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Scivis and Infovis
• Two subfields of visualization 
• Scivis deals with data where the spatial position is given with data 
- Usually continuous data 
- Often displaying physical phenonema 
- Techniques like isosurfacing, volume rendering, vector field vis 

• In Infovis, the data has no set spatial representation, designer chooses how 
to visually represent data

2D. Koop, CSCI 627/490, Fall 2024
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Fields in Visualization
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Scalar Fields Vector Fields Tensor Fields
(Order-1 Tensor Fields)(Order-0 Tensor Fields) (Order-2+)

Each point in space has an associated...

Scalar

Vector Fields

Vector Tensor



Grids
• Remember we have continuous data and want to sample it in order to 

understand the entire domain
• Possible schemes?

• Geometry: the spatial positions of the data (points)

4D. Koop, CSCI 627/490, Fall 2024



Grids
• Remember we have continuous data and want to sample it in order to 

understand the entire domain
• Possible schemes?

• Geometry: the spatial positions of the data (points)
• Topology: how the points are connected (cells)
• Type of grid determines how much data needs to be stored for both 

geometry and topology
4D. Koop, CSCI 627/490, Fall 2024

Grids (Meshes)
• Meshes combine positional information (geometry) with 

topological information (connectivity).   

• Mesh type can differ substantial depending in the way mesh 
cells are formed.

From Weiskopf, Machiraju, Möller© Weiskopf/Machiraju/Möller

Data Structures

• Grid types
– Grids differ substantially in the cells (basic 

building blocks) they are constructed from and 
in the way the topological information is given

scattered          uniform          rectilinear          structured       unstructured
[© Weiskopf/Machiraju/Möller]
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Linear Interpolation
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Value at 2.2?
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Volume Visualization
•  2D visualization

  slice images
  (or multi-planar 

  reformating MPR)

•  Indirect
  3D visualization

  isosurfaces
  (or surface-shaded

  display SSD)

•  Direct  
  3D visualization
  (direct volume 

  rendering DVR)

Visualizing Volume (3D) Data

6

[© Weiskopf/Machiraju/Möller]
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Isolines (2D)
• Isoline: a line that has the same scalar value at all locations 
• Example: Topographical Map

7

[USGS via Wikipedia]
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http://commons.wikimedia.org/wiki/File:Topographic_map_example.png


Isosurfaces (3D)
• Isosurface: a surface that has the same scalar value at all locations 
• Often use multiple isosurfaces to show different levels

8

[J. Kniss, 2002]
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Assignment 5
• Adjacency Matrix 
• Line Graph 
• Linked Highlighting

9D. Koop, CSCI 627/490, Fall 2024

https://faculty.cs.niu.edu/~dakoop/cs627-2024fa/assignment5.html


Assignment 5
• Adjacency Matrix 
• Line Graph 
• Linked Highlighting

9D. Koop, CSCI 627/490, Fall 2024

https://faculty.cs.niu.edu/~dakoop/cs627-2024fa/assignment5.html


Project
• Feedback from Designs soon 
• Keep working on implementation 
• Be creative 
• Think about interaction 
• Presentations on the last two days of class (Dec. 2 & Dec. 4) 
- Submit current visualization code (or a link) to Blackboard 
- Presentation preferences (Monday or Wednesday) 
- Upload full code to Blackboard beforehand in case of technical issues 

• Can keep working on final project & report until end of semester

10D. Koop, CSCI 627/490, Fall 2024



20 2. Marching Cubes and Variants
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(a) Scalar grid. (b) The +/− grid.
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(c) Midpoint vertices. (d) Isocontour.

Figure 2.4. (a) 2D scalar grid. (b) Black vertices are positive. Vertex v with scalar
value sv is positive if sv >= 5 and negative if sv < 5. Note that sv = 5 for one grid
vertex v. (c) Isocontour with vertices at edge midpoints (before linear interpolation).
(d) Isocontour with isovalue 5.

isocontours. The isocontour lookup table, Table, contains sixteen entries, one for

each configuration. Each entry, Table[κ] is a list of the E+/−
κ pairs.

In Figure 2.3 the isocontour edges are drawn connecting the midpoints of
each square edge. This is for illustration purposes only. The geometric locations
of the isocontour vertices are not defined by the lookup table.

