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Courselets
• Educational resources for visualization using notebooks 
• Reviewed charts over the last couple of classes, how do we construct them? 
• How do we use visualization libraries, including those in other contexts like 

Python? 
- matplotlib: charts-matplotlib.ipynb 
- pyobsplot: charts-obsplot.ipynb
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Assignment 3
• Computer Science Graduates Data 
• Create same stacked bar chart using 
- Tableau Public 
- Observable Plot 
- D3 

• D3 Stacked Bar Chart: 
- Required for CSCI 627 students 
- CSCI 490 students can just do 

counts
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https://faculty.cs.niu.edu/~dakoop/cs627-2024fa/assignment3.html


Midterm
• Monday, October 14, 2024 
• Format: 
- In Person, Pen(-cil) & Paper 
- Multiple Choice 
- Free Response (often multi-part) 
- CS 627 students will have extra questions related to the research papers 

discussed
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https://faculty.cs.niu.edu/~dakoop/cs627-2024fa/midterm.html


How does light work?Light Reflection & Absorption
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Color != Wavelength
but rather, a combination of wavelengths and energyColor != Wavelength
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Human Color Perception
• Humans do not detect individual 

wavelengths of light 
• Use rods and cones to detect light 
- rods capture intensity 
- cones capture color
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[N. Cuenca]
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http://www.retinalmicroscopy.com/mosaics.html
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Human Color Perception
• Humans are trichromatic—we have three 

different types of cones 
- S (430nm): blue 
- M (540nm): green 
- L (570nm): "red" 

• Note that the response curves overlap 
• Spectra of visible light are "covered" by these 

responses 
• Three numbers -> color
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[Vanessaezekowitz at en.wikipedia]
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http://en.wikipedia.org/wiki/User:Vanessaezekowitz
http://en.wikipedia.org/
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Human Color Perception
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metamers
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Metamerism
• Same responses == same color 
• Humans are not spectrometers 
• Do not get the whole function 
• Three responses 
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[via M. Meyer]
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Color
• Cones respond to different areas of the visible light spectrum 
• Cover all wavelengths but certain wavelengths generate greater responses 
• Color is determined by calculations based on the responses from the 

different cones 
• Opponent Process Theory: three "opponent" channels 
- Light/Dark 
- Blue/Yellow 
- Red/Green 

• Opposite colors are not perceived together
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Opponent Process Theory
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Color Blindness
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Color Blindness
• Sex-linked: 8% of males and 0.4% of females of N. European ancestry 
• Abnormal distribution of cones (e.g. missing the S, M, or L types) 
• Either dichromatic (only two types of cones) or anomalous trichromatic (one 

type of cones has a defect) 
- Protanopia (L missing), Protanomaly (L defect) 
- Deuteranopia (M missing), Deuteranomaly (M defect) [Most Common] 
- Tritanopia (S missing), Tritanomaly (S defect) [Rare] 

• Dichromacy is rarer than anomalous trichromacy 
• Opponent process model explains why colors cannot be differentiated
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Color Blindness
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Simulating Color Blindness
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Simulating Color Blindness
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Simulating Color Blindness
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Simulating Deuteranopia (Colormaps)
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[@neilrkaye, reddit]
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https://www.reddit.com/r/dataisbeautiful/comments/avcrwt/simulation_of_green_deficient_colour_blindness/


Simulating Deuteranopia (Colormaps)
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https://www.reddit.com/r/dataisbeautiful/comments/avcrwt/simulation_of_green_deficient_colour_blindness/


Primary Colors?
• Red, Green, and Blue
• Red, Yellow, and Blue
• Orange, Green, and Violet
• Cyan, Magenta, and Yellow
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Primary Colors?
• Red, Green, and Blue
• Red, Yellow, and Blue
• Orange, Green, and Violet
• Cyan, Magenta, and Yellow
• All of the above!
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Color Addition and Subtraction
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Color Spaces and Gamuts
• Color space: the organization of all 

colors in space 
- Often human-specific, what we can 

see (e.g. CIELAB) 
• Color gamut: a subset of colors 
- Defined by corners of color space 
- What can be produced on a monitor 

(e.g. using RGB) 
- What can be produced on a printer 

(e.g. using CMYK) 
- The gamut of your monitor != the 

gamut of someone else's or a printer
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[Anatomy of a CIE Chromaticity Diagram]
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http://dot-color.com/2012/08/14/color-space-confusion/


