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Volume Visualization
•  2D visualization

  slice images
  (or multi-planar 

  reformating MPR)

•  Indirect
  3D visualization

  isosurfaces
  (or surface-shaded

  display SSD)

•  Direct  
  3D visualization
  (direct volume 

  rendering DVR)

Visualizing Volume (3D) Data

2
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Isosurfacing
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[J. Kniss, 2002]
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20 2. Marching Cubes and Variants
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(a) Scalar grid. (b) The +/− grid.
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(c) Midpoint vertices. (d) Isocontour.

Figure 2.4. (a) 2D scalar grid. (b) Black vertices are positive. Vertex v with scalar
value sv is positive if sv >= 5 and negative if sv < 5. Note that sv = 5 for one grid
vertex v. (c) Isocontour with vertices at edge midpoints (before linear interpolation).
(d) Isocontour with isovalue 5.

isocontours. The isocontour lookup table, Table, contains sixteen entries, one for

each configuration. Each entry, Table[κ] is a list of the E+/−
κ pairs.

In Figure 2.3 the isocontour edges are drawn connecting the midpoints of
each square edge. This is for illustration purposes only. The geometric locations
of the isocontour vertices are not defined by the lookup table.

The isocontour lookup table is constructed on the unit square with vertices
(0, 0), (1, 0), (0, 1), (1, 1). To construct the isocontour in grid square (i, j), we
have to map pairs of unit square edges to pairs of square (i, j) edges. Each
vertex v = (vx, vy) of the unit square maps to v + (i, j) = (vx, vy) + (i, j) =
(vx + i, vy + j). Each edge e of the unit square with endpoints (v, v′) maps to
edge e+ (i, j) = (v + (i, j), v′ + (i, j)). Finally, each edge pair (e1, e2) maps to
(e1 + (i, j), e2 + (i, j)).

The endpoints of the isocontour edges are the isocontour vertices. To map
each isocontour edge to a geometric line segment, we use linear interpolation to

Generating Isolines

4

[R. Wenger, 2013]
D. Koop, CSCI 627/490, Spring 2025

http://web.cse.ohio-state.edu/~wenger/publications/


26 2. Marching Cubes and Variants

6 7 81 2 3 4 5

14 15 169 10 11 12 13

Figure 2.10. Red, positive regions and blue, negative regions for each square configu-
ration. The green isocontour is part of the positive region. Black vertices are positive.

Proof of Properties 1 & 2: The Marching Squares isocontour consists of a finite
set of line segments, so it is piecewise linear. These line segments intersect only at
their endpoints and thus form a triangulation of the isocontour. The endpoints
of these line segments lie on the grid edges, confirming Property 2. !

Property 3. The isocontour intersects every bipolar grid edge at exactly one
point.

Property 4. The isocontour does not intersect any negative or strictly positive
grid edges.

Proof of Properties 3 & 4: Each isocontour edge is contained in a grid square. Since
the grid squares are convex, only isocontour edges with endpoints (vertices) on
the grid edge intersect the grid edge. If the grid edge has one positive and one
negative endpoint, the unique location of the isocontour vertex on the grid edge
is determined by linear interpolation. Thus the isocontour intersects a bipolar
grid edge at only one point.

If the grid edge is negative or strictly positive, then no isocontour vertex lies
on the grid edge. Thus the isocontour does not intersect negative or strictly
positive grid edges. !

Within each grid square the isocontour partitions the grid square into two
regions. Let the positive region for a grid square c be the set of points which can
be reached by a path ζ from a positive vertex. More precisely, a point p is in the
positive region of c if there is some path ζ ⊂ c connecting p to a positive vertex
of c such that the interior of ζ does not intersect the isocontour. A point p is
in the negative region of c if there is some path ζ ⊂ c connecting p to a negative
vertex of c such that ζ does not intersect the isocontour. Since any path ζ ⊂ c
from a positive to a negative vertex must intersect the isocontour, the positive
and negative regions form a partition of the square c. Figure 2.10 illustrates the
positive and negative regions, colored red and blue, respectively, for each square
configuration.

