Data Visualization (CSCI 627/490)

Vector Field Visualization

Dr. David Koop

Volume Rendering vs. Isosurfacing

(a) Direct volume rendered

D. Koop, CSCI 627/490, Spring 2025

(b) Isosurface rendered

[Kindlmann, 1998]

Northern Illinois University

How? Volume Ray Casting

- Approximate volume rendering integral: light absorption & emission • Sample at regular intervals along each ray
- Trilinear interpolation: linear interpolation along each axes (x,y,z)

 Not the only possibility, also "object order" techniques like splatting or texture-based and combinations like shear-warp

Accumulation

- If we're not just calculating a single number (max, average) or a position (first), how do we determine the accumulation?
- Assume each value has an associated color (c) and opacity (α)
- Over operator (back-to-front):
 - $-C = \alpha_f \cdot C_f + (1 \alpha_f) \cdot \alpha_b \cdot C_b$
 - $-\alpha = \alpha_f + (1 \alpha_f) \cdot \alpha_b$
- Order is important!

Transfer Functions

- Where do the colors and opacities come from?
- Idea is that each voxel emits/absorbs light based on its scalar value
- ...but users get to choose how that happens
- x-axis: color region definitions, y-axis: opacity

Multidimensional Transfer Functions

Vector Field Visualization

D. Koop, CSCI 627/490, Spring 2025

7

Examples of Vector Fields

Examples of Vector Fields

Fields in Visualization

Scalar Fields (Order-0 Tensor Fields)

Each point in space has an associated...

 s_0

Scalar

D. Koop, CSCI 627/490, Spring 2025

Vector Fields (Order-1 Tensor Fields)

 v_0 v_1 v_2 Vector

Visualizing Vector Fields

- Direct: Glyphs, Render statistics as scalars
- Geometry: Streamlines and variants
- Textures: Line Integral Convolution (LIC)
- Topology: Extract relevant features and draw them

Glyphs

- Represent each vector with a symbol
- Hedgehogs are primitive glyphs (glyph is a line)
- Glyphs that show direction and/or magnitude can convey more information
- If we have a separate scalar value, how might we encode that?
- Clutter issues

<u>Assignment 5</u>

- Create Multiple Views
- Filtering
- Linked Highlighting
- Aggregation

Courselets

- Please provide feedback on the courselets if you have used them
- You can still work through them and complete them
- Extra credit for each completed survey

Final Project

- Designs feedback on Blackboard
- Work on implementations
- Presentations will be next week (April 28 and April 30)
- Submit information to Blackboard later this week
 - Project or link to project
 - Preference for Monday or Wednesday presentation
- Reports due at the end of the class

Final Exam

- Wednesday, May 7, 2025, 8:00-9:50pm
- Covers all topics but emphasizes second half of the course
- Similar format as Midterm (multiple choice, free response)
- 627 Students will have a extra questions related to the research papers

Streamlines & Variants

- Trace a line along the direction of the vectors
- Streamlines are always tangent to the vector field
- Basic Particle Tracing:
 - 1. Set a starting point (seed)
 - 2. Take a step in the direction of the vector at that point
 - 3. Adjust direction based on the vector where you are now
 - 4. Go to Step 2 and Repeat

ne vectors he vector field

vector at that point tor where you are now

Example

- Elliptical path
- Suppose we have the actual equation
- Given point (x,y), the vector is at that point is $[v_x, v_y]$ where

-
$$V_X = -Y$$

-
$$v_y = (1/2)x$$

• Want a streamline starting at (0,-1)

Some Glyphs

Streamlines (Step 1)

[x,y] → [-y, (1/2)x], Step: 0.5

Streamlines (Step 2)

Streamlines (Step 3)

Streamlines (Step 4)

Streamlines (Step 10)

[x,y] → [-y, (1/2)x], Step: 0.5

Streamlines (Step 19)

[x,y] → [-y, (1/2)x], Step: 0.5

- Seeking to approximate integration of the velocity over time
- Euler method is the starting point for approximating this
- Problems?

