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Volume Visualization
•  2D visualization

  slice images
  (or multi-planar 

  reformating MPR)

•  Indirect
  3D visualization

  isosurfaces
  (or surface-shaded

  display SSD)

•  Direct  
  3D visualization
  (direct volume 

  rendering DVR)

Visualizing Volume (3D) Data
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Isosurfacing
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[J. Kniss, 2002]
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20 2. Marching Cubes and Variants
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(a) Scalar grid. (b) The +/− grid.
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(c) Midpoint vertices. (d) Isocontour.

Figure 2.4. (a) 2D scalar grid. (b) Black vertices are positive. Vertex v with scalar
value sv is positive if sv >= 5 and negative if sv < 5. Note that sv = 5 for one grid
vertex v. (c) Isocontour with vertices at edge midpoints (before linear interpolation).
(d) Isocontour with isovalue 5.

isocontours. The isocontour lookup table, Table, contains sixteen entries, one for

each configuration. Each entry, Table[κ] is a list of the E+/−
κ pairs.

In Figure 2.3 the isocontour edges are drawn connecting the midpoints of
each square edge. This is for illustration purposes only. The geometric locations
of the isocontour vertices are not defined by the lookup table.

The isocontour lookup table is constructed on the unit square with vertices
(0, 0), (1, 0), (0, 1), (1, 1). To construct the isocontour in grid square (i, j), we
have to map pairs of unit square edges to pairs of square (i, j) edges. Each
vertex v = (vx, vy) of the unit square maps to v + (i, j) = (vx, vy) + (i, j) =
(vx + i, vy + j). Each edge e of the unit square with endpoints (v, v′) maps to
edge e+ (i, j) = (v + (i, j), v′ + (i, j)). Finally, each edge pair (e1, e2) maps to
(e1 + (i, j), e2 + (i, j)).

The endpoints of the isocontour edges are the isocontour vertices. To map
each isocontour edge to a geometric line segment, we use linear interpolation to

Generating Isolines

4

[R. Wenger, 2013]
D. Koop, CSCI 627/490, Fall 2024

http://web.cse.ohio-state.edu/~wenger/publications/


26 2. Marching Cubes and Variants

6 7 81 2 3 4 5

14 15 169 10 11 12 13

Figure 2.10. Red, positive regions and blue, negative regions for each square configu-
ration. The green isocontour is part of the positive region. Black vertices are positive.

Proof of Properties 1 & 2: The Marching Squares isocontour consists of a finite
set of line segments, so it is piecewise linear. These line segments intersect only at
their endpoints and thus form a triangulation of the isocontour. The endpoints
of these line segments lie on the grid edges, confirming Property 2. !

Property 3. The isocontour intersects every bipolar grid edge at exactly one
point.

Property 4. The isocontour does not intersect any negative or strictly positive
grid edges.

Proof of Properties 3 & 4: Each isocontour edge is contained in a grid square. Since
the grid squares are convex, only isocontour edges with endpoints (vertices) on
the grid edge intersect the grid edge. If the grid edge has one positive and one
negative endpoint, the unique location of the isocontour vertex on the grid edge
is determined by linear interpolation. Thus the isocontour intersects a bipolar
grid edge at only one point.

If the grid edge is negative or strictly positive, then no isocontour vertex lies
on the grid edge. Thus the isocontour does not intersect negative or strictly
positive grid edges. !

Within each grid square the isocontour partitions the grid square into two
regions. Let the positive region for a grid square c be the set of points which can
be reached by a path ζ from a positive vertex. More precisely, a point p is in the
positive region of c if there is some path ζ ⊂ c connecting p to a positive vertex
of c such that the interior of ζ does not intersect the isocontour. A point p is
in the negative region of c if there is some path ζ ⊂ c connecting p to a negative
vertex of c such that ζ does not intersect the isocontour. Since any path ζ ⊂ c
from a positive to a negative vertex must intersect the isocontour, the positive
and negative regions form a partition of the square c. Figure 2.10 illustrates the
positive and negative regions, colored red and blue, respectively, for each square
configuration.

Marching Squares

5

[R. Wenger, 2013]
D. Koop, CSCI 627/490, Fall 2024

http://web.cse.ohio-state.edu/~wenger/publications/


3D: Marching Cubes
• Same idea, more cases [Lorensen and Cline, 1987]

6

[R. Wenger, 2013]
D. Koop, CSCI 627/490, Fall 2024

2.3. Marching Cubes 33
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Figure 2.16. Isosurfaces for twenty-two distinct cube configurations.
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Figure 2.16. Isosurfaces for twenty-two distinct cube configurations.

http://web.cse.ohio-state.edu/~wenger/publications/


Incompatible Choices
• If we have ambiguous cases where we choose differently for each cell, the 

surfaces will not match up correctly—there are holes 
• Fix with the asymptotic decider [Nielson and Hamann,1991]

7

[R. Wenger, 2013]
D. Koop, CSCI 627/490, Fall 2024

34 2. Marching Cubes and Variants

(a) (b)

Figure 2.17. (a) Adjacent configurations sharing a common face. (b) Incompatible
isosurface patches for the adjacent configurations.