The isocontour lookup table is constructed on the unit square with vertices
(0, 0), (1, 0), (0, 1), (1, 1). To construct the isocontour in grid square (i, j), we
have to map pairs of unit square edges to pairs of square (i, j) edges. Each
vertex v = (vx, vy) of the unit square maps to v + (i, j) = (vx, vy) + (i, j) =
(vx + i, vy + j). Each edge e of the unit square with endpoints (v, v′) maps to
edge e+ (i, j) = (v + (i, j), v′ + (i, j)). Finally, each edge pair (e1, e2) maps to
(e1 + (i, j), e2 + (i, j)).

The endpoints of the isocontour edges are the isocontour vertices. To map
each isocontour edge to a geometric line segment, we use linear interpolation to

Generating Isolines (Isovalue = 5)
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[R. Wenger, 2013]
D. Koop, CSCI 627/490, Fall 2024

http://web.cse.ohio-state.edu/~wenger/publications/
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(c) Midpoint vertices. (d) Isocontour.

Figure 2.4. (a) 2D scalar grid. (b) Black vertices are positive. Vertex v with scalar
value sv is positive if sv >= 5 and negative if sv < 5. Note that sv = 5 for one grid
vertex v. (c) Isocontour with vertices at edge midpoints (before linear interpolation).
(d) Isocontour with isovalue 5.

isocontours. The isocontour lookup table, Table, contains sixteen entries, one for

each configuration. Each entry, Table[κ] is a list of the E+/−
κ pairs.

In Figure 2.3 the isocontour edges are drawn connecting the midpoints of
each square edge. This is for illustration purposes only. The geometric locations
of the isocontour vertices are not defined by the lookup table.

The isocontour lookup table is constructed on the unit square with vertices
(0, 0), (1, 0), (0, 1), (1, 1). To construct the isocontour in grid square (i, j), we
have to map pairs of unit square edges to pairs of square (i, j) edges. Each
vertex v = (vx, vy) of the unit square maps to v + (i, j) = (vx, vy) + (i, j) =
(vx + i, vy + j). Each edge e of the unit square with endpoints (v, v′) maps to
edge e+ (i, j) = (v + (i, j), v′ + (i, j)). Finally, each edge pair (e1, e2) maps to
(e1 + (i, j), e2 + (i, j)).

The endpoints of the isocontour edges are the isocontour vertices. To map
each isocontour edge to a geometric line segment, we use linear interpolation to

Generating Isolines
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[R. Wenger, 2013]
D. Koop, CSCI 627/490, Fall 2024
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(c) Midpoint vertices. (d) Isocontour.

Figure 2.4. (a) 2D scalar grid. (b) Black vertices are positive. Vertex v with scalar
value sv is positive if sv >= 5 and negative if sv < 5. Note that sv = 5 for one grid
vertex v. (c) Isocontour with vertices at edge midpoints (before linear interpolation).
(d) Isocontour with isovalue 5.

isocontours. The isocontour lookup table, Table, contains sixteen entries, one for

each configuration. Each entry, Table[κ] is a list of the E+/−
κ pairs.

In Figure 2.3 the isocontour edges are drawn connecting the midpoints of
each square edge. This is for illustration purposes only. The geometric locations
of the isocontour vertices are not defined by the lookup table.

The isocontour lookup table is constructed on the unit square with vertices
(0, 0), (1, 0), (0, 1), (1, 1). To construct the isocontour in grid square (i, j), we
have to map pairs of unit square edges to pairs of square (i, j) edges. Each
vertex v = (vx, vy) of the unit square maps to v + (i, j) = (vx, vy) + (i, j) =
(vx + i, vy + j). Each edge e of the unit square with endpoints (v, v′) maps to
edge e+ (i, j) = (v + (i, j), v′ + (i, j)). Finally, each edge pair (e1, e2) maps to
(e1 + (i, j), e2 + (i, j)).

The endpoints of the isocontour edges are the isocontour vertices. To map
each isocontour edge to a geometric line segment, we use linear interpolation to

Generating Isolines
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(c) Midpoint vertices. (d) Isocontour.

