Data Visualization (CSCI 627/490)

Maps & Networks

Dr. David Koop

Bivariate Colormaps

D. Koop, CSCI 627/490, Fall 2024

Northern Illinois University

Value-Suppressing Uncertainty Palette

Geographic Data: 3D to 2D: Projection

Projection Classification

Project Proposal

- Two Possibilities:
 - Create an interactive visualization
 - Work on a research project
- Dataset Choices
 - US Food Safety Data
 - Illinois Hospital Report Card
 - NFL Data
 - US Register of Introduced and Invasive Species
 - Others?
- Proposal Due Wednesday

Assignment 4

• To be announced soon

Choropleth (Two Hues)

D. Koop, CSCI 627/490, Fall 2024

Northern Illinois University

Problem?

Obama

McCain

D. Koop, CSCI 627/490, Fall 2024

Northern Illinois University

Problem?

Obama

McCain

Amount of red and blue shown on map

Obama

McCain

D. Koop, CSCI 627/490, Fall 2024

850,000 mi²

2,150,000 mi²

Adding Saturation

Area Marks and Color Hue & Saturation

D. Koop, CSCI 627/490, Fall 2024

Northern Illinois University

[Interactive Version, NYTimes]

D. Koop, CSCI 627/490, Fall 2024

[R. Rohla and Washington Post, 2018]

D. Koop, CSCI 627/490, Fall 2024

Northern Illinois University

D. Koop, CSCI 627/490, Fall 2024

Northern Illinois University

Maps: What trends do you see?

D. Koop, CSCI 627/490, Fall 2024

[Desaturated by D. Koop, M. Ericson, New York Times]

Don't Just Create Population Maps!

D. Koop, CSCI 627/490, Fall 2024

PET PEEVE #208: GEOGRAPHIC PROFILE MAPS WHICH ARE BASICALLY JUST POPULATION MAPS

Size Encoding

D. Koop, CSCI 627/490, Fall 2024

Northern Illinois University

Dasymetric Dot Density

Glyphs: xkcd's Map

Cartograms

Cartograms

- Data: geographic geometry data & two quantitative attributes (one part-of-whole)
 - Derived data: new geometry derived from the part-of-whole attribute
- Tasks: trends, comparisons, part-of-whole
- How: area marks from derived geometry,
 - color hue/saturation/luminance
- Scalability: thousands of regions
- Design choices:
 - Colormap
 - Geometric deformation

Hexagonal Cartogram

Solid D	Likely D	Lean D	Toss-up	Lean R	Like
≥95% D	≥75% D	≥60% D	<60%	≥60% R	≥7
			both		

D. Koop, CSCI 627/490, Fall 2024

Northern Illinois University

Non-Contiguous Cartogram

World Cartograms

World Population

World Energy Consumption

House Races: Map?

House Race Ratings by the Cook Political Report

D. Koop, CSCI 627/490, Fall 2024

[New York Times, 2018]

Northern Illinois University

House Races: Cartogram?

Solid D	Likely D	Lean D	Toss-up	Lean R	Like
≥95% D	≥75% D	≥60% D	<60%	≥60% R	≥7

D. Koop, CSCI 627/490, Fall 2024

Northern Illinois University

House Races: Non-Contiguous "Cartogram"

Maps Aren't Always Best: Close House Races

12 Lean Democratic

- AZ-02 Open (McSally)
- CA-49 Open (Issa)
- CO-06 Coffman
- IA-01 Blum
- KS-03 Yoder
- MI-11 Open (Trott)
- MN-02 Lewis
- MN-03 Paulsen
- NV-03 Open (Rosen)
- NJ-11 Open (Frelinghuysen)
- PA-07 Vacant (formerly Dent)
- VA-10 Comstock

31 Tossups

- CA-10 Denham
- CA-25 Knight
- CA-45 Walters
- FL-26
- FL-27
- IL-06
- IL-12
- IA-03
- KY-06 Barr

D. Koop, CSCI 627/490, Fall 2024

- CA-39 Open (Royce)
- CA-48 Rohrabacher
 - Curbelo
 - Open (Ros-Lehtinen)
 - Roskam
 - Bost
 - Young
- KS-02 Open (Jenkins)

25 Lean Republicar

- AR-02 Hill
- CA-50 Hunter
- FL-15 Open (Ross)
- FL-16 Buchanan
- GA-06 Handel
- GA-07 Woodall
- IL-13 Davis
- IL-14 Hultgren
- MO-02 Wagner
- MT-AL Gianforte
- NE-02 Bacon
- NY-24
 - Katko [New York Times, 2018]

Maps Aren't Always Best: Obama Targets

D3 Map Examples

Networks

- Why not graphs?
 - Bar graph
 - Graphing functions in mathematics
- Network: nodes and edges connecting the nodes
- Formally, G = (V, E) is a set of nodes V and a set of edges E where each edge connects two nodes.
- Nodes == items, edges connect items
- Both nodes and edges may have attributes

Arrange Networks and Trees

D. Koop, CSCI 627/490, Fall 2024

Northern Illinois University

Molecule Graph

Molecule Graph

Molecule Graph

Web Sites as Graphs (amazon.com)

D. Koop, CSCI 627/490, Fall 2024

Northern Illinois University

Social Networks

Networks as Data

Nodes

ID	Atom	Electrons	Protons
0	Ν	7	7
1	С	6	6
2	S	16	16
3	С	6	6
4	Ν	7	7

Edges

ID1	ID2	Bonds
0	1	┱
1	2	1
T	3	2
З	4	1

Node-Link Diagrams

- Data: nodes and edges
- Task: understand connectivity, paths, structure (topology)
- Encoding: nodes as point marks, connections as line marks
- Scalability: hundreds
- ...but high density of links can be problematic!
- Issue with the encoding?

Arc Diagram

Network Layout

- Need to use spatial position when designing network visualizations
- Otherwise, nodes can **occlude** each other, links hard to distinguish
- How?
 - With bar charts, we could order using an attribute...
 - the data usually)
- Possible metrics:
 - Edge crossings
 - Node overlaps
 - Total area

- With networks, we want to be able to see connectivity and topology (not in