Figure 2.18. Compatible isosurface patches for adjacent configurations in Fig-
ure 2.17(a).

configuration κ. The isosurface patch intersects every edge of E+/−
κ exactly once

and does not intersect any other grid cube edges.
To define the 256 entries in the table, it is only necessary to determine the

table entries for the twenty-two distinct configurations. The table entries for
the other configurations can be derived using rotation and reflection symme-
try. Figure 2.16 contains the twenty-two distinct cube configurations and their
isosurfaces.

The isosurface lookup table is constructed on the unit cube with vertices
(0, 0, 0), (1, 0, 0), (0, 1, 0), . . . , (0, 1, 1), (1, 1, 1). To construct the isosurface in grid
cube (i, j, k), we have to map unit cube edges to edges of cube (i, j, k). Each
vertex v = (vx, vy, vz) of the unit cube maps to v + (i, j, k) = (vx, vy, vz) +
(i, j, k) = (vx + i, vy + j, vz + k). Each edge e of the unit square with endpoints
(v, v′) maps to edge e + (i, j, k) = (v + (i, j, k), v′ + (i, j, k)). Finally, each edge
triple (e1, e2, e3) maps to (e1 + (i, j, k), e2 + (i, j, k), e3 + (i, j, k)).

In Figure 2.16, the isosurface vertices lie on the midpoints of the grid edges.
This is for illustration purposes only. The geometric locations of the isosurface
vertices are not defined by the lookup table.

The vertices of the isosurface triangles are the isosurface vertices. To map
each isosurface triangle to a geometric triangle, we use linear interpolation to
position the isosurface vertices as described in Section 1.7.2. Each isosurface
vertex v lies on a grid edge [p, q]. If sp and sq are the scalar values at p and q
and σ is the isovalue, then map v to (1− α)p+ q where α = (σ − sp)/(sq − sp).

http://web.cse.ohio-state.edu/~wenger/publications/
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(a) Direct volume rendered (b) Isosurface rendered

Figure 1.4: Comparison of volume rendering methods

Volume Rendering vs. Isosurfacing

8

[Kindlmann, 1998]
D. Koop, CSCI 627/490, Fall 2024



How? Volume Ray Casting
• Approximate volume rendering integral: light absorption & emission 
• Sample at regular intervals along each ray 
• Trilinear interpolation: linear interpolation along each axes (x,y,z) 

• Not the only possibility, also "object order" techniques like splatting or 
texture-based and combinations like shear-warp

9D. Koop, CSCI 627/490, Fall 2024

• We perform a numerical approximation of volume 
rendering integral 

• Idea: resample volume at equispaced intervals 
along the ray 
• Use trilinear interpolation



Accumulation
• If we're not just calculating a single number (max, average) or a position (first), 

how do we determine the accumulation? 
• Assume each value has an associated color (c) and opacity (α) 
• Over operator (back-to-front):  
- c = αf∙cf + (1-αf)∙αb∙cb 

- α = αf + (1-αf)∙αb 

• Order is important!

10D. Koop, CSCI 627/490, Fall 2024

Blue Last Blue First



Transfer Functions
• Where do the colors and opacities come from? 
• Idea is that each voxel emits/absorbs light based on its scalar value 
• …but users get to choose how that happens 
• x-axis: color region definitions, y-axis: opacity

11

[Kindlmann]
D. Koop, CSCI 627/490, Fall 2024

Human Tooth CT

f 

RGB
Simple (usual) case: Map data 
value f  to color and opacityα

Transfer Functions (TFs)



Multidimensional Transfer Functions

12

[J. Kniss]
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Newer Technology
• Intel OSPRay 
• https://www.ospray.org/gallery.html

13D. Koop, CSCI 627/490, Fall 2024

https://www.ospray.org/gallery.html


Assignment 5
• Adjacency Matrix 
• Line Graph 
• Linked Highlighting

14D. Koop, CSCI 627/490, Fall 2024

https://faculty.cs.niu.edu/~dakoop/cs627-2024fa/assignment5.html
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Projects
• Keep working on implementation 
• Be creative 
• Think about interaction 
• Presentations on the last two days of class (Dec. 2 & Dec. 4) 
- Submit current visualization code (or a link) to Blackboard 
- Presentation preferences (Monday or Wednesday) 
- Upload link / full code to Blackboard beforehand in case of technical issues 

