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Elision: DOITrees
• Example: 600,000 node tree 
- Multiple foci (from search results or via user selection) 
- Distance computed topologically (levels, not geometric)
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[Heer and Card, 2004]
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Superimposition with Interactive Lenses
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[ChronoLenses and Sampling Lens in Tominski et al., 2014]
D. Koop, CSCI 627/490, Spring 2025

C. Tominski et al. / A Survey on Interactive Lenses in Visualization

(a) Alteration (b) Suppression (c) Enrichment

Figure 5: Basic lens functions. (a) ChronoLenses [ZCPB11] alter existing content; (b) the Sampling Lens [ED06b] suppresses
content; (c) the extended excentric labeling lens [BRL09] enriches with new content.

needs to be inversely projected from the screen space (V ) to
the model space (VA), in which the geometry and graphical
properties of the visualization are defined. Further inverse
projection to the data space (DT or DS) enables selection at
the level of data entities or data values. For example, with
the ChronoLenses [ZCPB11] from Figure 5(a), the user ba-
sically selects an interval on a time scale. The Local Edge
Lens [TAvHS06] from Figure 7(a) (see two pages ahead) se-
lects a subset of graph edges that pass through the lens and
actually do connect to a graph node within the lens.

So, by appropriate inverse projection of the lens, the selec-
tion s can be made at any stage of the visualization pipeline,
be it a region of pixels at V , a group of 2D or 3D geometric
primitives at VA, a set of data entities at DT , or a range of
values at DS. However, what sounds simple in theory is not
as straight-forward in real visualization applications. Inverse
projection can lead to ambiguities that need to be resolved
to properly identify the selected entities. Assigning unique
identifiers to data items and maintaining them throughout
the visualization process as well as employing the concept
of half-spaces can help in this regard [TFS08].

The Lens Function The lens function creates the intended
lens effect. Just as any function, so is the lens function char-
acterized by the input it operates on and the output it gener-
ates. Clearly, the selection s is input to the lens function. The
lens function further depends on parameters that control the
lens effect. Possible parameters are as diverse as there are
lens functions. A magnification lens, for example, may ex-
pose the magnification factor as a parameter. A filtering lens
may be parameterized by thresholds to control the amount
of data to be filtered out. Parameters such as these are essen-
tial to the effect generated with a lens. Additional parame-
ters may be available to further fine-tune the lens function.
For example, the alpha value used for dimming filtered data
could be such an additional parameter.

Given selection and parameters, the processing of the lens
function typically involves only a subset of the stages of the

visualization transformation. For example, when the selec-
tion is defined on pixels, the lens function usually manip-
ulates these pixels exclusively at the view stage V . On the
other hand, selecting values directly from the data source
DS opens up the possibility to process the selected values
differently throughout all stages of the pipeline.

The output generated by the lens function will typically be
an alternative visual representation. From a conceptual point
of view, a lens function can alter existing content, suppress
irrelevant content, or enrich with new content, or perform
combinations thereof. Figure 5 illustrates the different op-
tions. For example, ChronoLenses [ZCPB11] transform time
series data on-the-fly, that is, they alter existing content. The
Sampling Lens [ED06b] suppresses data items to de-clutter
the visualization underneath the lens. The extended excen-
tric labeling [BRL09] is an example for a lens that enriches
a visualization, in this case with textual labels.

The Join ./ Finally, the result obtained via the lens func-
tion has to be joined with the base visualization to create the
necessary visual feedback. A primary goal is to realize the
join so that it is easy for the user to understand how the view
seen through the lens relates to the base visualization. In a
narrow sense of a lens, the result generated by the lens func-
tion will replace the content in the lens interior as shown for
ChronoLenses [ZCPB11] and the SamplingLens [ED06b] in
Figures 5(a) and 5(b). For many other lenses the visual effect
manifests exclusively in the lens interior.

When the join is realized at earlier stages of the visu-
alization pipeline, the visual effect is often less confined.
For example, the Layout Lens [TAS09] adjusts the position
of a subset of graph nodes to create a local neighborhood
overview as shown in Figure 6(a). Yet, relocating nodes im-
plies that their incident edges take different routes, which in
turn introduces some (limited) visual change into the base
visualization as well. In a most relaxed sense of a lens, the
result of the lens function can even be shown separately. The
time lens [TSAA12] depicted in Figure 6(b) is an example

c� The Eurographics Association 2014.



