Data Visualization (CSCI 627/490)

Tabular Data

Dr. David Koop

Expressiveness and Effectiveness

- Expressiveness Principle: all data from the dataset and nothing more should be shown
 - Do encode ordered data in an ordered fashion
 - Don't encode categorical data in a way that implies an ordering
- Effectiveness Principle: the most important attributes should be the most salient
 - Saliency: how noticeable something is
 - How do the channels we have discussed measure up?

D. Koop, CSCI 627/490, Spring 2025

2

Ranking Channels by Effectiveness

D. Koop, CSCI 627/490, Spring 2025

Northern Illinois University

Least

Perception Studies Summary

D. Koop, CSCI 627/490, Spring 2025

[Munzner (ill. Maguire) based on Heer & Bostock, 2014]

Discriminability

- Width encodes count of number of networks with a particular link.
- What is problematic here?

D. Koop, CSCI 627/490, Spring 2025

[Koop et al., 2013]

Separability

- Cannot treat all channels as independent!
- Separable means each individual channel can be distinguished
- Integral means the channels are perceived together

D. Koop, CSCI 627/490, Spring 2025

[Munzner (ill. Maguire) based on Ware, 2014]

<u>Assignment 3</u>

Chicago Food Inspection

D. Koop, CSCI 627/490, Spring 2025

- Food Inspections Data
- Create the same stacked bar chart using
 - Tableau Public
 - Observable Plot
- D3 Stacked Bar Chart:
 - Required for CSCI 627 students
 - CSCI 490 students need not stack

7

Midterm

- In-class, Wednesday, March 5, 9:30-10:45am
- Only need writing utensil (+eraser)
- Format:
 - Multiple Choice
 - Free Response
- focused questions

CSCI 627 students will have an extra double-sided page with more research-

Arrange Tables **Express Values** (\rightarrow) Separate, Order, Align Regions → Order → Separate → Align → 1 Key List **Axis Orientation** (\rightarrow) → Rectilinear → Parallel → Radial

D. Koop, CSCI 627/490, Spring 2025

→ Dense

→ Space-Filling

 \rightarrow 2 Keys Matrix

	-	

 \rightarrow Many Keys **Recursive Subdivision**

Express Values: Scatterplots

- Data: two quantitative values
- Task: find trends, clusters, outliers
- How: marks at spatial position in horizontal and vertical directions
- Correlation: dependence between two attributes
 - Positive and negative correlation
 - Indicated by lines
 - Coordinate system (axes) and labels are important!

Bubble Plot

Scatterplot

- Data: two quantitative values
- Task: find trends, clusters, outliers
- How: marks at spatial position in horizontal and vertical directions
- Scalability: hundreds of items
- "<u>Ranking Visualizations of Correlation Using Weber's Law</u>", 2014:
 - Correlation perception can be modeled via Weber's Law
 - Scatterplots are one of the best visualizations for both positive and negative correlation
 - Further analysis: M. Kay and J. Heer, "Beyond Weber's Law", 2015

Separate, Order, and Align: Categorical Regions

- Categorical: =, !=
- Spatial position can be used for categorical attributes
- Use **regions**, distinct contiguous bounded areas, to encode categorical attributes
- Three operations on the regions:
 - Separate (use categorical attribute)
 - Align (use some other ordered attribute)
 - Order
- Alignment and order can use same or different attribute

List Alignment: Bar Charts

- Data: one quantitative attribute, one categorical attribute
- Task: lookup & compare values
- How: line marks, vertical position (quantitative), horizontal position (categorical)
- What about **length**?
- Ordering criteria: alphabetical or using quantitative attribute
- Scalability: distinguishability
 - bars at least one pixel wide
 - hundreds

Stacked Bar Charts

5 Years and Over	
45 to 64 Years	
25 to 44 Years	
18 to 24 Years	
14 to 17 Years	
5 to 13 Years	
Under 5 Years	

Grouped Bar Chart

65 Years and Over	
45 to 64 Years	
25 to 44 Years	
18 to 24 Years	
14 to 17 Years	
5 to 13 Years	
Under 5 Years	

Stacked Bar Charts

- Data: multidimensional table: one quantitative, two categorical Task: lookup values, part-to-whole relationship, trends How: line marks: position (both horizontal & vertical), subcomponent line
- marks: length, color
- Scalability: main axis (hundreds like bar chart), bar classes (<12)
- Orientation: vertical or horizontal (swap how horizontal and vertical position) are used.

Streamgraphs

- Include a time attribute
- Data: multidimensional table, one quantitative attribute (count), one ordered key attribute (time), one categorical key attribute
- + derived attribute: layer ordering (quantitative)
- Task: analyze trends in time, find (maxmial) outliers
- How: derived position+geometry, length, color
- Scalability: more categories than stacked bar charts

Streamgraphs

Dot and Line Charts

- Data: one quantitative attribute, one ordered attribute
- Task: lookup values, find outliers and trends
- How: point mark and positions
- Line Charts: add connection mark (line)
- Similar to scatterplots but allow ordered attribute

Proper Use of Line and Bar Charts

D. Koop, CSCI 627/490, Spring 2025

[Adapted from Zacks and Tversky, 1999, Munzner (ill. Maguire), 2014]

Proper Use of Line and Bar Charts

• What does the line indicate? • Does this make sense?