Color Models
• A color model is a representation of color using some basis 
• RGB uses three numbers (red, blue, green) to represent color 
• Color space ~ color model, but there can be many color models used in the 

same color space (e.g. OGV) 
• Hue-Saturation-Lightness (HSL) is more intuitive and useful 
- Hue captures pure colors 
- Saturation captures the amount of white mixed with the color 
- Lightness captures the amount of black mixed with a color 
- HSL color pickers are often circular 

• Hue-Saturation-Value (HSV) is similar (swap black with gray for the final 
value), linearly related

23D. Koop, CSCI 627/490, Fall 2024



Luminance
• HSL does not truly reflect the way we perceive color 
• Even though colors have the same lightness, we perceive their luminance 

differently 
• Our perception (L*) is nonlinear
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[Munzner (ill. Maguire), 2014 (based on Stone, 2006)]
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Corners of the RGB 
color cube

L from HSL
All the same

Luminance

L* 



Perceptually Uniform Color Spaces
• L*a*b* allows perceptually accurate comparison and calculations of colors
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Luminance Perception (Spatial Adaption)
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[E. H. Adelson, 1995]
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http://web.mit.edu/persci/people/adelson/checkershadow_illusion.html


Luminance Perception (Spatial Adaption)
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http://www.handprint.com/HP/WCL/tech13.html

SIMULTANEOUS CONTRAST
Simultaneous Contrast
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Simultaneous Contrast
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Simultaneous Contrast
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Simultaneous Contrast
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What colors?
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https://twitter.com/AkiyoshiKitaoka/status/842556026142375936


What colors?
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[A. Kitaoka]
D. Koop, CSCI 627/490, Fall 2024

Red, yellow, blue 

Purple, orange 
do not exist! 

https://twitter.com/AkiyoshiKitaoka/status/842556026142375936
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What does this mean for visualization?

D. Koop, CSCI 627/490, Fall 2024



What does this mean for visualization?
• We need to be aware of colorblindness when encoding via color 
• Our brains may misinterpret color (surrounding colors matter!) even if we 

aren't colorblind 
• Be careful! Don't assume that adding color always works the way you 

intended 
• Use known colormaps when possible
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CIELAB

Commonly used in visualizations

Approximately perceptually linear

1 unit Euclidean difference equals 
1 Just Noticeable Difference (JND)

Violations of CIELAB Assumptions
• CIELAB: 
- Approximately perceptually linear 
- 1 unit of Euclidean distance = 1 Just 

Noticeable Difference (JND) 
- JND: people detect change at least 50% of 

the time 
• Assumptions CIELAB makes: 
- Simple world 
- Isolation 
- Geometric
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[D. Szafir, 2017]
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http://cmci.colorado.edu/visualab/VisColors/17-VIS-ModelingColorDifference.pdf


Simple World Assumption

Isolation Assumption

Geometric Assumption

Visualizations violate three CIELAB assumptions

Simple World Assumption
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[D. Szafir, 2017]
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http://cmci.colorado.edu/visualab/VisColors/17-VIS-ModelingColorDifference.pdf
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Simple World Assumption

Isolation Assumption

Geometric Assumption

Visualizations violate three CIELAB assumptions

Crowdsourced Sampling
Szafir, Stone, & Gleicher, 2014

Reinecke, Flatla, & Brooks, 2016

Problems with Simple World Assumption
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http://cmci.colorado.edu/visualab/VisColors/17-VIS-ModelingColorDifference.pdf


Simple World Assumption

Isolation Assumption

Geometric Assumption

Visualizations violate three CIELAB assumptions
Isolation Assumption
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Simple World Assumption

Isolation Assumption

Geometric Assumption

Visualizations violate three CIELAB assumptions
Problems with Isolation Assumption
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http://cmci.colorado.edu/visualab/VisColors/17-VIS-ModelingColorDifference.pdf


Simple World Assumption

Isolation Assumption

Geometric Assumption

Visualizations violate three CIELAB assumptions
Geometric Assumption
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Simple World Assumption

Isolation Assumption

Geometric Assumption

Visualizations violate three CIELAB assumptions

Size-Based Sampling
Carter & Silverstein, 2010

Stone, Szafir, & Setlur, 2014

Size Problem with Geometric Assumption
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Simple World Assumption