June 21, 2012 / Mike Bostock

Fisheye Distortion

It can be difficult to observe micro and macro features simultaneously with complex graphs. If you
zoom in for detail, the graph is too big to view in its entirety. If you zoom out to see the overall
structure, small details are lost. Focus + context techniques allow interactive exploration of an area

Mouseover to distort the nodes.

Distortion
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[M. Bostock]
D. Koop, CSCI 627/490, Spring 2025

http://bost.ocks.org/mike/fisheye/


Data Wrangling
• Problem 1: Visualizations need data 
• Solution: The Web! 
• Problem 2: Data has extra information I don't need 
• Solution: Filter it 
• Problem 3: Data is dirty 
• Solution: Clean it up 
• Problem 4: Data isn't in the same place 
• Solution: Combine data from different sources 
• Problem 5: Data isn't structured correctly 
• Solution: Reorder, map, and nest it

6D. Koop, CSCI 627/490, Spring 2025



JavaScript Data Wrangling Resources
• Latest version: https://observablehq.com/@berkeleyvis/learn-js-data 
• My old version: https://observablehq.com/@dakoop/learn-js-data 
• Based on http://learnjsdata.com/ 
• Good coverage of data wrangling using JavaScript

7D. Koop, CSCI 627/490, Spring 2025

https://observablehq.com/@berkeleyvis/learn-js-data
https://observablehq.com/@dakoop/learn-js-data
http://learnjsdata.com/


Grouping Data
• Take a flat structure and turn it into a (potentially nested) map 
• Similar to a groupby in databases 
• Data 
var expenses = [{"name":"jim","amount":34,"date":"11/12/2015"}, 
  {"name":"carl","amount":120.11,"date":"11/12/2015"}, 
  {"name":"jim","amount":45,"date":"12/01/2015"}, 
  {"name":"stacy","amount":12.00,"date":"01/04/2016"}, 
  {"name":"stacy","amount":34.10,"date":"01/04/2016"}, 
  {"name":"stacy","amount":44.80,"date":"01/05/2016"} 
]; 

• Grouping: 
expensesByName = d3.group(expenses, d => d.name) 

• Results:  
  Map(3) { "jim" => Array(2) [Object, Object] 
           "carl" => Array(1) [Object] 
           "stacy" => Array(3) [Object, Object, Object] }

8D. Koop, CSCI 627/490, Spring 2025



Rollup Data
• Data 
var expenses = [{"name":"jim","amount":34,"date":"11/12/2015"}, 
  {"name":"carl","amount":120.11,"date":"11/12/2015"}, 
  {"name":"jim","amount":45,"date":"12/01/2015"}, 
  {"name":"stacy","amount":12.00,"date":"01/04/2016"}, 
  {"name":"stacy","amount":34.10,"date":"01/04/2016"}, 
  {"name":"stacy","amount":44.80,"date":"01/05/2016"} 
]; 

• Using d3.rollup: 
expensesAvgAmount = d3.rollup( 
  expenses, 
  v => d3.mean(v, d => d.amount), // aggregate by the mean of amount 
  d => d.name // group by name 
) 

• Result: 
  Map(3) { 
    "jim" => 39.5 
    "carl" => 120.11 
    "stacy" => 30.3 
  }
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[http://learnjsdata.com]
D. Koop, CSCI 627/490, Spring 2025

the aggregation function 
(difference from group)

http://learnjsdata.com


arquero
• Library for query processing and transformation of array-backed data tables 
• Similar to database and/or dataframe frameworks 
• Integrates with Apache Arrow 
• Documentation 
• Illustrated Guide to Arquero's Verbs

10D. Koop, CSCI 627/490, Spring 2025

https://observablehq.com/@uwdata/arquero?collection=@uwdata/arquero
https://observablehq.com/@uwdata/an-illustrated-guide-to-arquero-verbs


Assignment 5
• Create Multiple Views 
• Filtering 
• Linked Highlighting 
• Aggregation

11D. Koop, CSCI 627/490, Spring 2025

https://faculty.cs.niu.edu/~dakoop/cs627-2025sp/assignment5.html


Final Project
• Designs feedback soon 
• Work on implementations 
• Presentations will be last week of class 
• Reports due at the end of the class