Marching Squares
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[R. Wenger, 2013]
D. Koop, CSCI 627/490, Spring 2025

http://web.cse.ohio-state.edu/~wenger/publications/


3D: Marching Cubes
• Same idea, more cases [Lorensen and Cline, 1987]

6

[R. Wenger, 2013]
D. Koop, CSCI 627/490, Spring 2025

2.3. Marching Cubes 33
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Figure 2.16. Isosurfaces for twenty-two distinct cube configurations.
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Figure 2.16. Isosurfaces for twenty-two distinct cube configurations.

http://web.cse.ohio-state.edu/~wenger/publications/


Incompatible Choices
• If we have ambiguous cases where we choose differently for each cell, the 

surfaces will not match up correctly—there are holes 
• Fix with the asymptotic decider [Nielson and Hamann,1991]

7

[R. Wenger, 2013]
D. Koop, CSCI 627/490, Spring 2025

34 2. Marching Cubes and Variants

(a) (b)

Figure 2.17. (a) Adjacent configurations sharing a common face. (b) Incompatible
isosurface patches for the adjacent configurations.

Figure 2.18. Compatible isosurface patches for adjacent configurations in Fig-
ure 2.17(a).

configuration κ. The isosurface patch intersects every edge of E+/−
κ exactly once

and does not intersect any other grid cube edges.
To define the 256 entries in the table, it is only necessary to determine the

table entries for the twenty-two distinct configurations. The table entries for
the other configurations can be derived using rotation and reflection symme-
try. Figure 2.16 contains the twenty-two distinct cube configurations and their
isosurfaces.

The isosurface lookup table is constructed on the unit cube with vertices
(0, 0, 0), (1, 0, 0), (0, 1, 0), . . . , (0, 1, 1), (1, 1, 1). To construct the isosurface in grid
cube (i, j, k), we have to map unit cube edges to edges of cube (i, j, k). Each
vertex v = (vx, vy, vz) of the unit cube maps to v + (i, j, k) = (vx, vy, vz) +
(i, j, k) = (vx + i, vy + j, vz + k). Each edge e of the unit square with endpoints
(v, v′) maps to edge e + (i, j, k) = (v + (i, j, k), v′ + (i, j, k)). Finally, each edge
triple (e1, e2, e3) maps to (e1 + (i, j, k), e2 + (i, j, k), e3 + (i, j, k)).

In Figure 2.16, the isosurface vertices lie on the midpoints of the grid edges.
This is for illustration purposes only. The geometric locations of the isosurface
vertices are not defined by the lookup table.

The vertices of the isosurface triangles are the isosurface vertices. To map
each isosurface triangle to a geometric triangle, we use linear interpolation to
position the isosurface vertices as described in Section 1.7.2. Each isosurface
vertex v lies on a grid edge [p, q]. If sp and sq are the scalar values at p and q
and σ is the isovalue, then map v to (1− α)p+ q where α = (σ − sp)/(sq − sp).

http://web.cse.ohio-state.edu/~wenger/publications/


Assignment 5
• Create Multiple Views 
• Filtering 
• Linked Highlighting 
• Aggregation

8D. Koop, CSCI 627/490, Spring 2025

https://faculty.cs.niu.edu/~dakoop/cs627-2025sp/assignment5.html


Courselets
• Please provide feedback on the courselets if you have used them 
• You can still work through them and complete them 
• Extra credit for each completed survey

9D. Koop, CSCI 627/490, Spring 2025



Final Project
• Designs feedback on Blackboard 
• Work on implementations 
• Presentations will be next week (April 28 and April 30) 
• Submit information to Blackboard later this week 
- Project or link to project 
- Preference for Monday or Wednesday presentation 

• Reports due at the end of the class

10D. Koop, CSCI 627/490, Spring 2025



Final Exam
• Wednesday, May 7, 2025, 8:00-9:50pm 
• Covers all topics but emphasizes second half of the course 
• Similar format as Midterm (multiple choice, free response) 
• 627 Students will have a extra questions related to the research papers

11D. Koop, CSCI 627/490, Spring 2025
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Volume Rendering

D. Koop, CSCI 627/490, Spring 2025



9

(a) Direct volume rendered (b) Isosurface rendered

Figure 1.4: Comparison of volume rendering methods

Volume Rendering vs. Isosurfacing

13

[Kindlmann, 1998]
D. Koop, CSCI 627/490, Spring 2025



(Direct) Volume Rendering
• Isosurfacing: compute a surface (triangles) and use standard computer 

graphics to render the triangles 
• Volume rendering: compute the pixels shown directly from the volume 

information 
• Why? 
- No need to figure out precise isosurface boundaries 
- Can work better for data with noise or uncertainty 
- Greater control over appearance based on values