Isolation Assumption

Geometric Assumption

Visualizations violate three CIELAB assumptions
Shape Problem with Geometric Assumption
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Simple World Assumption

Isolation Assumption

Geometric Assumption

Visualizations violate three CIELAB assumptions

Diagonally Symmetric Marks

Asymmetric Marks

Elongated Marks

Area Marks

Types of Geometry
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http://cmci.colorado.edu/visualab/VisColors/17-VIS-ModelingColorDifference.pdf
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Run the tests!
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6 pixels 
0.25°

12 pixels 
0.5°

18 pixels 
0.75°

25 pixels 
1.0°

37 pixels 
1.5°

50 pixels 
2.0°

6 (diameters, within) × 6 (color differences, within) × 3 (color axis, between)

81 participants on Mechanical Turk (5,668 trials)

Color Study

43

[D. Szafir, 2017]
D. Koop, CSCI 627/490, Fall 2024
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Color perception in real-world visualizations 
is complicated
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Akiyoshi Kitaoka's Illusion pages
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http://www.ritsumei.ac.jp/~akitaoka/index-e.html
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Colormaps
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Colormap
• A colormap specifies a mapping between colors and data values 
• Colormap should follow the expressiveness principle 
• Types of colormaps:

50

[Munzner (ill. Maguire), 2014]
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Categorical vs. Ordered
• Hue has no implicit ordering: use for categorical data 
• Saturation and luminance do: use for ordered data
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Categorical Colormap Guidelines
• Don't use too many colors (~12) 
• Remember your background has a color, too 
• Nameable colors help 
• Be aware of luminance (e.g. difference between blue and yellow) 
• Think about other marks you might wish to use in the visualization
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Categorical Colormaps
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http://colorbrewer2.org


Categorical Colormaps
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Number of distinguishable colors?
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Number of distinguishable colors?
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Discriminability
• Often, fewer colors are better 
• Don't let viewers combine colors because they can't tell the difference 
• Make the combinations yourself 
• Also, can use the "Other" category to reduce the number of colors
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Ordered Colormaps
• Used for ordinal or quantitative attributes 
• [0, N]: Sequential 
• [-N, 0, N]: Diverging (has some meaningful midpoint) 
• Can use hue, saturation, and luminance 
• Remember hue is not a magnitude channel so be careful 
• Can be continuous (smooth) or segmented (sharp boundaries) 
- Segmented matches with ordinal attributes  
- Can be used with quantitative data, too.
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Continuous Colormap
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Segmented Colormap
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Is continuous better than segmented?
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Evaluating the Impact of Binning 2D Scalar Fields
Lace Padilla, P. Samuel Quinan, Miriah Meyer, and Sarah H. Creem-Regehr

Fig. 1: Experimental stimuli for five binning conditions: A. Continuous, B. 10m binning, C. 20m binning, D. 30m binning, E. 40m
binning

Abstract— The expressiveness principle for visualization design asserts that a visualization should encode all of the available data,
and only the available data, implying that continuous data types should be visualized with a continuous encoding channel. And yet,
in many domains binning continuous data is not only pervasive, but it is accepted as standard practice. Prior work provides no clear
guidance for when encoding continuous data continuously is preferable to employing binning techniques or how this choice affects
data interpretation and decision making. In this paper, we present a study aimed at better understanding the conditions in which
the expressiveness principle can or should be violated for visualizing continuous data. We provided participants with visualizations
employing either continuous or binned greyscale encodings of geospatial elevation data and compared participants’ ability to complete
a wide variety of tasks. For various tasks, the results indicate significant differences in decision making, confidence in responses, and
task completion time between continuous and binned encodings of the data. In general, participants with continuous encodings were
faster to complete many of the tasks, but never outperformed those with binned encodings, while performance accuracy with binned
encodings was superior to continuous encodings in some tasks. These findings suggest that strict adherence to the expressiveness
principle is not always advisable. We discuss both the implications and limitations of our results and outline various avenues for
potential work needed to further improve guidelines for using continuous versus binned encodings for continuous data types.