12D. Koop, CSCI 627/490, Spring 2025
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Scientific Visualization

D. Koop, CSCI 627/490, Spring 2025



Scivis and Infovis
• Two subfields of visualization 
• Scivis deals with data where the spatial position is given with data 
- Usually continuous data 
- Often displaying physical phenonema 
- Techniques like isosurfacing, volume rendering, vector field vis 

• In Infovis, the data has no set spatial representation, designer chooses how 
to visually represent data

14D. Koop, CSCI 627/490, Spring 2025



SciVis
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[Google Image Search for "scientific visualization", 2017]
D. Koop, CSCI 627/490, Spring 2025



InfoVis
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[Google Image Search for "information visualization", 2017]
D. Koop, CSCI 627/490, Spring 2025



Fields

- Values come from a continuous domain, infinitely many values 
- Sampled at certain positions to approximate the entire domain 
- Positions are often aligned in grids 
- Often measurements of natural or simulated phenomena 
- Examples: temperature, wind speed, tissue density, pressure, speed, 

electrical conductance

17D. Koop, CSCI 627/490, Spring 2025
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Fields in Visualization

18D. Koop, CSCI 627/490, Spring 2025

Scalar Fields Vector Fields Tensor Fields
(Order-1 Tensor Fields)(Order-0 Tensor Fields) (Order-2+)

Each point in space has an associated...

Scalar

Vector Fields

Vector Tensor



Grids
• Remember we have continuous data and want to sample it in order to 

understand the entire domain
• Possible schemes?

• Geometry: the spatial positions of the data (points)

19D. Koop, CSCI 627/490, Spring 2025



Grids
• Remember we have continuous data and want to sample it in order to 

understand the entire domain
• Possible schemes?

• Geometry: the spatial positions of the data (points)
• Topology: how the points are connected (cells)
• Type of grid determines how much data needs to be stored for both 

geometry and topology
19D. Koop, CSCI 627/490, Spring 2025

Grids (Meshes)
• Meshes combine positional information (geometry) with 

topological information (connectivity).   

• Mesh type can differ substantial depending in the way mesh 
cells are formed.

From Weiskopf, Machiraju, Möller© Weiskopf/Machiraju/Möller

Data Structures

• Grid types
– Grids differ substantially in the cells (basic 

building blocks) they are constructed from and 
in the way the topological information is given

scattered          uniform          rectilinear          structured       unstructured
[© Weiskopf/Machiraju/Möller]
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Volume Visualization
•  2D visualization

  slice images
  (or multi-planar 

  reformating MPR)

•  Indirect
  3D visualization

  isosurfaces
  (or surface-shaded

  display SSD)

•  Direct  
  3D visualization
  (direct volume 

  rendering DVR)

Visualizing Volume (3D) Data

20

[© Weiskopf/Machiraju/Möller]
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Data
• In this lecture, we will be considering scalar data: a single value at each point 
• Our data is always discrete, what is the value of a point not exactly on our 

grid? 
• Need a method to determine what these values are…

21D. Koop, CSCI 627/490, Spring 2025
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Value at 2.2?
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Value at 2.2?
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24D. Koop, CSCI 627/490, Spring 2025

Value at 2.2?



Interpolation
• Other schemes: 
- polynomial interpolation 
- splines 
- more…

25D. Koop, CSCI 627/490, Spring 2025



Dimensions of Data
• 1-Dimension: data along a line 
- Example: temperature along my drive from Massachusetts to Illinois 

• 2-Dimensional: data on a plane 
- Example: temperature on the surface of a pond 

• 3-Dimensional: data in our normal world (data in a volume) 
- Example: temperature at every point in the room 

• Complexity increases as we add dimensions 
• Visualization complexity also increases 
• Often, want to be able to see phenomena as we see them in real life settings

26D. Koop, CSCI 627/490, Spring 2025
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Voxel vs. Cell model

Represents the 3D division of space by a 3D array of grid points.