• Can keep working on final project & report until end of semester

15D. Koop, CSCI 627/490, Fall 2024



Final Exam
• December 9, 2024, 12:00-1:50pm 
• Covers all topics but emphasizes second half of the course 
• Similar format as Midterm (multiple choice, free response) 
• 627 Students will have a extra questions related to the research papers

16D. Koop, CSCI 627/490, Fall 2024
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Vector Field Visualization

D. Koop, CSCI 627/490, Fall 2024



Examples of Vector Fields
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Wind [earth.nullschool.net, 2014]
D. Koop, CSCI 627/490, Fall 2024

https://earth.nullschool.net


Examples of Vector Fields
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Wind [earth.nullschool.net, 2014]
D. Koop, CSCI 627/490, Fall 2024

https://earth.nullschool.net


Examples of Vector Fields
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Computational Fluid Dynamics [newmerical]
D. Koop, CSCI 627/490, Fall 2024



Examples of Vector Fields

20

Earthquake Ground Surface Movement [H. Yu et. al., SC2004]
D. Koop, CSCI 627/490, Fall 2024

Figure 14: LIC image of the ground surface at time
step 200. The bottom 2 images show increasingly
close-up views of the field.

sualization. We will therefore also investigate the use of a

graphics-enhanced PC cluster as a dedicated visualization

server. The question then is whether our I/O strategies can

keep up with hardware accelerated rendering.
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Examples of Vector Fields
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Gradient Vector Fields
D. Koop, CSCI 627/490, Fall 2024



Examples of Vector Fields
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Wildfire Modeling [E. Anderson]
D. Koop, CSCI 627/490, Fall 2024
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Fields in Visualization

23D. Koop, CSCI 627/490, Fall 2024

Scalar Fields Vector Fields Tensor Fields
(Order-1 Tensor Fields)(Order-0 Tensor Fields) (Order-2+)

Each point in space has an associated...

Scalar

Vector Fields

Vector Tensor



Visualizing Vector Fields
• Direct: Glyphs, Render statistics as scalars 
• Geometry: Streamlines and variants 
• Textures: Line Integral Convolution (LIC) 
• Topology: Extract relevant features and draw them

24D. Koop, CSCI 627/490, Fall 2024



Glyphs
• Represent each vector with a symbol 
• Hedgehogs are primitive glyphs (glyph is a line) 
• ParaView Example

25D. Koop, CSCI 627/490, Fall 2024



Glyphs
• Represent each vector with a symbol 
• Hedgehogs are primitive glyphs (glyph is a 

line) 
• Glyphs that show direction and/or magnitude 

can convey more information 
• If we have a separate scalar value, how 

might we encode that? 
• Clutter issues

26D. Koop, CSCI 627/490, Fall 2024



Glyphs
• For vector fields, can encode direction, magnitude, scalar value 
• Good: 
- Show precise local measures 
- Can encode scalar information as color 

• Bad: 
- Possible sampling issues 
- Clutter (Occlusion): Can remove some points to help 
- Clutter is worse in higher dimensions

27D. Koop, CSCI 627/490, Fall 2024



Rendering Vector Field Statistics as Scalars
• Many statistics we can compute for vector 

fields: 
- Magnitude 
- Vorticity 
- Curvature 

• These are scalars, can color with our scalar 
field visualization techniques (e.g. volume 
rendering)

28

[Color indicates vector magnitude]
D. Koop, CSCI 627/490, Fall 2024



Streamlines & Variants
• Trace a line along the direction of the vectors 
• Streamlines are always tangent to the vector field 
• Basic Particle Tracing: 
1. Set a starting point (seed) 
2. Take a step in the direction of the vector at that point 
3. Adjust direction based on the vector where you are now 
4. Go to Step 2 and Repeat

29D. Koop, CSCI 627/490, Fall 2024



● Numerical integration of stream lines:

● approximate streamline by polygon xi

● Testing example: 
● v(x,y) = (-y, x/2)^T
● exact solution: ellipses
● starting integration from (0,-1)

x

y

Example
• Elliptical path 
• Suppose we have the actual equation  
• Given point (x,y), the vector is at that point is 

[vx, vy] where 
- vx = -y 
- vy = (1/2)x 

• Want a streamline starting at (0,-1)

30

[LIC (not streamlines!) via Levine]
D. Koop, CSCI 627/490, Fall 2024



Euler Integration – Example
2D analytic field (no need of grid and interpolation):

vx = dx/dt = −y
vy = dy/dt = x/2
Sample arrows:

Ground truth
flows form 
ellipses.