Index Terms—Geographic/Geospatial Visualization, Qualitative Evaluation, Color Perception, Perceptual Cognition

1 INTRODUCTION

A foundational design principle in visualization is the expressiveness
principle, which states that a visual encoding should express all of the
relationships in the data, and only the relationships in the data [24, 35].
For a continuous data type, this implies that a continuous encoding
channel is a good choice. In practice, however, domains such as car-

• L. Padilla is with the University of Utah Department of Psychology.
E-mail: lace.m.k.padilla@gmail.com

• S. Quinan and M. Meyer are with the University of Utah School of
Computing. E-mail: psq,miriah@cs.utah.edu.

• S. Creem-Regehr is with the University of Utah Department of Psychology.
E-mail: sarah.creem@psych.utah.edu.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of
Publication xx xxx. 201x; date of current version xx xxx. 201x.
For information on obtaining reprints of this article, please send
e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx/

tography [43] and meteorology [36] have strong conventions that visu-
alize continuous data with a discrete encoding. These domains rely on
visual channels, such as color and saturation to encode a continuous
function defined over two-dimensional space, known as a 2D scalar
field. They commonly do so by employing discrete colormaps or con-
tour lines, also called isarithmic maps [43].

Existing literature provides little guidance about encoding contin-
uous, 2D scalar fields with binned colormaps, or how this design de-
cision affects data interpretation and decision making. Research into
properties of colormaps for encoding continuous data types has largely
focused on continuous colormaps [2, 28, 38, 48]. This line of research
provides guidance on how to capture properties of the data, such as
divergence around a center point [48] or emphasis on one end of the
data range [2]. These papers go so far as proposing corresponding
binned colormaps, but do not make claims, or even discuss, their ef-
ficacy for continuous data. Work on transfer function design has also
proposed methods for binning colors, but with a focus on volumetric
scalar fields, with the underlying goal of classifying materials or fea-
tures [12], as opposed to directly understanding the continuous nature

Continuous
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Evaluating the Impact of Binning 2D Scalar Fields
Lace Padilla, P. Samuel Quinan, Miriah Meyer, and Sarah H. Creem-Regehr

Fig. 1: Experimental stimuli for five binning conditions: A. Continuous, B. 10m binning, C. 20m binning, D. 30m binning, E. 40m
binning

Abstract— The expressiveness principle for visualization design asserts that a visualization should encode all of the available data,
and only the available data, implying that continuous data types should be visualized with a continuous encoding channel. And yet,
in many domains binning continuous data is not only pervasive, but it is accepted as standard practice. Prior work provides no clear
guidance for when encoding continuous data continuously is preferable to employing binning techniques or how this choice affects
data interpretation and decision making. In this paper, we present a study aimed at better understanding the conditions in which
the expressiveness principle can or should be violated for visualizing continuous data. We provided participants with visualizations
employing either continuous or binned greyscale encodings of geospatial elevation data and compared participants’ ability to complete
a wide variety of tasks. For various tasks, the results indicate significant differences in decision making, confidence in responses, and
task completion time between continuous and binned encodings of the data. In general, participants with continuous encodings were
faster to complete many of the tasks, but never outperformed those with binned encodings, while performance accuracy with binned
encodings was superior to continuous encodings in some tasks. These findings suggest that strict adherence to the expressiveness
principle is not always advisable. We discuss both the implications and limitations of our results and outline various avenues for
potential work needed to further improve guidelines for using continuous versus binned encodings for continuous data types.

Index Terms—Geographic/Geospatial Visualization, Qualitative Evaluation, Color Perception, Perceptual Cognition

1 INTRODUCTION

A foundational design principle in visualization is the expressiveness
principle, which states that a visual encoding should express all of the
relationships in the data, and only the relationships in the data [24, 35].
For a continuous data type, this implies that a continuous encoding
channel is a good choice. In practice, however, domains such as car-
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Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx/

tography [43] and meteorology [36] have strong conventions that visu-
alize continuous data with a discrete encoding. These domains rely on
visual channels, such as color and saturation to encode a continuous
function defined over two-dimensional space, known as a 2D scalar
field. They commonly do so by employing discrete colormaps or con-
tour lines, also called isarithmic maps [43].