gridpoint

VOXEL CELL

gridpoint

• Voxel: grid point in center, constant value in voxel

• Cell: grid points at vertices, value within cell varies

3D: Voxels and Cells

27

[from http://www.cs.rug.nl/~michael/FANTOM/FANTOM1a.pdf]
D. Koop, CSCI 627/490, Spring 2025

http://www.cs.rug.nl/~michael/FANTOM/FANTOM1a.pdf
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Volume Visualization
•  2D visualization

  slice images
  (or multi-planar 

  reformating MPR)

•  Indirect
  3D visualization

  isosurfaces
  (or surface-shaded

  display SSD)

•  Direct  
  3D visualization
  (direct volume 

  rendering DVR)

Visualizing Volume (3D) Data

28

[© Weiskopf/Machiraju/Möller]
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Visualizing Volume (3D) Data

29

[J. Kniss, 2002]
D. Koop, CSCI 627/490, Spring 2025



Visualizing Volume (3D) Data
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[J. Kniss, 2002]
D. Koop, CSCI 627/490, Spring 2025



Visualizing Volume (3D) Data

31

[J. Kniss, 2002]
D. Koop, CSCI 627/490, Spring 2025
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How have we encoded 3D scalar data before? 
 Hint: Think about elevation maps

D. Koop, CSCI 627/490, Spring 2025



Isolines (2D)
• Isoline: a line that has the same scalar value at all locations 
• Example: Topographical Map

33

[USGS via Wikipedia]
D. Koop, CSCI 627/490, Spring 2025

http://commons.wikimedia.org/wiki/File:Topographic_map_example.png


Isosurfaces (3D)
• Isosurface: a surface that has the same scalar value at all locations 
• Often use multiple isosurfaces to show different levels

34

[J. Kniss, 2002]
D. Koop, CSCI 627/490, Spring 2025



How?
• Given an isovalue, we want to draw the isocontours corresponding to that 

value  
• Remember we only have values defined at grid points 
• How do we get isolines or isosurfaces from that data? 
• Can we use the ideas from interpolation?

35D. Koop, CSCI 627/490, Spring 2025



20 2. Marching Cubes and Variants
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(a) Scalar grid. (b) The +/− grid.

1

2

2

3

3 3

3

4

4

5

6

6

6

6

7

7

7

7

8

8

8

8

8

9

9

1

2

2

3

3 3

3

4

4

5

6

6

6

6

7

7

7

7

8

8

8

8

8

9

9

(c) Midpoint vertices. (d) Isocontour.

Figure 2.4. (a) 2D scalar grid. (b) Black vertices are positive. Vertex v with scalar
value sv is positive if sv >= 5 and negative if sv < 5. Note that sv = 5 for one grid
vertex v. (c) Isocontour with vertices at edge midpoints (before linear interpolation).
(d) Isocontour with isovalue 5.

isocontours. The isocontour lookup table, Table, contains sixteen entries, one for

each configuration. Each entry, Table[κ] is a list of the E+/−
κ pairs.

In Figure 2.3 the isocontour edges are drawn connecting the midpoints of
each square edge. This is for illustration purposes only. The geometric locations
of the isocontour vertices are not defined by the lookup table.

The isocontour lookup table is constructed on the unit square with vertices
(0, 0), (1, 0), (0, 1), (1, 1). To construct the isocontour in grid square (i, j), we
have to map pairs of unit square edges to pairs of square (i, j) edges. Each
vertex v = (vx, vy) of the unit square maps to v + (i, j) = (vx, vy) + (i, j) =
(vx + i, vy + j). Each edge e of the unit square with endpoints (v, v′) maps to
edge e+ (i, j) = (v + (i, j), v′ + (i, j)). Finally, each edge pair (e1, e2) maps to
(e1 + (i, j), e2 + (i, j)).

The endpoints of the isocontour edges are the isocontour vertices. To map
each isocontour edge to a geometric line segment, we use linear interpolation to

Generating Isolines (Isovalue = 5)

36

[R. Wenger, 2013]
D. Koop, CSCI 627/490, Spring 2025

http://web.cse.ohio-state.edu/~wenger/publications/
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(c) Midpoint vertices. (d) Isocontour.

Figure 2.4. (a) 2D scalar grid. (b) Black vertices are positive. Vertex v with scalar
value sv is positive if sv >= 5 and negative if sv < 5. Note that sv = 5 for one grid
vertex v. (c) Isocontour with vertices at edge midpoints (before linear interpolation).
(d) Isocontour with isovalue 5.

isocontours. The isocontour lookup table, Table, contains sixteen entries, one for

each configuration. Each entry, Table[κ] is a list of the E+/−
κ pairs.

