
Data Visualization (CSCI 627/490)

Web Programming

Dr. David Koop

D. Koop, CSCI 627/490, Spring 2026

Languages of the Web
• HTML
• CSS
• SVG
• JavaScript
- Versions of Javascript: ES6, ES2015, ES2020…
- Specific frameworks: react, jQuery, bootstrap, D3

2D. Koop, CSCI 627/490, Spring 2026

Hyper Text Markup Language (HTML)
• Markup languages allow users to encode the semantics of text
• Elements structure a document
- Elements delineated by tags: <h1>An element</h1>
- Document Object Model (DOM)
- We can navigate this tree

• Identifying and Classifying elements: id and class attributes
- id identifies a single element—use for a unique case
- class may identify multiple elements—use for common cases
- Each element may have multiple classes, separate by spaces
- Use normal identifiers: don’t start the name with a number

3D. Koop, CSCI 627/490, Spring 2026

Cascading Style Sheets (CSS)
• Separate style from content, just specifies how to style the content
• Style information appears in three places: external, head, individual elements
• Statement: <selectors>: { <style definitions> }
• Cascading:
- use inheritance idea
- properties that apply to children cascade down

• Selectors: element types (strong), ids (#main-section), classes (.cool)
- Can combine to be more specific

• #main-section em, .cool > strong, p.cool

- Can group: #main-section, p.cool { font-size: 16pt; }

4D. Koop, CSCI 627/490, Spring 2026

Example CSS
body {
 font-face: sans-serif;
 font-size: 12pt;
}
em { color: green; }
em u { color: red; }
em > strong { color: blue; }
img { border: 4px solid red; }

• What colors are displayed for this HTML (with the above stylesheet)?
- This is cool. What about
<u>this?</u>

5D. Koop, CSCI 627/490, Spring 2026

https://observablehq.com/d/d7bfe1273ef93b46

CSS Specificity
• Example:
- CSS:

p.exciting { color: red; }
p { color: blue; }

- What is the color of the paragraph
<p class="exciting">Cool</p>?

• Generally, last rule listed overrides previous rules
• …but anytime a selector is more specific, it has precedence
• p.exciting is a more specific selector
• When in doubt, test it in a browser

6D. Koop, CSCI 627/490, Spring 2026

https://observablehq.com/d/d7bfe1273ef93b46

How to add CSS to HTML
• External: a separate file via a link element (in the <head> section):

- <link rel="stylesheet" href="styles.css">
• Embedded: in the header:

- <style type="text/css"> … </style>
• Inline: for a specific element: (Discouraged!)

- <p style="font-weight: bold;">Some text</p>

7D. Koop, CSCI 627/490, Spring 2026

Scalable Vector Graphics (SVG)
• Vector graphics vs. Raster graphics
• Drawing commands versus a grid of pixels
• Why vector graphics?

8D. Koop, CSCI 627/490, Spring 2026

Raster Vector

SVG Elements
• Markup language like HTML with similar XML syntax
• Pixel Coordinates: Top-left origin
• Drawing primitives:
- Lines, Circles, Rects, Ellipses, Text, Polylines, Paths
- Work by specifying information about how to draw the shape
- Lots more: see MDN Documentation

• Ordering/Stacking:
- SVG Elements are drawn in the order they are specified

• Paths: directions for drawing
- https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/Paths

9D. Koop, CSCI 627/490, Spring 2026

https://developer.mozilla.org/en-US/docs/Web/SVG/Element
https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/Paths

SVG Example
<svg id="mysvg" width="300" height="600">
 <circle cx="50" cy="50" r="50"/>
 <rect class="lego" x="150" y="150"
 width="50" height="20"/>
 <path id="triangle" d="M 20 200
 L 120 200 L 120 250 Z"/>
</svg>

circle { fill: green; stroke: black;
 stroke-width: 4px; }
.lego { fill: red; stroke: blue;
 stroke-width: 2px; }
#triangle { fill: none; stroke: orange;
 stroke-width:3px; }

10D. Koop, CSCI 627/490, Spring 2026

https://observablehq.com/d/d7bfe1273ef93b46

Assignment 1
• Write HTML, CSS, and SVG
• Text markup and styling (information)
• Drawing markup and styling (camera)
• Draw Bar chart using Plot library
• Due Wednesday, Jan. 28

11D. Koop, CSCI 627/490, Spring 2026

https://faculty.cs.niu.edu/~dakoop/cs627-2026sp/assignment1.html

Assignment 1
• Write HTML, CSS, and SVG
• Text markup and styling (information)
• Drawing markup and styling (camera)
• Draw Bar chart using Plot library
• Due Wednesday, Jan. 28

11D. Koop, CSCI 627/490, Spring 2026

https://faculty.cs.niu.edu/~dakoop/cs627-2026sp/assignment1.html

SVG Grouping
• Very powerful, useful for animations and transformations
• <g> <circle …/> <circle … /> <circle … /></g>

• Can add transforms to the group:

