am convinced would not have come 
about if instead of a Streamgraph, they used 
say,a stacked bar chart." — N. Yau
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"That Puzzle-Solving Feeling" — [Gelman & Unwin]
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http://www.stat.columbia.edu/~gelman/presentations/vistalk4.pdf


Nightingale's Coxcomb Diagram
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Mortality rates in the Crimean War from April 1854 to March 1856
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Gelman and Unwin's Remake
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America's Most Popular Charts
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[The Onion, 2007]
D. Koop, CSCI 628, Fall 2021
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Decision Tree: The Obama-Clinton Divide
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[A. Cox, NYTimes, 2008]
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Infographics Embellish Boring Plots?
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SciVis
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InfoVis
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SciVis → Fields
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Each point in space has an associated...
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more sense to classify visualization techniques based on the
design models they use, rather than on the data itself.

3.4  Constructing User Models

Users sometimes have clear preconceived ideas about the object
of study. For example, a weather forecaster who views the same
types of data day after day probably has specific expectations
about the data structure and may even have initial expectations
about the data values based on the previous day’s weather.

In other cases, user models may be sketchy because little is
known about the object of study. Constructing a user model is a
complex process that may include making assumptions about the
data and the display algorithm, developing hypotheses, searching
for evidence to support or contradict hypotheses, and refining the
model [18]. User models are developed and refined by interacting
with data via visualization tools. Interactions are guided by
questions/hypotheses posed by users as they go through the
process. Users iteratively utilize their conceptual models to ask
questions and choose visualization techniques and then refine
their models as more information becomes available. For more
details about conceptual model development in general, see [18].

4.  PROPOSED TAXONOMY

We categorize visualization techniques based on their design
model. This approach differs from traditional classifications
based on data type. To our knowledge, design models have not
been used as the basis of a visualization taxonomy. Furthermore,
user models are closely related to design models because users
will choose visualization techniques that match their ideas and
intentions; thus, our taxonomy emphasizes the human side of
visualization. Hence, characterizing the visualization field based
on models rather than the data itself is our first main contribution. 

4.1  High Level Taxonomy Structure

The high-level structure of our proposed taxonomy is outlined in
Table 1. We classify design models according to two criteria:

1. Whether the model assumes the object of study is discrete or
continuous.

2. How much the visualization designer chooses display
attributes (spatialization, timing, colour, etc.).

4.1.1  Discrete / Continuous Classification

Visualization algorithms are classified according to whether their
design model is discrete or continuous (see the rows in Table 1).
We believe this provides a simple, clear division that puts similar
techniques together. Although classification of data based on
whether it is continuous or discrete is well known, we offer two
novel ideas: (1) we use the continuous/discrete division at the
top-level of a taxonomy of visualization techniques, and (2) we
characterize design models (not data) as continuous or discrete.
This division based on continuous/discrete design models is the
second major contribution of our paper.

Continuous models assume that data can be interpolated,
whereas discrete models assume data cannot be interpolated.
Interval and ratio data can be interpolated, but users could choose
not to do so; thus, interval and ratio data can be visualized by
either continuous or discrete model techniques as desired by the
user. Nominal and ordinal data can often only be visualized by
discrete model techniques since interpolation is not meaningful.
For example, there is no meaningful value between male and
female or between apple and banana. 

Converting from a continuous model to a discrete model is a
matter of leaving data points as discrete entities (not interpo-
lating), sampling a continuous function, or aggregating data
points into bins or categories. The reverse process, converting

Table 1:  High-level visualization taxonomy, illustrated by examples. Design models are classified based on whether they are 
discrete or continuous and by how much the algorithm designer chooses display attributes (spatialization, timing, colour, and 

transparency). Examples show different constraints on spatialization.

 Display Attributes 
 Given Constrained Chosen 

Co
nt

in
uo

us
 

Images (e.g., medical) 

Fluid / gas flow, pressure 
distributions 

Molecular structures (distributions 
of mass, charge, etc.) 