Figure 2.4. (a) 2D scalar grid. (b) Black vertices are positive. Vertex v with scalar
value sv is positive if sv >= 5 and negative if sv < 5. Note that sv = 5 for one grid
vertex v. (c) Isocontour with vertices at edge midpoints (before linear interpolation).
(d) Isocontour with isovalue 5.

isocontours. The isocontour lookup table, Table, contains sixteen entries, one for

each configuration. Each entry, Table[κ] is a list of the E+/−
κ pairs.

In Figure 2.3 the isocontour edges are drawn connecting the midpoints of
each square edge. This is for illustration purposes only. The geometric locations
of the isocontour vertices are not defined by the lookup table.

The isocontour lookup table is constructed on the unit square with vertices
(0, 0), (1, 0), (0, 1), (1, 1). To construct the isocontour in grid square (i, j), we
have to map pairs of unit square edges to pairs of square (i, j) edges. Each
vertex v = (vx, vy) of the unit square maps to v + (i, j) = (vx, vy) + (i, j) =
(vx + i, vy + j). Each edge e of the unit square with endpoints (v, v′) maps to
edge e+ (i, j) = (v + (i, j), v′ + (i, j)). Finally, each edge pair (e1, e2) maps to
(e1 + (i, j), e2 + (i, j)).

The endpoints of the isocontour edges are the isocontour vertices. To map
each isocontour edge to a geometric line segment, we use linear interpolation to

Generating Isolines
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http://web.cse.ohio-state.edu/~wenger/publications/


26 2. Marching Cubes and Variants

6 7 81 2 3 4 5

14 15 169 10 11 12 13

Figure 2.10. Red, positive regions and blue, negative regions for each square configu-
ration. The green isocontour is part of the positive region. Black vertices are positive.

Proof of Properties 1 & 2: The Marching Squares isocontour consists of a finite
set of line segments, so it is piecewise linear. These line segments intersect only at
their endpoints and thus form a triangulation of the isocontour. The endpoints
of these line segments lie on the grid edges, confirming Property 2. !

Property 3. The isocontour intersects every bipolar grid edge at exactly one
point.

Property 4. The isocontour does not intersect any negative or strictly positive
grid edges.

Proof of Properties 3 & 4: Each isocontour edge is contained in a grid square. Since
the grid squares are convex, only isocontour edges with endpoints (vertices) on
the grid edge intersect the grid edge. If the grid edge has one positive and one
negative endpoint, the unique location of the isocontour vertex on the grid edge
is determined by linear interpolation. Thus the isocontour intersects a bipolar
grid edge at only one point.

If the grid edge is negative or strictly positive, then no isocontour vertex lies
on the grid edge. Thus the isocontour does not intersect negative or strictly
positive grid edges. !

Within each grid square the isocontour partitions the grid square into two
regions. Let the positive region for a grid square c be the set of points which can
be reached by a path ζ from a positive vertex. More precisely, a point p is in the
positive region of c if there is some path ζ ⊂ c connecting p to a positive vertex
of c such that the interior of ζ does not intersect the isocontour. A point p is
in the negative region of c if there is some path ζ ⊂ c connecting p to a negative
vertex of c such that ζ does not intersect the isocontour. Since any path ζ ⊂ c
from a positive to a negative vertex must intersect the isocontour, the positive
and negative regions form a partition of the square c. Figure 2.10 illustrates the
positive and negative regions, colored red and blue, respectively, for each square
configuration.

Marching Squares

15

[R. Wenger, 2013]
D. Koop, CSCI 627/490, Fall 2024

http://web.cse.ohio-state.edu/~wenger/publications/


Ambiguous Configurations
• There are some cases for which we cannot tell which way to draw the 

isolines…

16

[R. Wenger, 2013]
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Figure 2.12. Ambiguous square configurations.
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Figure 2.13. Topologically distinct isocontours created by using different isocontours
for the ambiguous configuration in the central grid square.

scalar grid with two topologically distinct isocontours created by different resolu-
tions of the ambiguous configurations. The first isocontour has two components
while the second has one.

While the choice of isocontours for the ambiguous configurations changes
the isocontour topology, any of the choices will produce isocontours that are 1-
manifolds and strictly separate strictly positive vertices from negative vertices.
As we shall see, this is not true in three dimensions.