0 1 2 3 4

0

1

2

Some Glyphs

31

[via Levine]
D. Koop, CSCI 627/490, Fall 2024

[x,y] → [-y, (1/2)x], Step: 0.5



Euler Integration – Example
!Seed point s0 = (0 | -1 )T;
current flow vector v(s0) = (1 |0 )T;
dt = ½
vx = dx/dt = −y

vy = dy/dt = x/2

0 1 2 3 4

0

1

2

Streamlines (Step 1)

32

[via Levine]
D. Koop, CSCI 627/490, Fall 2024

[x,y] → [-y, (1/2)x], Step: 0.5



Euler Integration – Example
!New point s1 = s0 + v(s0) · dt = (1/2 | -1 )T;
current flow vector v(s1) = (1 |1/4 )T;
vx = dx/dt = −y

vy = dy/dt = x/2

0 1 2 3 4

0

1

2

Streamlines (Step 2)

33

[via Levine]
D. Koop, CSCI 627/490, Fall 2024

[x,y] → [-y, (1/2)x], Step: 0.5



Euler Integration – Example
!New point s2 = s1 + v(s1) · dt = (1 | -7/8 )T;
current flow vector v(s2) = (7/8 |1/2 )T;
vx = dx/dt = −y

vy = dy/dt = x/2

0 1 2 3 4

0

1

2

Streamlines (Step 3)

34

[via Levine]
D. Koop, CSCI 627/490, Fall 2024

[x,y] → [-y, (1/2)x], Step: 0.5



Euler Integration – Example
!s3 = (23/16| -5/8 )T ≈ (1.44 | -0.63)T;
v(s3) = (5/8 |23/32)T ≈ (0.63 |0.72)T;
vx = dx/dt = −y

vy = dy/dt = x/2

0 1 2 3 4

0

1

2

Streamlines (Step 4)

35

[via Levine]
D. Koop, CSCI 627/490, Fall 2024

[x,y] → [-y, (1/2)x], Step: 0.5



Euler Integration – Example
!s9 ≈ (0.20 |1.69)T;
v(s9) ≈ ( -1.69 |0.10)T;

0 1 2 3 4

0

1

2

Streamlines (Step 10)

36

[via Levine]
D. Koop, CSCI 627/490, Fall 2024

[x,y] → [-y, (1/2)x], Step: 0.5



Euler Integration – Example
!s19 ≈ (0.75 | -3.02)T; v(s19) ≈ (3.02 |0.37)T;
clearly: large integration error, dt too large,
19 steps

0 1 2 3 4

0

1

2

Streamlines (Step 19)

37

[via Levine]
D. Koop, CSCI 627/490, Fall 2024

[x,y] → [-y, (1/2)x], Step: 0.5



Euler Method
• Seeking to approximate integration of the velocity over time
• Euler method is the starting point for approximating this
• Problems?

38D. Koop, CSCI 627/490, Fall 2024
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Euler Method
• Seeking to approximate integration of the velocity over time
• Euler method is the starting point for approximating this
• Problems?
- Choice of step size is important
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Euler Method
• Seeking to approximate integration of the velocity over time
• Euler method is the starting point for approximating this
• Problems?
- Choice of step size is important
- Choice of seed points are important

• Also remember that we have a field—we don't have measurements at every 
point (interpolation)

38D. Koop, CSCI 627/490, Fall 2024



Comparison Euler, Step Sizes
Euler
quality is 
proportional
to dt

Euler Quality by Step Size

39

[via Levine]
D. Koop, CSCI 627/490, Fall 2024



Numerical Integration

• How do we generate accurate streamlines? 
• Solving an ordinary differential equation 

 
 
 
where    is the streamline,    is the vector field, and   is “time” 

• Solution:

40D. Koop, CSCI 627/490, Fall 2024

dL

dt
= v(L(t)) L(0) = L0

L(t + �t) = L(t) +
Z t+�t

t
v(L(t))dt

L v t



Higher-order methods

• Euler method (use single sample) 

• Higher-order methods (Runge-Kutta) (use 
more samples)

41D. Koop, CSCI 627/490, Fall 2024

Z t+�t

t
v(L(t))dt

[A. Mebarki]

v v



Euler vs. Runge-Kutta
RK-4: pays off only with complex flows

Here 
approx.
like 
RK-2

Higher-Order Comparison

42

[via Levine]
D. Koop, CSCI 627/490, Fall 2024
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ParaView Examples

D. Koop, CSCI 627/490, Fall 2024



Streamlines & Variants
• Steady vs. Unsteady flows 
- In unsteady flows, the vector field changes over time 