- Seeking to approximate integration of the velocity over time
- Euler method is the starting point for approximating this
- Problems?
 - Choice of step size is important

- Seeking to approximate integration of the velocity over time
- Euler method is the starting point for approximating this
- Problems?
 - Choice of step size is important
 - Choice of seed points are important

- Seeking to approximate integration of the velocity over time
- Euler method is the starting point for approximating this
- Problems?
 - Choice of step size is important
 - Choice of seed points are important
- point (interpolation)

• Also remember that we have a field—we don't have measurements at every

Euler Quality by Step Size

Numerical Integration

- How do we generate accurate streamlines?
- Solving an ordinary differential equation

$$\frac{dL}{dt} = v(L(t)) \qquad L(0) = L_0$$

where L is the streamline, v is the vector field, and t is "time" • Solution:

$$L(t + \Delta t) = L(t) + \int_{t}^{t + \Delta t} v(t) dt$$

Higher-order methods

$$\int_{t}^{t+\Delta t} v(L(t))dt$$

• Euler method (use single sample)

• Higher-order methods (Runge-Kutta) (use more samples)

[A. Mebarki]

Higher-Order Comparison

ParaView Examples

Streamlines & Variants

- Steady vs. Unsteady The aracteristic Lines
 - In unsteady flows, the vector field changes over time
- Variants: Pathlines and Streaklines

Streamlines & Variants

- Steady vs. Unsteady The aracteristic Lines
 - In unsteady flows, the vector field changes over time
- Variants: Pathlines and Streaklines

Streamlines vs. Pathlines

Streamlines

D. Koop, CSCI 627/490, Spring 2025

Pathlines

[Weinkauf & Theisel, 2010]

Northern Illinois University

Streaklines and timelines

streamlin

nes	pathlines
nes	timelines

Streamline Streaklines in real life

NASA

http://www.dfrc.nasa.gov/gallery/photo/index.html NASA Photo: ECN-33298-03 Date: 1985

1/48-scale model of an F-18 aircraft in Flow Visualization Facility (FVF)

Streaklines [NASA]

D. Koop, CSCI 627/490, Spring 2025

Mapping Methods Based on affere Tracing

Stream Tubes [Weiskopf/Machiraju/Möller]

Streak Surfaces

2D Vector Field Visualization Techniques

LIC

D. Koop, CSCI 627/490, Spring 2025

Northern Illinois University

Line Integral Convolution

- Goal: provide a global view of a steady vector field while avoiding issues with clutter, seeds, etc.
- Remember convolution?
- Start with random noise texture
- Smear according to the vector field $\int T(\mathbf{x}(t+s))k(s) ds$
- Need structured data

[Weiskopf/Machiraju/Möller]

D. Koop, CSCI 627/490, Spring 2025

Line Integral Convolution

3D LIC

Critical Points

- Remember finding min/max for functions?
- Want to understand the general structure of a field, not the exact values
- Find critical points, understand there is a general trend in between
- How?
 - Derivative for functions
 - For fields...gradients

D. Koop, CSCI 627/490, Spring 2025

Northern Illinois University

lopology

- The general shape of data
- Visualizations that can be "stretched" to resemble each other are topologically equivalent
- Technically, continuous transformations don't change anything Connect critical points to obtain a general picture of the data Can talk about topology in both scalar and vector fields

2D Scalar Field Topology

2D Scalar Field Topology

Scalar Field Topology

- Where the gradient is zero, we have critical points (max, min, saddle)
- how the scalar field looks)

 Examine the gradient (changes between points on the grid) of the scalar field Can build Reeb Graph, Contour Tree, or Morse-Smale Complex from this information to show the topology (with some reasonable assumptions about

Scalar Field Topology

D. Koop, CSCI 627/490, Spring 2025

Reeb Graph/Contour Tree/Merge Tree

Vector Field Topology

field, try to identify structure (topology) of the field

Figure 7.1

D. Koop, CSCI 627/490, Spring 2025

Instead of "guessing" correct seed points for streamlines to understand the

A phase portrait.

Critical Points

Repelling Focus R1, R2 > 0 I1, I2 != 0

Attracting Focus R1, R2 < 0 I1, I2 !== 0

D. Koop, CSCI 627/490, Spring 2025

45

Critical Points

- Critical Points
 - Find where the vector field vanishes (the zero vector or undefined)
 - Attracting Nodes (Sinks), Repelling Nodes (Sources), Attracting Foci, Repelling Foci, Saddles, Centers
- How to find such points?
 - Can use a similar idea to Marching Cubes
 - Use the eigenvalues of the Jacobian matrix to classify

es (the zero vector or undefined) g Nodes (Sources), Attracting Foci,

g Cubes an matrix to classify

46

Topological Skeleton

More Examples

D. Koop, CSCI 627/490, Spring 2025

Course Evaluations