14D. Koop, CSCI 627/490, Spring 2025



Types of Volume Rendering Algorithms
• Ray casting 
- Similar to ray tracing, but use rays from the viewer 

• Splatting: 
- Object-order, voxels splat onto the image plane 

• Shear Warp: 
- Object-space, slice-based, parallel viewing rays 

• Texture-Based: 
- 2D Slices: stack of texture maps 
- 3D Textures 

15

[via Möller]
D. Koop, CSCI 627/490, Spring 2025

© Weiskopf/Machiraju/Möller 60

Texture-Based Volume 
Rendering

• Proxy geometry
– Stack of texture-mapped slices
– Generate fragments
– Most often back-to-front traversal



Object order approach
Image Plane

Data Set

Eye

Volume Ray Casting

16

[Levine]
D. Koop, CSCI 627/490, Spring 2025



Image order approach
Image Plane

For each pixel {
   calculate color of the pixel
}

Data Set

Eye

Volume Ray Casting

17

[Levine]
D. Koop, CSCI 627/490, Spring 2025



How?
• Approximate volume rendering integral: light absorption & emission 
• Sample at regular intervals along each ray 
• Trilinear interpolation: linear interpolation along each axes (x,y,z) 

• Not the only possibility, also "object order" techniques like splatting or 
texture-based and combinations like shear-warp

18D. Koop, CSCI 627/490, Spring 2025

• We perform a numerical approximation of volume 
rendering integral 

• Idea: resample volume at equispaced intervals 
along the ray 
• Use trilinear interpolation
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Pixel Compositing 
Schemes

Compositing
• Need one pixel from all values along the ray 
• Q: How do we "add up" all of those values 

along the ray? 
• A: Compositing! 
• Different types of compositing 
- First: like isosurfacing, first intersection at a 

certain intensity 
- Max intensity: choose highest val 
- Average: mean intensity (density, like x-rays) 
- Accumulate: each voxel has some 

contribution 
19

[Levine and Weiskopf/Machiraju/Möller]
D. Koop, CSCI 627/490, Spring 2025
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Exact Isosurface

Pixel Compositing 
SchemesTypes of Compositing
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[Levine and Weiskopf/Machiraju/Möller]
D. Koop, CSCI 627/490, Spring 2025

Pixel Compositing 
Schemes
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opacity to show inside 
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maximum intensity projection (MIP)
Pixel Compositing 

Schemes

Used in PET and Magnetic 
Resonance Angiograms

Types of Compositing
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[Levine and Weiskopf/Machiraju/Möller]
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Pixel Compositing 
Schemes
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Synthetic Reprojection

Pixel Compositing 
Schemes

Similar to X-rays

Types of Compositing
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Schemes
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Pixel Compositing 
Schemes

depth

max intensity
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color to distinguish structures
opacity to show inside 

Types of Compositing
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Pixel Compositing 
Schemes

depth

max intensity

accumulate

average
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te

ns
ity

color to distinguish structures
opacity to show inside 



Accumulation
• If we're not just calculating a single number (max, average) or a position (first), 

how do we determine the accumulation? 
• Assume each value has an associated color (c) and opacity (α) 
• Over operator (back-to-front):  
- c = αf∙cf + (1-αf)∙αb∙cb 

- α = αf + (1-αf)∙αb 

• Order is important!

24D. Koop, CSCI 627/490, Spring 2025

Blue Last Blue First



Transfer Functions
• Where do the colors and opacities come from? 
• Idea is that each voxel emits/absorbs light based on its scalar value 
• …but users get to choose how that happens 
• x-axis: color region definitions, y-axis: opacity

25

[Kindlmann]
D. Koop, CSCI 627/490, Spring 2025

Human Tooth CT

f 

RGB
Simple (usual) case: Map data 
value f  to color and opacityα

Transfer Functions (TFs)



Transfer Function Design
• Transfer function design is non-trivial! 
• Lots of tools to help visualization designers to create good transfer functions 
• Histograms, more attributes than just value like gradient magnitude

26D. Koop, CSCI 627/490, Spring 2025



Multidimensional Transfer Functions

27

[J. Kniss]
D. Koop, CSCI 627/490, Spring 2025



Multidimensional Transfer Functions

28

[J. Kniss]
D. Koop, CSCI 627/490, Spring 2025



Newer Technology
• Intel OSPRay 
• https://www.ospray.org/gallery.html

29D. Koop, CSCI 627/490, Spring 2025

https://www.ospray.org/gallery.html
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ParaView Examples