2.3 Marching Cubes

2.3.1 Algorithm

The three-dimensional Marching Cubes algorithm follows precisely the steps
in the two-dimensional Marching Squares algorithm. Input to the March-

http://web.cse.ohio-state.edu/~wenger/publications/


Ambiguous Configurations
• Either works for marching squares, this isn't the case for 3D

17

[R. Wenger, 2013]
D. Koop, CSCI 627/490, Fall 2024
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Figure 2.13. Topologically distinct isocontours created by using different isocontours
for the ambiguous configuration in the central grid square.

scalar grid with two topologically distinct isocontours created by different resolu-
tions of the ambiguous configurations. The first isocontour has two components
while the second has one.

While the choice of isocontours for the ambiguous configurations changes
the isocontour topology, any of the choices will produce isocontours that are 1-
manifolds and strictly separate strictly positive vertices from negative vertices.
As we shall see, this is not true in three dimensions.

2.3 Marching Cubes

2.3.1 Algorithm

The three-dimensional Marching Cubes algorithm follows precisely the steps
in the two-dimensional Marching Squares algorithm. Input to the March-

http://web.cse.ohio-state.edu/~wenger/publications/


3D: Marching Cubes
• Same idea, more cases [Lorensen and Cline, 1987]

18
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Figure 2.16. Isosurfaces for twenty-two distinct cube configurations.
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Incompatible Choices
• If we have ambiguous cases where we choose differently for each cell, the 

surfaces will not match up correctly—there are holes 
• Fix with the asymptotic decider [Nielson and Hamann,1991]

19

[R. Wenger, 2013]
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34 2. Marching Cubes and Variants

(a) (b)

Figure 2.17. (a) Adjacent configurations sharing a common face. (b) Incompatible
isosurface patches for the adjacent configurations.

Figure 2.18. Compatible isosurface patches for adjacent configurations in Fig-
ure 2.17(a).

configuration κ. The isosurface patch intersects every edge of E+/−
κ exactly once

and does not intersect any other grid cube edges.
To define the 256 entries in the table, it is only necessary to determine the

table entries for the twenty-two distinct configurations. The table entries for
the other configurations can be derived using rotation and reflection symme-
try. Figure 2.16 contains the twenty-two distinct cube configurations and their
isosurfaces.

The isosurface lookup table is constructed on the unit cube with vertices
(0, 0, 0), (1, 0, 0), (0, 1, 0), . . . , (0, 1, 1), (1, 1, 1). To construct the isosurface in grid
cube (i, j, k), we have to map unit cube edges to edges of cube (i, j, k). Each
vertex v = (vx, vy, vz) of the unit cube maps to v + (i, j, k) = (vx, vy, vz) +
(i, j, k) = (vx + i, vy + j, vz + k). Each edge e of the unit square with endpoints
(v, v′) maps to edge e + (i, j, k) = (v + (i, j, k), v′ + (i, j, k)). Finally, each edge
triple (e1, e2, e3) maps to (e1 + (i, j, k), e2 + (i, j, k), e3 + (i, j, k)).

In Figure 2.16, the isosurface vertices lie on the midpoints of the grid edges.
This is for illustration purposes only. The geometric locations of the isosurface
vertices are not defined by the lookup table.

The vertices of the isosurface triangles are the isosurface vertices. To map
each isosurface triangle to a geometric triangle, we use linear interpolation to
position the isosurface vertices as described in Section 1.7.2. Each isosurface
vertex v lies on a grid edge [p, q]. If sp and sq are the scalar values at p and q
and σ is the isovalue, then map v to (1− α)p+ q where α = (σ − sp)/(sq − sp).

http://web.cse.ohio-state.edu/~wenger/publications/


Marching Cubes Algorithm
• For each cell: 
- Classify each vertex as inside or outside (>=, <) — 0 or 1 
- Take the eight vertex classifications as a bit string 
- Use the bit string as a lookup into a table to get edges 
- Interpolate to get actual edge locations 
- Compute gradients 
- Resolve ambiguities 

• Render a bunch of triangles: easy for graphics cards

20D. Koop, CSCI 627/490, Fall 2024



Multiple Isosurfaces
• Topographical maps have multiple isolines to 

show elevation trends 
• Problem in 3D? Occlusion 
• Solution? Transparent surfaces 
• Issues: 
- Think about color in order to make each 

surface visible 
- Compositing: how do colors "add up" with 

multiple surfaces 
- How to determine good isovalues?