Existing literature provides little guidance about encoding contin-
uous, 2D scalar fields with binned colormaps, or how this design de-
cision affects data interpretation and decision making. Research into
properties of colormaps for encoding continuous data types has largely
focused on continuous colormaps [2, 28, 38, 48]. This line of research
provides guidance on how to capture properties of the data, such as
divergence around a center point [48] or emphasis on one end of the
data range [2]. These papers go so far as proposing corresponding
binned colormaps, but do not make claims, or even discuss, their ef-
ficacy for continuous data. Work on transfer function design has also
proposed methods for binning colors, but with a focus on volumetric
scalar fields, with the underlying goal of classifying materials or fea-
tures [12], as opposed to directly understanding the continuous nature

Many Segments
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Evaluating the Impact of Binning 2D Scalar Fields
Lace Padilla, P. Samuel Quinan, Miriah Meyer, and Sarah H. Creem-Regehr

Fig. 1: Experimental stimuli for five binning conditions: A. Continuous, B. 10m binning, C. 20m binning, D. 30m binning, E. 40m
binning

Abstract— The expressiveness principle for visualization design asserts that a visualization should encode all of the available data,
and only the available data, implying that continuous data types should be visualized with a continuous encoding channel. And yet,
in many domains binning continuous data is not only pervasive, but it is accepted as standard practice. Prior work provides no clear
guidance for when encoding continuous data continuously is preferable to employing binning techniques or how this choice affects
data interpretation and decision making. In this paper, we present a study aimed at better understanding the conditions in which
the expressiveness principle can or should be violated for visualizing continuous data. We provided participants with visualizations
employing either continuous or binned greyscale encodings of geospatial elevation data and compared participants’ ability to complete
a wide variety of tasks. For various tasks, the results indicate significant differences in decision making, confidence in responses, and
task completion time between continuous and binned encodings of the data. In general, participants with continuous encodings were
faster to complete many of the tasks, but never outperformed those with binned encodings, while performance accuracy with binned
encodings was superior to continuous encodings in some tasks. These findings suggest that strict adherence to the expressiveness
principle is not always advisable. We discuss both the implications and limitations of our results and outline various avenues for
potential work needed to further improve guidelines for using continuous versus binned encodings for continuous data types.

Index Terms—Geographic/Geospatial Visualization, Qualitative Evaluation, Color Perception, Perceptual Cognition

1 INTRODUCTION

A foundational design principle in visualization is the expressiveness
principle, which states that a visual encoding should express all of the
relationships in the data, and only the relationships in the data [24, 35].
For a continuous data type, this implies that a continuous encoding
channel is a good choice. In practice, however, domains such as car-
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tography [43] and meteorology [36] have strong conventions that visu-
alize continuous data with a discrete encoding. These domains rely on
visual channels, such as color and saturation to encode a continuous
function defined over two-dimensional space, known as a 2D scalar
field. They commonly do so by employing discrete colormaps or con-
tour lines, also called isarithmic maps [43].

Existing literature provides little guidance about encoding contin-
uous, 2D scalar fields with binned colormaps, or how this design de-
cision affects data interpretation and decision making. Research into
properties of colormaps for encoding continuous data types has largely
focused on continuous colormaps [2, 28, 38, 48]. This line of research
provides guidance on how to capture properties of the data, such as
divergence around a center point [48] or emphasis on one end of the
data range [2]. These papers go so far as proposing corresponding
binned colormaps, but do not make claims, or even discuss, their ef-
ficacy for continuous data. Work on transfer function design has also
proposed methods for binning colors, but with a focus on volumetric
scalar fields, with the underlying goal of classifying materials or fea-
tures [12], as opposed to directly understanding the continuous nature

Fewer Segments
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Types of Tasks
• Locate/Explore & Identify: Highest Point (Global, In Region), 275m 
• Locate/Explore & Compare: Height Compare/Rank 
• Explore & Identify: Steepest 
• Lookup & Identify: Lookup 
• Explore & Compare: Steepness Compare/Rank 
• Browse & Summarize: Average Height 
• Browse & Compare: Compare Average Height 
• Combination: Steepest at 355m
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(a) Click locations overlaid on the continu-
ous encoding, showing three main regions.
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(b) Number of clicks per region by binning
technique.

Fig. 6: Steepest Task

Fig. 7: A visualization of the spatial frequency of the DEM used in
this study.

binning conditions. We can speculate that different binning techniques
influenced some participants’ incorrect assumptions relating elevation
and steepness; however, future studies are needed to fully understand
these effects.

An additional complicating factor when asking participants to make
judgments of steepness comes from the high spatial frequency of the
gradient magnitude (See Figure 7). In the areas with the greatest gra-
dient magnitude, relatively close points (i.e., only a few pixels apart)
could have vastly different gradient magnitude values. While beyond
the scope of this study, future work should investigate strategies to
account for this.