In Figure 2.3 the isocontour edges are drawn connecting the midpoints of
each square edge. This is for illustration purposes only. The geometric locations
of the isocontour vertices are not defined by the lookup table.

The isocontour lookup table is constructed on the unit square with vertices
(0, 0), (1, 0), (0, 1), (1, 1). To construct the isocontour in grid square (i, j), we
have to map pairs of unit square edges to pairs of square (i, j) edges. Each
vertex v = (vx, vy) of the unit square maps to v + (i, j) = (vx, vy) + (i, j) =
(vx + i, vy + j). Each edge e of the unit square with endpoints (v, v′) maps to
edge e+ (i, j) = (v + (i, j), v′ + (i, j)). Finally, each edge pair (e1, e2) maps to
(e1 + (i, j), e2 + (i, j)).

The endpoints of the isocontour edges are the isocontour vertices. To map
each isocontour edge to a geometric line segment, we use linear interpolation to

Generating Isolines

37

[R. Wenger, 2013]
D. Koop, CSCI 627/490, Spring 2025

http://web.cse.ohio-state.edu/~wenger/publications/


20 2. Marching Cubes and Variants

1

2

2

3

3 3

3

4

4

5

6

6

6

6

7

7

7

7

8

8

8

8

8

9

9

1

2

2

3

3 3

3

4

4

5

6

6

6

6

7

7

7

7

8

8

8

8

8

9

9

(a) Scalar grid. (b) The +/− grid.
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(c) Midpoint vertices. (d) Isocontour.

Figure 2.4. (a) 2D scalar grid. (b) Black vertices are positive. Vertex v with scalar
value sv is positive if sv >= 5 and negative if sv < 5. Note that sv = 5 for one grid
vertex v. (c) Isocontour with vertices at edge midpoints (before linear interpolation).
(d) Isocontour with isovalue 5.

isocontours. The isocontour lookup table, Table, contains sixteen entries, one for

each configuration. Each entry, Table[κ] is a list of the E+/−
κ pairs.

In Figure 2.3 the isocontour edges are drawn connecting the midpoints of
each square edge. This is for illustration purposes only. The geometric locations
of the isocontour vertices are not defined by the lookup table.

The isocontour lookup table is constructed on the unit square with vertices
(0, 0), (1, 0), (0, 1), (1, 1). To construct the isocontour in grid square (i, j), we
have to map pairs of unit square edges to pairs of square (i, j) edges. Each
vertex v = (vx, vy) of the unit square maps to v + (i, j) = (vx, vy) + (i, j) =
(vx + i, vy + j). Each edge e of the unit square with endpoints (v, v′) maps to
edge e+ (i, j) = (v + (i, j), v′ + (i, j)). Finally, each edge pair (e1, e2) maps to
(e1 + (i, j), e2 + (i, j)).

The endpoints of the isocontour edges are the isocontour vertices. To map
each isocontour edge to a geometric line segment, we use linear interpolation to

Generating Isolines

38

[R. Wenger, 2013]
D. Koop, CSCI 627/490, Spring 2025

http://web.cse.ohio-state.edu/~wenger/publications/
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(c) Midpoint vertices. (d) Isocontour.

Figure 2.4. (a) 2D scalar grid. (b) Black vertices are positive. Vertex v with scalar
value sv is positive if sv >= 5 and negative if sv < 5. Note that sv = 5 for one grid
vertex v. (c) Isocontour with vertices at edge midpoints (before linear interpolation).
(d) Isocontour with isovalue 5.

isocontours. The isocontour lookup table, Table, contains sixteen entries, one for

each configuration. Each entry, Table[κ] is a list of the E+/−
κ pairs.

In Figure 2.3 the isocontour edges are drawn connecting the midpoints of
each square edge. This is for illustration purposes only. The geometric locations
of the isocontour vertices are not defined by the lookup table.

