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Visualization for Consumption
• Discover new knowledge 
- Generate new hypothesis or verify existing one 
- Designer doesn’t know what users need to see 
- "why doesn't dictate how" 

• Present known information 
- Presenter already knows what the data says 
- Wants to communicate this to an audience 
- May be static but not limited to that 

• Enjoy 
- Similar to discover, but without concrete goals 
- May be enjoyed differently than the original purpose
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Actions: Search
• What does a user know? 
- Lookup: check bearings 
- Locate: find on a map 
- Browse: what’s nearby 
- Explore: where to go 

- Patterns
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Query

• Number of targets: One, Some (Often 2), or All 
• Identify: characteristics or references 
• Compare: similarities and differences 
• Summarize: overview of everything
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Targets
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testing given the small and mixed effects found so far 
(Ajani et al., 2021).

The bottom of Figure 15 shows the same bar graph 
embedded within a cartoonish monster. The addition 
of such pictorial elements that embellish data with 
anthropomorphic or metaphorical elements—intended 
to enhance engagement or memory—has been demon-
ized as “chartjunk” (e.g., Tufte, 1983). Various studies 
have shown that adding these elements leads to no 
improvement in memory for the data (Helgeson & Moriarty, 
1993; Kelly, 1989), mixed results depending on the 
details of the task and context (Gillan & Richman, 1994; 
Li & Moacdieh, 2014), or better memory for the data 
content or message (Bateman et al., 2010; Borkin et al., 
2016; Haroz et al., 2015b). Like animation, these visual 
embellishments can increase ratings of engagement and 
aesthetic value (Li & Moacdieh, 2014). And despite 
mixed evidence as to whether their presence improves 
memory for the data, pictorial elements do improve 
memory for the fact that a visualization was previously 
seen, both in the short and the longer term (Borkin 
et al., 2013).

How to Design an Understandable 
Visualization

Use familiar designs to show data 
intuitively

Visualizations can be powerful, but a poorly designed 
visualization can easily confuse or even mislead (Burns 
et al., 2020; Cairo, 2019; Szafir, 2018). Because the inter-
pretation of visualized data is in the eye and mind of 
the human beholder, we must consider the psychology 
of the observer as the translator of images into an 
understanding of the original data and the patterns that 
they hold. Below, we outline a set of common transla-
tion errors that can confuse and mislead.

Understanding a visualization can depend on a graph 
schema: a knowledge structure that includes default 
expectations, rules, and associations that a viewer uses 
to extract conceptual information from a data visualiza-
tion. Figure 16 serves as an example of why a graph 
schema is often needed to interpret a data visualization. 
It depicts the GDP (on a log scale) and population of 
the 10 most populous countries. Take a moment to 
interpret the data.

If you are having trouble extracting the data from 
this visualization, it is not your fault—you do not have 
the needed schema. First, if you have never seen this 
type of visualization, you cannot know which aspects 
of its variation are meaningful. The bubbles differ in 

Fig. 15. A “cluttered” visualization (top), a minimalist “decluttered” 
version (middle), and a version that incorporates pictorial embellish-
ment (bottom). The graph at the bottom was created by Nigel Holmes 
for TIME Magazine and was reprinted in his 1984 book, Designer’s 
Guide to Creating Charts & Diagrams. Used with permission.

Memorability
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histograms, their judgments were biased in the direction 
of the social influence (Hullman et al., 2011).

Finally, the format of a visualization can also guide 
the types of conclusions that viewers draw from the 
underlying data. Imagine data showing that students 
who eat breakfast more often tend to have higher GPAs. 
A viewer might see this correlation and assume a causal 
relationship whereby a good breakfast causes better 
grades. Although plausible, this conclusion cannot be 
drawn from these data. When shown visualizations like 
these, viewers made unwarranted claims about similar 
correlational data, and they did so more often when 
the visualizations aggregated the data into fewer groups 
(e.g., a two-bar graph), compared with more groups 
(e.g., a scatterplot showing all of the individual data 
values; Xiong, Shapiro, et al., 2020), perhaps because 

seeing the data in fewer groups is implicitly associated 
with those data being gathered by an experimental 
manipulation.