Globe – distribution data  
(e.g., elevation levels) 

Distortions of given / continuous 
ideas (e.g., flattened medical 
structures, 2D geographic maps, 
fish-eye lens views) 

Arrangement of numeric  
variable values 

Continuous (high-dimensional) 
mathematical functions 

Continuous time-varying data,  
when time is mapped to a spatial 
dimension 

Regression analyses 

D
isc

re
te

 

Classified data / images (e.g., 
segmented medical images) 

Air traffic positions 

Molecular structures (exact 
positions of components) 

Globe – discrete entity data  
(e.g., city locations) 

Distortions of given / discrete  
ideas (e.g., 2D geographic maps, 
fish-eye lens views) 

Arrangement of ordinal or  
numeric variable values 

Discrete time-varying data,  
when time is mapped to a spatial 
dimension 

Arbitrary entity-relationship data 
(e.g., file structures) 

Arbitrary multi-dimensional data 
(e.g., employment statistics) 

 

Visualization Taxonomy Structure
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Kosara's Definition of Information Visualization
• It is based on (non-visual) data. "The data to be visualized must come from 

outside the program, and the program must be able (at least in principle) to 
work on different data sets. Also, visualization is not image processing or 
photography; if the source data is an image and is used as an image in the 
result, it is not being visualized." 

• It produces an image. "Clearly, each visualization has the goal of producing 
one or more images from the data, and the visual must be the primary means 
of communicating the data. Other media can be part of a visualization, but 
the visualization must be able to stand on its own."

21

[R. Kosara]
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https://kosara.net/papers/2007/Kosara-IV-2007.pdf


Kosara's Definition of Information Visualization
• The result is readable and recognizable. "There are many ways to 

transform data into images, most of which do not allow the viewer to 
understand the underlying data. A visualization must produce images that are 
readable by a viewer, even if that requires training and practice. Visualization 
images must also be recognizable as such, and not appear to be something 
else. The use of additional elements (or even “eye candy”) is certainly 
possible, but must not take precedence over the communication goals of the 
visualization."

22

[R. Kosara]
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https://kosara.net/papers/2007/Kosara-IV-2007.pdf


a) b) c)

Figure 1. The gamut of data-based visualization. a) Parallel Sets [12] show data about the people
on the Titanic, and are readable and recognizable as a visualization; b) Ambient visualization [18]
visualizing a bus schedule are readable but require more effort and are not readily recognizable as a
visualization; c) Music visualization like MilkDrop [23] is also based on data, but not readable.

4.1 The Sublime

One aesthetic criterion of particular interest is the sub-
lime. The sublime can be understood as that which inspires
awe, grandeur, and evokes a deep emotional and/or intel-
lectual response. Works of art generally possess a sublime
quality, making them enigmatic and captivating at the same
time. Sack [16] equates its opposite, the anti-sublime, with
user friendliness, which is a central concept in computer
science. In fact, visualization is generally understood to be
a part of human-centered computing [11], and techniques
that are published at the main conferences and in journals
usually need to be evaluated in user studies [13]. They are
thus designed to remove any sublimity, and instead foster
immediate understanding.

While the sublime is just one criterion in aesthetics, it
is an incredibly useful one for this discussion. The data-
based visualization examples discussed above and shown in
Figure 1 can be easily classified using a measure of their
sublimity: while the classical technical information visu-
alization is entirely anti-sublime, artistic visualizations are
primarily sublime.

The sublime subsumes the two criteria of readability and
recognizability, since for a work of art to be sublime, it can-
not be easily readable (or user friendly). It must present
enough of an enigma to keep an audience interested with-
out being easy to solve. The opposite is obviously true for
a tool that is designed to aid in data analysis.

4.2 Pragmatic Visualization

Pragmatic visualization is what we term the technical
application of visualization techniques to analyze data. The
goal of pragmatic visualization is to explore, analyze, or
present information in a way that allows the user to thor-
oughly understand the data. Card et al. describe this process
as knowledge crystallization [3], and the recent initiatives in
visual analytics [19] have used the slogan Detecting the Ex-

pected, Discovering the Unexpected
TM.