12

[SVG Example, Scheidegger, 2016]
D. Koop, CSCI 627/490, Spring 2026

http://cscheid.net/courses/spr15/cs444/lectures/week2.html

JavaScript in one slide
• Interpreted and Dynamically-typed Programming Language
• Statements end with semi-colons, normal blocking with brackets
• Variables: var a = 0; let b = 2; const d = 4;
• Operators: +, -, *, /, []
• Control Statements: if (<expr>){…} else {…}, switch
• Loops: for, while, do-while
• Arrays: var a = [1,2,3]; a[99] = 100; console.log(a.length);
• Functions: function myFunction(a,b) { return a + b; }
• Objects: var obj = {x: 2, y: 4}; obj.x = 3; obj.y = 5;

- Prototypes for instance functions
• Comments are /* Comment */ or // Single-line Comment

13D. Koop, CSCI 627/490, Spring 2026

JavaScript References
• Learn Just Enough JavaScript: Introduction, P. Boffa
• Eloquent JavaScript, M. Haverbeke
• MDN Tutorials
• Interactive Data Visualization for the Web, Murray

14D. Koop, CSCI 627/490, Spring 2026

https://observablehq.com/@observablehq/learn-javascript-introduction?collection=@observablehq/learning-javascript-for-data-scientists
https://eloquentjavascript.net
https://developer.mozilla.org/en-US/docs/Web/Tutorials#Introductory_level_3
http://alignedleft.com/work/d3-book-2e

JavaScript Objects
• var student = {name: "John Smith", id: "000012345", class:
"Senior", hometown: "Peoria, IL, USA"};

• Objects contain multiple values: key-value pairs called properties
• Accessing properties via dot-notation: student.name
• May also contain functions:

- var student = {firstName: "John",
 lastName: "Smith",
 fullName: function() {
 return this.firstName + " " + this.lastName; }};
student.fullName()

• JavaScript Object Notation (JSON): data interchange format
- nested objects and arrays (data only, no functions!), subset of JavaScript

15D. Koop, CSCI 627/490, Spring 2026

Objects as Associative Arrays/Dictionaries
• Objects have key-value pairs and can be addressed via those keys, either via

dot-notation or via bracket notation: [<key>]
• Example:

states = {"AZ": "Arizona", "IL": "Illinois", …};
// Get a state's name given it's abbreviation
console.log("IL is " + states["IL"]);

• Similar to dictionaries or associative arrays in other languages (e.g. Python)
• Dot-notation only works with certain identifiers, bracket notation works with

more identifiers
• Notebook

16D. Koop, CSCI 627/490, Spring 2026

https://observablehq.com/d/a948eefd3772d910

17

Functional Programming

D. Koop, CSCI 627/490, Spring 2026

Functional Programming in JavaScript
• Functions are first-class objects in JavaScript
• You can pass a function to a method just like you can pass an integer, string,

or object
• Instead of writing loops to process data, we can instead use a map/filter/
reduce/forEach function on the data that runs our logic for each data item

• map: transform each element of an array
• filter: check each element of an array and keep only ones that pass
• forEach: run the function for each element of the array
• reduce: collapse an array to a single object

18D. Koop, CSCI 627/490, Spring 2026

Quiz
• Using map, filter, reduce, and forEach, and given this data:

- var a = [6, 2, 6, 10, 7, 18, 0, 17, 20, 6];

• Questions:
- How would I return a new array with values one less than in a?
- How would I find only the values >= 10?
- How would I sum the array?
- How would I create a reversed version of the array?

19D. Koop, CSCI 627/490, Spring 2026

Quiz Answers: Notebook
• Data: var a = [6, 2, 6, 10, 7, 18, 0, 17, 20, 6];
• How would I subtract one from each item?

- a.map(function(d) { return d-1; })

• How would I find only the values >= 10?
- a.filter(function(d) { return d >= 10; })

• How would I sum the array?
- a.reduce(function(s,d) { return s + d; })

• How would I create a reversed version of the array?
- b = []; a.forEach(function(d) { b.unshift(d); });

- …or a.reverse() // modifies in place
• Arrow functions shorten such calls: a.map(d => d-1);
 a.filter(d => d >= 10); a.reduce((s,d) => s+d);

20D. Koop, CSCI 627/490, Spring 2026

https://observablehq.com/d/a948eefd3772d910

Function Chaining in JavaScript
• When programming functionally, it is useful to chain functions
• No intermediate variables!
• Often more readable code
• jQuery Example:

- $("#myElt").css("color", "blue").height(200).width(320)

• Used a lot in Web programming, especially D3
• Can return the same object or a new object
• Lazy chaining keeps track of functions to be applied but will apply them later

(e.g. when the page loads)

21D. Koop, CSCI 627/490, Spring 2026

Closures in JavaScript
• Functions can return functions with some values set
• Allows assignment of some of the values
• Closures are functions that "remember their environments" [MDN]
function makeAdder(x) {
 return function(y) {
 return x + y;
 };
}
var add5 = makeAdder(5);
var add10 = makeAdder(10);

console.log(add5(2)); // 7
console.log(add10(2)); // 12

• Notebook

22D. Koop, CSCI 627/490, Spring 2026

https://observablehq.com/d/a948eefd3772d910