• Variants: Pathlines and Streaklines
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Characteristic Lines

• Comparison of pathlines, streaklines, and 
streamlines

• Pathlines, streaklines, and streamlines are 
identical for steady flows

t0 t1 t2 t3

pathline streakline streamline for t3 
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Characteristic Lines

• Comparison of pathlines, streaklines, and 
streamlines

• Pathlines, streaklines, and streamlines are 
identical for steady flows

t0 t1 t2 t3

pathline streakline streamline for t3 

44D. Koop, CSCI 627/490, Fall 2024

All are identical in steady flows!
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(a) Tangent curves of s̄
correspond to the stream
lines in v. See eq. (6).

(b) Tangent curves of p̄
correspond to the path
lines in v. See eq. (5).

(c) Streak lines (gray
tubes) as intersections of
a path surface (red) with
t = const. hyperplanes.

Figure 1. Characteristic curves of a simple 2D time-dependent vector
field shown as illuminated field lines (stream and path lines) or gray
tubes (streak lines). The red/green coordinate axes denote the (x,y)-
domain, the blue axis shows time. From [30] with permission.

Hence, tangent curves uniquely describe the directional information
and are therefore an important tool for visualizing vector fields. The
tangent curves of a steady vector field v(x) are called stream lines. A
stream line describes the path of a massless particle in v.

In a time-dependent vector field v(x, t) there are four types of char-
acteristic curves: stream lines, path lines, streak lines and time lines.
We concentrate on the first three for the rest of this paper. In a space-
time point (x0, t0) we can start a stream line (staying in time slice
t = t0) by integrating

d
dt

x(t) = v(x(t), t0) with x(0) = x0 (2)

or a path line by integrating

d
dt

x(t) = v(x(t), t) with x(t0) = x0. (3)

Path lines describe the trajectories of massless particles in time-
dependent vector fields. The ODE system (3) can be rewritten as an
autonomous system at the expense of an increase in dimension by one,
if time is included as an explicit state variable:

d
dt

✓
x
t

◆
=

✓
v(x(t), t)

1

◆
with

✓
x
t

◆
(0) =

✓
x0
t0

◆
. (4)

In this formulation space and time are dealt with on equal footing.
Path lines of the original vector field v in ordinary space now appear
as tangent curves of the vector field

p̄(x, t) =
✓

v(x, t)
1

◆
(5)

in space-time. To treat stream lines of v, one may simply use

s̄(x, t) =
✓

v(x, t)
0

◆
. (6)

Figure 1 illustrates s̄ and p̄ for a simple example vector field v. It
is obtained by a linear interpolation over time of two bilinear vector
fields.

The above space-time formulations for stream and path lines are
powerful mathematical tools that facilitate the analysis of spatio-
temporal features. Theisel et al. [30] use these formulations to develop
tools for stream line and path line oriented topology. Weinkauf et al.
[34] devise a criterion for finding the centers of swirling path lines by
exploiting (5). Furthermore, the space-time formulations for stream
and path lines allow them to introduce a unified notation of swirling
motion in steady and unsteady flows.

Such a powerful formulation is not readily available for streak lines
as we will see in the following.

A streak line is the connection of all particles set out at different
times but the same point location. In an experiment, one can observe
these structures by constantly releasing dye into the flow from a fixed
position. The resulting streak line consists of all particles which have
been at this fixed position sometime in the past. Considering the vector
field p̄ introduced above, streak lines can be obtained in the following
way: apply a path surface1 integration in p̄ where the seeding curve
is a straight line segment parallel to the t-axis, a streak line is the in-
tersection of this path surface with a hyperplane perpendicular to the
t-axis (Figure 1c).

Streak lines fail to have a property of stream and path lines: they
are not locally unique in space-time, i.e., for a particular location and
time there is more than one streak line passing through. As we show in
the following section, we need a (n+2)-dimensional space to achieve
this property for streak lines. Also note, that streak lines coincide with
stream and path lines for steady vector fields v(x, t) = v(x, t0) and are
described by (1) in this setting.

3 STREAK LINES AS TANGENT CURVES

The constructive description of streak lines as intersections of certain
stream surfaces with a hyperplane is not suitable to examine their prop-
erties in a mathematical framework. In the following we develop a de-
scription of streak lines as tangent curves of a derived vector field that
lends itself to mathematical analysis and leads to novel approaches for
feature extraction as we will see in later sections.