Visual efficiency is of course a key criterion for work in
visualization. The goal is to produce images that convey the
data as quickly and effortlessly as possible. User studies are
conducted to measure the speed and accuracy of users, and
to compare different methods and tasks [13].

Pragmatic <-> Artistic Visualization
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Rules
• We saw many rules in CSCI 627 (Data Visualization) 
• How do we use those to think about visualization?
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Visualization Mistakes
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more pronounced effect on beliefs and behaviour. Transfer noise is 
minimized, allowing relevant information to be processed more 
easily.  

Yet the benefits associated with the efficiency benefits of 
personalization are problematized by findings that show that 
applying graphical adaptation features to interface design can 
optimize performance on particular tasks, but often comes at the 
cost of deeper understanding of the tool’s full functionality [26]. 
Hence some forms of personalization may become a crutch rather 
than a panacea for deeper understanding. Using tailoring to 
increase engagement and processing of visualized information is 
most likely to bring benefits where there are significant risks that 
users may not be sufficiently motivated to use the visualization in 
the first place. 

Figure 3: Guessing game version of an interactive health data 
visualization [22]. 

2.2.4 Challenge and Game-play 
 

Interest in external stimuli like visualizations can also arise from a 
challenging environment that demands high attention and an 
intention to explore. Like novelty, stimulation and challenge are a 
prerequisite of personal development through the development of 
knowledge and skills, which in turn is a basic human need (e.g., 
[57]). Introducing visual difficulties offer a promising way to 
leverage a user’s desire to be challenged in interaction.  

One implementation of visual difficulties supported by work in 
social computing and InfoVis is through elements of game play, 
such as rules and goals. These have been used in social computing 
applications like games with a purpose (GWAP) (e.g., [24]), and 
online movie recommender systems, where they have been shown 
to increase user contributions [6]. Within InfoVis, incorporating 
challenges or problem solving tasks into visualization tools has 
been suggested to help turn visual data analytics into a game-like 
activity and motivate exploration of data [28]. More recently, 
Diakopoulos et al. [22] used game elements like rules and goals in 
an information visualization of health data. An online experiment 
showed that gamification led to demonstrable effects on 
exploration of the visualization, insights and learning, and 
enjoyment of the experience. In particular a guessing game led to 
significantly more exploratory behavior (e.g., unique health 
parameters visualized, hover activity, volume of interaction with 
slider feature), learning (e.g., number of insights, self-reported 
learning), and enjoyment (self-reported reliability ratings). The 
guessing game frame is one implementation of a prediction task 
such as that suggested by Hegarty et al. [32] as a way of deepening 
understanding by inducing internal visualization.  

3 APPLYING VISUAL DIFFICULTIES IN INFOVIS 
An important conclusion to be drawn from Sections 2 and 3 is that 
designing visualizations with lasting effects on knowledge 

formation may not be achieved simply by easing users’ effort and 
providing high levels of flexible interaction. In many cases, 
effective visualization practice requires navigating tradeoffs 
between the benefits of active processing through learning 
obstructions on the one hand, and the benefits of representation 
efficiency through more immediate pattern detection on the other. 
In this section, we demonstrate how the visual difficulties 
perspective can be applied to the “talking points” or common 
design concerns addressed by  efficiency-based principles. A series 
of design implications intended to act as guiding goals for 
designers interested in using visual difficulties in their designs are 
then laid out. Additionally, we consider the implications for 
evaluation, and suggest ways in which InfoVis evaluation models 
can be adapted to account for benefits of visual difficulties.  