21

[J. Kniss, 2002]
D. Koop, CSCI 627/490, Fall 2024
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Volume Rendering

D. Koop, CSCI 627/490, Fall 2024



9

(a) Direct volume rendered (b) Isosurface rendered

Figure 1.4: Comparison of volume rendering methods

Volume Rendering vs. Isosurfacing

23

[Kindlmann, 1998]
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(Direct) Volume Rendering
• Isosurfacing: compute a surface (triangles) and use standard computer 

graphics to render the triangles 
• Volume rendering: compute the pixels shown directly from the volume 

information 
• Why? 
- No need to figure out precise isosurface boundaries 
- Can work better for data with noise or uncertainty 
- Greater control over appearance based on values

24D. Koop, CSCI 627/490, Fall 2024



Types of Volume Rendering Algorithms
• Ray casting 
- Similar to ray tracing, but use rays from the viewer 

• Splatting: 
- Object-order, voxels splat onto the image plane 

• Shear Warp: 
- Object-space, slice-based, parallel viewing rays 

• Texture-Based: 
- 2D Slices: stack of texture maps 
- 3D Textures 

25

[via Möller]
D. Koop, CSCI 627/490, Fall 2024

© Weiskopf/Machiraju/Möller 60

Texture-Based Volume 
Rendering

• Proxy geometry
– Stack of texture-mapped slices
– Generate fragments
– Most often back-to-front traversal



Object order approach
Image Plane

Data Set

Eye

Volume Ray Casting

26

[Levine]
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Image order approach
Image Plane

For each pixel {
   calculate color of the pixel
}

Data Set

Eye

Volume Ray Casting

27
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How?
• Approximate volume rendering integral: light absorption & emission 
• Sample at regular intervals along each ray 
• Trilinear interpolation: linear interpolation along each axes (x,y,z) 

• Not the only possibility, also "object order" techniques like splatting or 
texture-based and combinations like shear-warp

28D. Koop, CSCI 627/490, Fall 2024

• We perform a numerical approximation of volume 
rendering integral 

• Idea: resample volume at equispaced intervals 
along the ray 
• Use trilinear interpolation
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Pixel Compositing 
Schemes

Compositing
• Need one pixel from all values along the ray 
• Q: How do we "add up" all of those values 

along the ray? 
• A: Compositing! 
• Different types of compositing 
- First: like isosurfacing, first intersection at a 

certain intensity 
- Max intensity: choose highest val 
- Average: mean intensity (density, like x-rays) 
- Accumulate: each voxel has some 

contribution 
29
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Exact Isosurface

Pixel Compositing 
SchemesTypes of Compositing
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Pixel Compositing 
Schemes

depth

max intensity

accumulate

average

first
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ity

color to distinguish structures
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Resonance Angiograms
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Accumulation
• If we're not just calculating a single number (max, average) or a position (first), 

how do we determine the accumulation? 
• Assume each value has an associated color (c) and opacity (α) 
• Over operator (back-to-front):  
- c = αf∙cf + (1-αf)∙αb∙cb 

- α = αf + (1-αf)∙αb 

• Order is important!
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Blue Last Blue First



Transfer Functions
• Where do the colors and opacities come from? 
• Idea is that each voxel emits/absorbs light based on its scalar value 
• …but users get to choose how that happens 
• x-axis: color region definitions, y-axis: opacity
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Human Tooth CT

f 

RGB
Simple (usual) case: Map data 
value f  to color and opacityα

Transfer Functions (TFs)



Transfer Function Design
• Transfer function design is non-trivial! 
• Lots of tools to help visualization designers to create good transfer functions 
• Histograms, more attributes than just value like gradient magnitude

36D. Koop, CSCI 627/490, Fall 2024



Multidimensional Transfer Functions
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Multidimensional Transfer Functions
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