3.1 Flow maps and their derivatives
To describe streak lines, we use the concept of flow maps and its
derivatives. The flow map f : D ! D describes the spatial location
of a particle seeded at (x, t) and integrated over a time interval t , de-
noted as f t

t (x) = f(x, t,t). As a side note, the computation of Finite
Time Lyapunov Exponents (FTLE) [9, 7, 20] is essentially based on
the consideration of the (spatial) gradient of f . In fact, —f t

t (x) =
∂f
∂x

is a n⇥n matrix describing the behavior of particles sent out in a small
spatial neighborhood of x.

For the consideration of streak lines, we additionally need the tem-
poral partial derivative ∂f

∂ t of f which describes the behavior of par-
ticles sent out in the same spatial location but slightly before or after
(x, t). To study its properties, we compute the (n+ 1)-dimensional
flow function f̄ of p̄ which is defined as

f̄ : D⇥T ! D⇥T , f̄(x, t,t) = f̄ t
t (x) =

✓
f t

t (x)
t + t

◆
. (7)

Then the gradient of f̄ can be expressed as the (n+1)⇥(n+1) matrix

—f̄(x, t,t) =
✓

—f ∂f
∂ t

0 .. 0 1

◆
. (8)

The fact, that the last component of p̄ is 1, ensures that the last line of
—f̄ is (0, ..,0,1).

3.2 Description of Streak Lines
We formulate the main property:

Theorem 1 Given a time-dependent vector field v(x, t) and its corre-
sponding flow map f t

t (x), every streak line of v is a tangent curve of
the (n+2)-dimensional vector field

¯̄q(x, t,t) =

0

@
(—f t

t (x))
�1 · ∂f t

t (x)
∂ t + v(x, t)

0
�1

1

A (9)

and vice versa. We call ¯̄q the streak line vector field. It is defined in
the domain D⇥T ⇥° with t 2 °.

1Note, that the extraction algorithms for path surfaces are commonly known
as “stream surface algorithms” [10, 26, 8, 23].

Streamlines vs. Pathlines

45

[Weinkauf & Theisel, 2010]
D. Koop, CSCI 627/490, Fall 2024

Streamlines Pathlines



streamlines pathlines

streaklines timelines

Streaklines and timelines
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Streamline Variants
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Streaklines in real life

© Weiskopf/Machiraju/Möller 30

Mapping Methods Based on 
Particle Tracing

• Stream ribbons
– Trace two close-by particles
– Keep distance constant

© Weiskopf/Machiraju/Möller 31

Mapping Methods Based on 
Particle Tracing

• Stream tubes
– Specify contour, e.g. triangle 

or circle, and trace it through 
the flow Stream Ribbons [Weiskopf/Machiraju/Möller] 

Stream Tubes [Weiskopf/Machiraju/Möller]Streaklines [NASA]



Fig. 7. A streak surface in the Ellipsoid dataset as depicted in our interactive visualization tool. The surfaces is seeded upstream of the ellipsoid
in the initial timestep and shows a prominent bubble that precedes the vortex formation. Top: Overview; a time line texture provides temporal
orientation. Bottom left: Surface textured with streak ribbons. Bottom right: Without texturing, spatial and temporal orientation on the surface is
lost.

Fig. 8. Evolution of a time surface in the Ellipsoid dataset. The surface is seeded on rectangle located immediately downstream from the ellipsoid
near the temporal beginning of the dataset and illustrates parts of the flow that remain close to the ellipsoid and twist to envelop the nascent vortex
system as it forms. A two-dimensional color map helps identify distinct parts of the surface despite heavy overlap.

Fig. 9. Left images: Evolution of a time surface in the delta wing dataset, seeded parallel to the wing tip. The texture provides radial distance stripes
to the wing tip for spatial orientation. Right image: Despite numerical difficulties, the surface mesh remains well-conditioned.

Streak Surfaces
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Figure 4: One of the approximately 500 vector field visualized with each of the six visualization methods.
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task N
method M
practice
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method M
timed

general
text
training

loop for 6 methods

loop for 3 tasks

Figure 5: Ordering of tasks in the experiment.

that users are consistently trained before the timed tasks. After the
training period, the user performs 20 timed instances.

A java program written specifically for this experiment pre-
sented the stimuli and recorded the data. The program pre-loaded
all images at the beginning of a block so that timing would be con-
sistent for each stimulus. The several-second pause before each
block, however, did cause some small problems we discuss later.

To avoid biasing results, the ordering of tasks and of visualiza-
tion methods within the tasks were each counterbalanced with a
replicated randomized Latin square design [12]. For the testing
(timed and recorded) phase of each task, 120 images were gen-
erated; each block of 20 images within that 120 was assigned to
a visualization type per user, counterbalanced with a randomized
Latin square design.