The isocontour lookup table is constructed on the unit square with vertices
(0, 0), (1, 0), (0, 1), (1, 1). To construct the isocontour in grid square (i, j), we
have to map pairs of unit square edges to pairs of square (i, j) edges. Each
vertex v = (vx, vy) of the unit square maps to v + (i, j) = (vx, vy) + (i, j) =
(vx + i, vy + j). Each edge e of the unit square with endpoints (v, v′) maps to
edge e+ (i, j) = (v + (i, j), v′ + (i, j)). Finally, each edge pair (e1, e2) maps to
(e1 + (i, j), e2 + (i, j)).

The endpoints of the isocontour edges are the isocontour vertices. To map
each isocontour edge to a geometric line segment, we use linear interpolation to

Generating Isolines

39

[R. Wenger, 2013]
D. Koop, CSCI 627/490, Spring 2025

http://web.cse.ohio-state.edu/~wenger/publications/


26 2. Marching Cubes and Variants

6 7 81 2 3 4 5

14 15 169 10 11 12 13

Figure 2.10. Red, positive regions and blue, negative regions for each square configu-
ration. The green isocontour is part of the positive region. Black vertices are positive.

Proof of Properties 1 & 2: The Marching Squares isocontour consists of a finite
set of line segments, so it is piecewise linear. These line segments intersect only at
their endpoints and thus form a triangulation of the isocontour. The endpoints
of these line segments lie on the grid edges, confirming Property 2. !

Property 3. The isocontour intersects every bipolar grid edge at exactly one
point.

Property 4. The isocontour does not intersect any negative or strictly positive
grid edges.

Proof of Properties 3 & 4: Each isocontour edge is contained in a grid square. Since
the grid squares are convex, only isocontour edges with endpoints (vertices) on
the grid edge intersect the grid edge. If the grid edge has one positive and one
negative endpoint, the unique location of the isocontour vertex on the grid edge
is determined by linear interpolation. Thus the isocontour intersects a bipolar
grid edge at only one point.

If the grid edge is negative or strictly positive, then no isocontour vertex lies
on the grid edge. Thus the isocontour does not intersect negative or strictly
positive grid edges. !

Within each grid square the isocontour partitions the grid square into two
regions. Let the positive region for a grid square c be the set of points which can
be reached by a path ζ from a positive vertex. More precisely, a point p is in the
positive region of c if there is some path ζ ⊂ c connecting p to a positive vertex
of c such that the interior of ζ does not intersect the isocontour. A point p is
in the negative region of c if there is some path ζ ⊂ c connecting p to a negative
vertex of c such that ζ does not intersect the isocontour. Since any path ζ ⊂ c
from a positive to a negative vertex must intersect the isocontour, the positive
and negative regions form a partition of the square c. Figure 2.10 illustrates the
positive and negative regions, colored red and blue, respectively, for each square
configuration.

Marching Squares
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Ambiguous Configurations
• There are some cases for which we cannot tell which way to draw the 

isolines…
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Figure 2.12. Ambiguous square configurations.
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Figure 2.13. Topologically distinct isocontours created by using different isocontours
for the ambiguous configuration in the central grid square.

scalar grid with two topologically distinct isocontours created by different resolu-
tions of the ambiguous configurations. The first isocontour has two components
while the second has one.

While the choice of isocontours for the ambiguous configurations changes
the isocontour topology, any of the choices will produce isocontours that are 1-
manifolds and strictly separate strictly positive vertices from negative vertices.
As we shall see, this is not true in three dimensions.

2.3 Marching Cubes

2.3.1 Algorithm

The three-dimensional Marching Cubes algorithm follows precisely the steps
in the two-dimensional Marching Squares algorithm. Input to the March-
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Ambiguous Configurations
• Either works for marching squares, this isn't the case for 3D
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Figure 2.13. Topologically distinct isocontours created by using different isocontours
for the ambiguous configuration in the central grid square.

scalar grid with two topologically distinct isocontours created by different resolu-
tions of the ambiguous configurations. The first isocontour has two components
while the second has one.

While the choice of isocontours for the ambiguous configurations changes
the isocontour topology, any of the choices will produce isocontours that are 1-
manifolds and strictly separate strictly positive vertices from negative vertices.
As we shall see, this is not true in three dimensions.