3.1 Revisiting Common InfoVis Concerns 
Table 1 summarizes how the visual difficulties findings on 
common InfoVis concerns compare to recommendations from the 
cognitive efficiency view. 
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required to process 
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Induce constructive, self-directed 
cognitive activity on the part of the user 
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Maximize the ratio of 
data to ink 

Design representations that are most 
likely to engage a user to actively process 
the information 
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n Choose the format 
which makes 
important information 
most visually salient 

Choose the format that best stimulates 
deep cognitive reflection on the important 
data 

A
ni

m
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io
n Use animation to 

quickly and 
intuitively visualize 
important processes 

Use static representations to induce 
interval visualization processing around 
causal mechanisms; consider animation in 
cases where mental animation lies beyond 
users’ capacities 

La
be

lin
g Use labels rather than 

legends to optimize 
immediate clarity 

Use legends to stimulate deeper reflection 
on data 

 

Table 1: Efficiency versus difficulties recommendations in InfoVis. 

3.1.1 Cognitive operations 
Cognitive efficiency research proposes minimizing the number of 
cognitive steps required by a graph (see Section 2.1). The visual 
difficulties work suggests that cognitive steps do not accurately 
capture learning by a user (including comprehension and recall). 
Instead, researchers seek to increase the depth of cognitive 
operations. Classifying users’ statements in response to a graph 
based on whether they represent low- or high-quality self-
explanations [55] or spurring internal visualization manipulations 
[32] are several ways that this has been accomplished.  

3.1.2 Visual representation – Data-Ink Ratio 
Charts with higher data-ink ratios have conventionally been 
equated with ‘embellishment’ or ‘decoration’ (see Section 2.2.1). 
However, in a meta-analysis of 39 experiments, Carswell [15] 
found no support for the data-ink rule.  The visual difficulties 
perspective provides evidence that low data-ink ratios may be 
functional in cases where the extra ink is used to personalize, 
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About Me
• Research Interests 
- Visualization 
- Computational Provenance 
- Geospatial Analysis 

• Research Projects 
- Dataflow Notebooks 
- Geospatial Trajectory Data 
- Provenance for Web Applications 

• See my web page for more information 
- http://faculty.cs.niu.edu/~dakoop/
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About You
• Research Papers? 
• Data Visualization 
• Tools? JavaScript, D3, Tableau, Others? 
• Research Experience? 
• What topics do you want to see covered?
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About this course
• Course web page is authoritative: 
- http://faculty.cs.niu.edu/~dakoop/cs628-2021fa/ 
- Schedule, Readings, Assignments will be posted online 
- Check the web site before emailing me 

• Lectures: TuTh 9:30-10:45am in PM 252 
• This is an Advanced (Tier 2) Graduate Course 
- Present and discuss cutting-edge topics 
- Work on research problems 

• Requires participation: readings and discussions
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About this Course
• "Focus on advanced theory and methods for manipulating and visualizing the 

data of non-physical systems… Emphasis on the advanced study of the 
latest information visualization techniques developed by the research 
community. A computer programming background is required. Extensive 
laboratory work."
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About this course
• Course Registration: 
- Make sure you have registered for the course 
- Email me if you are not registered but are interested in taking the course 

• Review of course policies: 
- Plagiarism and academic honesty 
- If you have any concerns or questions, please email me as soon as possible 

• If you are not sure if this course is a good fit, please email me or talk to me
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Office Hours & Email
• Office hours will be held in person 
- Tu: 1:45-3pm, Th: 10:45am-12pm, or by appointment 

• Please adhere to university regulations (Protecting the Pack) 
• You do not need an appointment to stop by during scheduled office hours 
• If you wish to meet virtually, please schedule an appointment 
• If you need an appointment, please email me with details about what you 

wish to discuss and times that would work for you 
• Many questions can be answered via email. Please consider writing an 

email before scheduling a meeting.
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Expectations
• Be engaged: 
- Active participation 
- Constructive participation 

• Work independently: self-directed and sustained 
• Work collaboratively: learn from each other 
• Put effort into the course:  
- Must put significant work in each week 
- Do not try to do everything before a deadline 
- Best effort (success or failure)
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Next Class
• Review of Core Visualization Topics 
• Topics Survey 
• Bring Your Ideas

37D. Koop, CSCI 628, Fall 2021