4.2 Subject Pool

Subjects were undergraduate science majors. We wanted subjects
that might use such tools in the future for their work, but who had
not yet started to do so. All subjects had previously studied applied
math but had not studied fluid mechanics.
We deliberately chose not to use fluids researchers because we

felt they might perform with a bias toward tools similar to those
they already use. Future testing of this expert population, however,
is likely to provide additional useful insight.
The study was designed for multiples of six subjects; data for

twelve subjects was successfully acquired and is reported here.
Users were paid.

5 Results and Discussion

Graphs here show the results of the data analysis. They are or-
ganized so that higher values on the vertical axes indicate greater
error or slower performance (i.e., are worse). The horizontal axis
shows the six visualization methods. Mean values are shown with
error bars that are plus or minus one standard error. In some cases,
the statistics were calculated on logarithms, to result in geometric
means, and so the error bars will not appear symmetric.
Some discussion and details of the analysis, including thresholds

and significance, follow. F and p values are shown in Table 1.

2D Vector Field Visualization Techniques
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Figure 14: LIC image of the ground surface at time
step 200. The bottom 2 images show increasingly
close-up views of the field.

sualization. We will therefore also investigate the use of a

graphics-enhanced PC cluster as a dedicated visualization

server. The question then is whether our I/O strategies can

keep up with hardware accelerated rendering.

Acknowledgments
This work has been sponsored in part by the U.S. National

Science Foundation under contracts ACI 9983641 (PECASE

award), ACI 0325934 (ITR), ACI 0222991, and CMS-9980063;

and Department of Energy under Memorandum Agreements

No. DE-FC02-01ER41202 (SciDAC) and No. B523578 (ASCI

VIEWS). Pittsburgh Supercomputing Center (PSC) pro-

vided time on their parallel computers through AAB grant

BCS020001P. The authors are grateful to Rajeev Thakur

for his technical advice on using MPI-IO, Jacobo Bielak and

Omar Chattas for providing the earthquake simulation data,

and especially Paul Krystosek for his assistance on setting

up the needed system support at PSC.

8. REFERENCES
[1] J. Ahrens and J. Painter. E�cient sort-last rendering

using compression-based image compositing. In

Proceedings of the 2nd Eurographics Workshop on
Parallel Graphics and Visualization, pages 145–151,

1998.

[2] H. Bao, J. Bielak, O. Ghattas, L. F. Kallivokas, D. R.

O’Hallaron, J. R. Shewchuk, and J. Xu. Large-scale

simulation of elastic wave propagation in

heterogeneous media on parallel computers. Computer
Methods in Applied Mechanics and Engineering,
152(1–2):85–102, Jan. 1998.

[3] H. Bao, J. Bielak, O. Ghattas, D. R. O’Hallaron, L. F.

Kallivokas, J. R. Shewchuk, and J. Xu. Earthquake

ground motion modeling on parallel computers. In

Supercomputing ’96, Pittsburgh, Pennsylvania, Nov.

1996.

[4] W. Bethel, B. Tierney, J. Lee, D. Gunter, and S. Lau.

Using high-speed WANs and network data caches to

enable remote and distributed visualization. In

Proceedings of Supercomputing 2C00, November 2000.

[5] B. Cabral and L. Leedom. Imaging vector fields using

line integral convolution. In SIGGRAPH ’93
Conference Proceedings, pages 263–270, August 1993.

[6] L. Chen, I. Fujishiro, and K. Nakajima. Parallel

performance optimization of large-scale unstructured

data visualization for the earth simulator. In

Proceedings of the Fourth Eurographics Workshop on
Parallel Graphics and Visualization, pages 133–140,

2002.

[7] W. Daniel, E. Gordon, and E. Thomas. A

texture-based framework for spacetime-coherent

visualization of time-dependent vector fields. In

Proceedings of IEEE Visualization 2003 Conference,
pages 107–114, 2003.

[8] W. Gropp, E. Lusk, and R. Thakur. Using
MPI-2–Advanced Features of the Message Passing
Interface. MIT Press, 1999.

Line Integral Convolution
• Goal: provide a global view of a steady 

vector field while avoiding issues with clutter, 
seeds, etc. 