D. Koop, CSCI 627/490, Spring 2025

[Adapted from Zacks and Tversky, 1999, Munzner (ill. Maguire), 2014]

Aspect Ratio

- channel
- are around 45 degrees (Cleveland et al., 1988, 1993)
- Perception of angle (and the **relative difference** between angles) is important Initial experiments found people best judge differences in slope when angles

• Trends in line charts are more apparent because we are using angle as a

Multiscale Banking

Aspect Ratio = 3.96

Multiscale Banking

Aspect Ratio = 4.23

1997-08-08

1998-12-10

D. Koop, CSCI 627/490, Spring 2025

Aspect Ratio = 14.55

1997-08-08

2000-04-13 2001-08-16 2002-12-24 2004-04-29 2005-08-31

Expanding the Study

- Cleveland et al. did not study the entire space of slope comparisons and 45 degrees was at the low end of their study (blue marks on right)
- Talbot et al. compared more slopes and found that people do better with smaller slopes
- Baselines may aid with this

Heatmaps

- Data: Two keys, one quantitative attr
- Task: Find clusters, outliers, summar
- How: area marks in grid, color encod quantitative attribute
- Scalability: number of pixels for area (millions)
- Red-green color scales often used
 - Be aware of colorblindness!

ribute		Fast-Pitch Softball			
IZE		strikes			
ding of		0	1	2	
marks	0	.503	.492	.431	
	1 ≦	.538	.518	.450	
	eq 2	.560	.552	.508	
	3	.543	.690	.512	

[fastpitchanalytics.com]

Bertin Matrices

- Must we only use color?
 - What other marks might be appropriate?

Bertin Matrices

- Must we only use color?
 - What other marks might be appropriate?

HOUSEHOLD INCOME

WOMEN'S SUFFRAGE DATE

AGAINST COHABITATION WITHOUT MARRIAGE

BELIEF IN GOD

CONFIDENCE IN GOVERNMENT

CONFIDENCE IN THE ARMED FORCES

CONFIDENCE IN THE CHURCH

CONFIDENCE IN THE HEALTH CARE SYSTEM

CONFIDENCE IN THE JUSTICE SYSTEM

IMPORTANT IN A JOB: GOOD PAY

AGAINST ABORTION

NOT AS A NEIGHBOUR: HOMOSEXUALS

D. Koop, CSCI 627/490, Spring 2025

Bertin's Encodings

Matrix Reordering

Cluster Heatmap

D. Koop, CSCI 627/490, Spring 2025

[File System Similarity, R. Musăloiu-E., 2009]

Cluster Heatmap

- Data & Task: Same as Heatmap
- How: Area marks but matrix is ordered by cluster hierarchies
- Scalability: limited by the cluster dendrogram
- Dendrogram: a visual encoding of tree data with leaves aligned

Scatterplot Matrix (SPLOM)

- Data: Many quantitative attributes
- Derived Data: names of attributes
- Task: Find correlations, trends, outliers
- How: Scatterplots in matrix alignment
- Scale: attributes: ~12, items: hundreds?
- Visualizations in a visualization: at high level, marks are themselves visualizations...

Spatial Axis Orientation

- So far, we have seen the vertical and horizontal axes (a **rectilinear** layout) used to encode almost everything
- What other possibilities are there for axes?

D. Koop, CSCI 627/490, Spring 2025

Spatial Axis Orientation

- So far, we have seen the vertical and horizontal axes (a rectilinear layout) used to encode almost everything
- What other possibilities are there for axes?
 - Parallel axes

D. Koop, CSCI 627/490, Spring 2025

[Munzner (ill. Maguire), 2014]

Spatial Axis Orientation

- So far, we have seen the vertical and horizontal axes (a **rectilinear** layout) used to encode almost everything
- What other possibilities are there for axes?
 - Parallel axes
 - Radial axes

D. Koop, CSCI 627/490, Spring 2025

[Munzner (ill. Maguire), 2014]

Radial Axes

Radial Axes

- Polar Coordinates (angle + position along the line at that angle)
- What types of encodings are possible for tabular data in polar coordinates?

Radial Axes

- Polar Coordinates (angle + position along the line at that angle)
- What types of encodings are possible for tabular data in polar coordinates?
 - Radial bar charts
 - Pie charts
 - Donut charts

Part-of-whole: Relative % comparison?

D. Koop, CSCI 627/490, Spring 2025

5 Years and Over	
45 to 64 Years	
25 to 44 Years	
18 to 24 Years	
14 to 17 Years	
5 to 13 Years	
Inder 5 Vears	

Normalized Stacked Bar Chart

Pie Chart

Pie Charts

- vs. bar charts [Munzner's Textbook, 2014] - Angle channel is lower precision then position in bar charts
- What about donut charts?
- Are we judging angle, or are we judging area, ... or arc length?
 - "Arcs, Angles, or Areas: Individual Data Encodings in Pie and Donut Charts", D. Skau and R. Kosara, 2016
 - "Judgment Error in Pie Chart Variations", R. Kosara and D. Skau, 2016
 - Summary: "An Illustrated Study of the Pie Chart Study Results"

Arcs, Angles, or Areas?

Study Setup

- Three studies
- 80-100 participants each
- Each answered ~60 questions
- Computed results using 95% Confidence Intervals

D. Koop, CSCI 627/490, Spring 2025

Northern Illinois University

41

Signed Error

Absolute Error

Absolute Error Relative to Pie Chart

Donut Charts Width

D. Koop, CSCI 627/490, Spring 2025

45

Pie Chart Variations

Pie Chart Variations

Conclusion: We do not read pie charts by angle

D. Koop, CSCI 627/490, Spring 2025

Pies vs. Bars

- ... but area is still harder to judge than position
- Screens are usually not round