Avoid taxing limited working memory

Given that comparisons are already highly capacity lim-
ited, any extraneous demands on working memory due 
to the design of visualizations should be avoided. Inter-
preting the graphs in the middle and right sides of 
Figure 13 requires individuals to map the symbols and 
colors in the graphs to their referents in the legends 
below. This task is highly demanding of limited working 
memory resources. If information is lost in interpreting 
a graph, viewers might make interpretation errors or 
require extra time to reinspect the legend. Indeed, one 
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Fig. 12. An example of emphasizing different perspectives in a single data set (inspired by Bostock et al., 2012). One data 
set can be seen with dramatically different perspectives, depending on which patterns an observer does and does not extract.
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Fig. 13. A demonstration of the advantage of direct labels over legends. Take a moment to state the 
names of the four groups shown in the line graph at left in top-to-bottom order. (Answer: b, d, a, c.) 
Now do the same for the graphs at center and right, which require coordination with color and shape 
legends. You should notice a substantial slowdown because of the need to frequently look back and 
forth between the graph and the legend. If you attempt to memorize the legend first, you will experi-
ence the capacity limit of your working memory.

Present to Persuade
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Visualization for Production
• Generate new material
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Assignment 2
• Newspaper Circulation 
• Data Processing in JavaScript 
• Create Bar Charts using SVGs and 

JavaScript 
• Do not sort the data for Parts 2 & 3 
• Do place the bars in order by year 
• [CSCI 627] Add Interaction
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 Data-Driven Documents
d3.js
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Data-Driven Documents (D3)
• Open-Source JavaScript Library 
• http://d3js.org/ 
• Original Authors: Mike Bostock, Vadim Ogievestky, and Jeff Heer 
• Focus on Web standards, customization, and usability 
• Grew from work on Protovis: more standard, more interactive 
• By nature, a low-level library; you have control over all elements and styles 
• A top project on GitHub (over 112,000 stars as of Feb. 2026) 
• Lots of impressive examples 
- Bostock was a New York Times Graphics Editor 
- https://observablehq.com/@mbostock
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D3 Key Features
• Supports data as a core piece of Web elements 
- Loading data 
- Dealing with changing data (joins, enter/update/exit) 
- Correspondence between data and DOM elements 

• Selections (similar to CSS) that allow greater manipulation 
• Method Chaining 
• Integrated layout algorithms, axes calculations, etc. 
• Focus on interaction support 
- Straightforward support for transitions 
- Event handling support for user-initiated changes
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D3 Introduction
• Ogievetsky put together a nice set of interactive examples that show off the 

major features of D3 
• https://observablehq.com/d/c4a584e88e6155c3 
• Standalone version: http://dakoop.github.io/IntroD3/ 
- (Updated from original) 

• Other references: 
- https://observablehq.com/@d3/learn-d3 
- https://observablehq.com/@d3/gallery 
- Murrary’s book on Interactive Data Visualization for the Web 
- The D3 website: d3js.org
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D3 Data Joins
• Two groups: data and visual elements 
• Three parts of the join between them: enter, update, and exit 
• enter: s.enter(), update: s, exit: s.exit()
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Merge vs. Join
• Merge creates a new selection that includes the items from both selections 
- If you want to update all elements (including those just added via enter), use 

merge! 
- Useful when enter+update have similar transitions 

• Join allows you to modify different parts of the selection in a single statement 
- Also will create the final selection 
- Does enter+append and exit+remove automatically 
- Pass functions to modify the enter, update, and exit parts of the selection 
- Examples: https://observablehq.com/@d3/selection-join
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Transitions
• Nested transitions (those that "hang off" of a parent transition) follow 

immediately after the parent transition
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