• Remember convolution? 
• Start with random noise texture 
• Smear according to the vector field 
• Need structured data
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Line Integral Convolution

Input noise T

Final image
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Figure 2: Visualization of a LIC volume: The flow field is explored using a clip plane, which is interactively translated.

an underlying geometry (see Figures 4 and 11). In the same way,
complementary information is visually integrated for better orienta-
tion if fusion with another volume is performed. As demonstrated
in Figure 15 a 3D–LIC calculation within the aorta is combined
with the surrounding anatomy. In contrast, the fully opaque assign-
ment shows the flow information directly at the outer surface of the
vector field. According to Figure 2 this is useful if a clip plane is
applied in order to explore the LIC volume.
In Figure 3 the setting of the transfer functions for color and

opacity values is shown which leads to the visualization presented
in Figure 4. Although arbitrary transfer functions are applicable a
piecewise linear mapping is sufficient. The arrows indicate the lo-
cation and the direction of simple manipulation operations which
are required to adjust the lookup tables. As an additional orienta-
tion the intensity histogram of the volume data is displayed within
the diagram. If an opaque representation is envisaged (left side),
opacity is set to a constant high value. However, it is useful to de-
crease it slightly in order to improve the visual continuity and im-
pression. Thereby, stream lines become visible which are directly
below the actual surface. Simultaneously, a linear ramp is specified
for the luminance values enhancing the contrast of the resulting im-
age. Within the histogram this ramp is positioned in the center of
the main peak.

0 data value
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0 data value
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luminanceluminance

opacity

histogram
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Figure 3: Intensity histogram and transfer functions for the visual-
ization of the LIC volume shown in Figure 4: Setting for the opaque
representation (left)— Setting for the semi-transparent representa-
tion (right).

The semi–transparent representation (right side) requires to use
low opacity values for low data values and high opacity values for
high data values. Further on, a linear ramp of high gradient is used
in between in order to produce a smooth transition. Depending on
the selected background color, the contrast is intensified if there
is another linear ramp for opacity values that increases to lower
data values. This is of importance if light background colors are

chosen. The transfer function for luminance values is positioned
within the transition from low to high opacity values. This leads
to a good impression of depth, as can be seen on the right side of
Figure 4. Moreover, the interactive adjustment of transfer functions
is an efficient way to substitute the separate application of sparse
noise textures as proposed in [15].

Figure 4: Simulated flow around wheel with different setting of
transfer functions: (left) Opaque representation showing details at
the surface and (right) semi–transparent representation efficiently
substituting the application of sparse noise textures.

5 Clipping Functionality
Additional scalar fields such as density, pressure, or absolute value
of velocity are frequently used in order to specify a volume of inter-
est (VOI) to restrict the rendering process to significant parts of the
flow. This VOI is usually applied a priori to the input texture or as
a postprocess to the resulting 3D–LIC texture. Since this operation
modifies the voxel data, it is impossible to change the VOI during
the visualization process.
The above mentioned strategy aims at a visualization of the LIC

volume as an opaque object extracted by the VOI. Due to the in-
tricate and dense structure of stream lines inside a 3D–LIC texture,
higher transparency will result in cluttered displays. In order to
explore the interior structures, the use of clip planes is a straight
forward approach. However, for a static visualization clip planes
are not sufficient when visualizing 3D–LIC, because planar sur-
faces do not generally follow the direction of the flow, resulting
in discontinuous stream lines. However, the interactivity provided

3D LIC
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Critical Points
• Remember finding min/max for functions? 
• Want to understand the general structure of 

a field, not the exact values 
• Find critical points, understand there is a 

general trend in between 
• How? 
- Derivative for functions 
- For fields…gradients
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Topology
• The general shape of data 
• Visualizations that can be "stretched" to resemble each other are 

topologically equivalent 
• Technically, continuous transformations don't change anything 
• Connect critical points to obtain a general picture of the data 
• Can talk about topology in both scalar and vector fields
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2D Scalar Field Topology
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2D Scalar Field Topology
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Scalar Field Topology
• Examine the gradient (changes between points on the grid) of the scalar field 
• Where the gradient is zero, we have critical points (max, min, saddle) 
• Can build Reeb Graph, Contour Tree, or Morse-Smale Complex from this 

information to show the topology (with some reasonable assumptions about 
how the scalar field looks)
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Key development in topological data analysis (TDA)

1. Abstraction of the data: topological structures and their combinatorial
representations
2. Seperate features from noise: persistent homology

2D Scalar function 

Reeb Graph/Contour Tree/Merge Tree 

Morse-Smale Complex 

Two Types of Topological StructuresScalar Field Topology
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Vector Field Topology
• Instead of “guessing” correct seed points for streamlines to understand the 

field, try to identify structure (topology) of the field
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Critical Points
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Critical Points
• Critical Points 
- Find where the vector field vanishes (the zero vector or undefined) 
- Attracting Nodes (Sinks), Repelling Nodes (Sources), Attracting Foci, 

Repelling Foci, Saddles, Centers 
• How to find such points? 
- Can use a similar idea to Marching Cubes 
- Use the eigenvalues of the Jacobian matrix to classify
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Topological Skeleton
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Examples
More Examples
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