2.3 Marching Cubes

2.3.1 Algorithm

The three-dimensional Marching Cubes algorithm follows precisely the steps
in the two-dimensional Marching Squares algorithm. Input to the March-
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3D: Marching Cubes
• Same idea, more cases [Lorensen and Cline, 1987]
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Figure 2.16. Isosurfaces for twenty-two distinct cube configurations.
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Incompatible Choices
• If we have ambiguous cases where we choose differently for each cell, the 

surfaces will not match up correctly—there are holes 
• Fix with the asymptotic decider [Nielson and Hamann,1991]
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(a) (b)

Figure 2.17. (a) Adjacent configurations sharing a common face. (b) Incompatible
isosurface patches for the adjacent configurations.

Figure 2.18. Compatible isosurface patches for adjacent configurations in Fig-
ure 2.17(a).

configuration κ. The isosurface patch intersects every edge of E+/−
κ exactly once

and does not intersect any other grid cube edges.
To define the 256 entries in the table, it is only necessary to determine the

table entries for the twenty-two distinct configurations. The table entries for
the other configurations can be derived using rotation and reflection symme-
try. Figure 2.16 contains the twenty-two distinct cube configurations and their
isosurfaces.

The isosurface lookup table is constructed on the unit cube with vertices
(0, 0, 0), (1, 0, 0), (0, 1, 0), . . . , (0, 1, 1), (1, 1, 1). To construct the isosurface in grid
cube (i, j, k), we have to map unit cube edges to edges of cube (i, j, k). Each
vertex v = (vx, vy, vz) of the unit cube maps to v + (i, j, k) = (vx, vy, vz) +
(i, j, k) = (vx + i, vy + j, vz + k). Each edge e of the unit square with endpoints
(v, v′) maps to edge e + (i, j, k) = (v + (i, j, k), v′ + (i, j, k)). Finally, each edge
triple (e1, e2, e3) maps to (e1 + (i, j, k), e2 + (i, j, k), e3 + (i, j, k)).

In Figure 2.16, the isosurface vertices lie on the midpoints of the grid edges.
This is for illustration purposes only. The geometric locations of the isosurface
vertices are not defined by the lookup table.

The vertices of the isosurface triangles are the isosurface vertices. To map
each isosurface triangle to a geometric triangle, we use linear interpolation to
position the isosurface vertices as described in Section 1.7.2. Each isosurface
vertex v lies on a grid edge [p, q]. If sp and sq are the scalar values at p and q
and σ is the isovalue, then map v to (1− α)p+ q where α = (σ − sp)/(sq − sp).
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Marching Cubes Algorithm
• For each cell: 
- Classify each vertex as inside or outside (>=, <) — 0 or 1 
- Take the eight vertex classifications as a bit string 
- Use the bit string as a lookup into a table to get edges 
- Interpolate to get actual edge locations 
- Compute gradients 
- Resolve ambiguities 

• Render a bunch of triangles: easy for graphics cards
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Multiple Isosurfaces
• Topographical maps have multiple isolines to 

show elevation trends 
• Problem in 3D? Occlusion 
• Solution? Transparent surfaces 
• Issues: 
- Think about color in order to make each 

surface visible 
- Compositing: how do colors "add up" with 

multiple surfaces 
- How to determine good isovalues?
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9

(a) Direct volume rendered (b) Isosurface rendered

Figure 1.4: Comparison of volume rendering methods

Volume Rendering vs. Isosurfacing
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(Direct) Volume Rendering
• Isosurfacing: compute a surface (triangles) and use standard computer 

graphics to render the triangles 
• Volume rendering: compute the pixels shown directly from the volume 

information 
• Why? 
- No need to figure out precise isosurface boundaries 
- Can work better for data with noise or uncertainty 
- Greater control over appearance based on values
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Types of Volume Rendering Algorithms
• Ray casting 
- Similar to ray tracing, but use rays from the viewer 

• Splatting: 
- Object-order, voxels splat onto the image plane 

• Shear Warp: 
- Object-space, slice-based, parallel viewing rays 

• Texture-Based: 
- 2D Slices: stack of texture maps 
- 3D Textures 
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Texture-Based Volume 
Rendering

• Proxy geometry
– Stack of texture-mapped slices
– Generate fragments
– Most often back-to-front traversal



Object order approach
Image Plane

Data Set

Eye

Volume Ray Casting
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Image order approach
Image Plane

For each pixel {
   calculate color of the pixel
}

Data Set

Eye

Volume Ray Casting
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