D. Koop, CSCI 627/490, Spring 2025
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Vector Field Visualization

D. Koop, CSCI 627/490, Spring 2025



Examples of Vector Fields
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Wind [earth.nullschool.net, 2014]
D. Koop, CSCI 627/490, Spring 2025

https://earth.nullschool.net


Examples of Vector Fields
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Wind [earth.nullschool.net, 2014]
D. Koop, CSCI 627/490, Spring 2025

https://earth.nullschool.net


Examples of Vector Fields
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Computational Fluid Dynamics [newmerical]
D. Koop, CSCI 627/490, Spring 2025



Examples of Vector Fields

34

Earthquake Ground Surface Movement [H. Yu et. al., SC2004]
D. Koop, CSCI 627/490, Spring 2025

Figure 14: LIC image of the ground surface at time
step 200. The bottom 2 images show increasingly
close-up views of the field.

sualization. We will therefore also investigate the use of a

graphics-enhanced PC cluster as a dedicated visualization

server. The question then is whether our I/O strategies can

keep up with hardware accelerated rendering.
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Examples of Vector Fields
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Gradient Vector Fields
D. Koop, CSCI 627/490, Spring 2025



Examples of Vector Fields
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Wildfire Modeling [E. Anderson]
D. Koop, CSCI 627/490, Spring 2025
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Fields in Visualization

37D. Koop, CSCI 627/490, Spring 2025

Scalar Fields Vector Fields Tensor Fields
(Order-1 Tensor Fields)(Order-0 Tensor Fields) (Order-2+)

Each point in space has an associated...

Scalar

Vector Fields

Vector Tensor



Visualizing Vector Fields
• Direct: Glyphs, Render statistics as scalars 
• Geometry: Streamlines and variants 
• Textures: Line Integral Convolution (LIC) 
• Topology: Extract relevant features and draw them

38D. Koop, CSCI 627/490, Spring 2025



Glyphs
• Represent each vector with a symbol 
• Hedgehogs are primitive glyphs (glyph is a line) 
• ParaView Example

39D. Koop, CSCI 627/490, Spring 2025



Glyphs
• Represent each vector with a symbol 
• Hedgehogs are primitive glyphs (glyph is a 

line) 
• Glyphs that show direction and/or magnitude 

can convey more information 
• If we have a separate scalar value, how 

might we encode that? 
• Clutter issues

40D. Koop, CSCI 627/490, Spring 2025



Glyphs
• For vector fields, can encode direction, magnitude, scalar value 
• Good: 
- Show precise local measures 
- Can encode scalar information as color 

• Bad: 
- Possible sampling issues 
- Clutter (Occlusion): Can remove some points to help 
- Clutter is worse in higher dimensions

41D. Koop, CSCI 627/490, Spring 2025



Rendering Vector Field Statistics as Scalars
• Many statistics we can compute for vector 

fields: 
- Magnitude 
- Vorticity 
- Curvature 

• These are scalars, can color with our scalar 
field visualization techniques (e.g. volume 
rendering)

42

[Color indicates vector magnitude]
D. Koop, CSCI 627/490, Spring 2025



Streamlines & Variants
• Trace a line along the direction of the vectors 
• Streamlines are always tangent to the vector field 
• Basic Particle Tracing: 
1. Set a starting point (seed) 
2. Take a step in the direction of the vector at that point 
3. Adjust direction based on the vector where you are now 
4. Go to Step 2 and Repeat

43D. Koop, CSCI 627/490, Spring 2025



● Numerical integration of stream lines:

● approximate streamline by polygon xi

● Testing example: 
● v(x,y) = (-y, x/2)^T
● exact solution: ellipses
● starting integration from (0,-1)

x

y

Example
• Elliptical path 
• Suppose we have the actual equation  
• Given point (x,y), the vector is at that point is 

[vx, vy] where 
- vx = -y 
- vy = (1/2)x 

• Want a streamline starting at (0,-1)

44

[LIC (not streamlines!) via Levine]
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Euler Integration – Example
2D analytic field (no need of grid and interpolation):

vx = dx/dt = −y
vy = dy/dt = x/2
Sample arrows:

Ground truth
flows form 
ellipses.

0 1 2 3 4

0

1

2

Some Glyphs

45

[via Levine]
D. Koop, CSCI 627/490, Spring 2025

[x,y] → [-y, (1/2)x], Step: 0.5