3.3.5 Lookup and Identify Task
7. Lookup. This task followed the Steepest Point task and asked
participants to report the lowest and highest values adjacent to their
click; thus, accuracy of lowest and highest points were analyzed sep-
arately. For the lowest value, participants were the least accurate us-
ing the continuous encoding, specifically when compared to the 30m
and 40m binnings. Accuracy was calculated by subtracting the re-
ported lower adjacent elevation from the actual lower adjacent ele-
vation, creating an error score in CIELAB space distance. Outliers
> 2SD above the mean were removed (7.8% of trials). A one-way
between-subjects ANOVA, (controlling for reported higher adjacent
elevation), showed there was a significant effect of binning technique,
F(4,451) = 4.418, p = .001,h2

p = .057. The mean error score for
the continuous encoding (M = 134.91,SD= 105.20) was significantly
less accurate than the 30m binning (M = 94.33,SD = 87.21) and 40m
binning (M = 86.20,SD = 82.88), p < .05 (See Figure 8a).

A similar analysis was performed on the reported upper adjacent
elevation. Outliers > 2SD above the mean were removed (2% of tri-
als). There was a significant effect of binning technique on reporting
the upper adjacent elevation, F(4,479) = 2.602, p = .03,h2

p = .044.
However, post hoc Tukey HSD comparisons did not reveal signif-
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Fig. 8: Lookup Task. Error bars (95% CI)

Fig. 9: An example portion of the continuous encoding from the Steep-
ness Compare task, showing Area A and Area B.

icant differences between the conditions at the p < .05 level when
accounting for multiple comparisons. To understand the main ef-
fect of binning, planned contrast codes were generated which com-
pared the continuous encoding to the binned encodings. Similar to the
lower elevation analysis above, we found that the continuous encoding
(M = 128.60,SD = 100.90) was less accurate than binned encoding
(M = 107.36,SD = 97.16), F(1,490) = 7.79, p = 0.005 (See Figure
8b).

3.3.6 Explore and Compare Task

8. Steepness Compare. A binomial logistic regression found that
there was no significant effect of binning technique on a steepness
comparison, c2(d f = 7) = 1.35, p = .98. Area A contained the steep-
est point with a magnitude gradient of 44.33, and Area B contained
the second steepest point with a magnitude gradient of 41.65 (See
Figure 9). 62% of participants incorrectly selected Area B as con-
taining the steeper point. Similar to the Steepest task, these findings
suggest that participants’ prior understanding of topography and an as-
sumption about a connection between steepness and peaks could have
biased incorrect responses. Additionally, these findings may be influ-
enced by the issues related to the high spatial frequency of the gradient
magnitude noted in Section 3.3.4.

9. Steepness Rank. An ordinal logistic regression was used to test the
effect of binning technique on rankings of the greatest gradient mag-
nitude between regions. Participants responded to this question by
entering rankings of 1-3 (three indicating the greatest gradient magni-
tude region and one the least) for regions A, B, and C. Each of these
regions were selected because they contained the 3rd, 4th, and 5th
steepest points (See Figure 10). The ordinal logistic regression equa-
tion did significantly predict rankings when using binning technique
and regions as predictors c2(d f = 9) = 137.79, p < .00, but binning
technique did not effect gradient magnitude rankings. Both the regions
and the order of rankings were significant predictors of rankings.

This task and the prior tasks relating to steepness judgments suggest
that a number of different factors likely influenced a reduced effect
of binning, such as prior assumptions about how elevation peaks and
slopes relate and variable gradient magnitudes.

Results
• "[C]ontrary to the expressiveness principle, 

no cases were found in which a continuous 
encoding of 2D scalar field data was 
advantageous for task accuracy, and for 
some tasks, specific binned encodings 
facilitated accuracy." 

• "[S]upport for the counterintuitive finding that 
decisions with binned encoding were slower 
than those made with continuous encoding" 

• Word of caution: single image!
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Don't Use Rainbow Colormaps
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Which has a discontinuity?

https://twitter.com/Mbussonn/status/982739252516536320


Other Colormaps Work Better
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Which has a discontinuity?

https://twitter.com/Mbussonn/status/982739252516536320


Problems with the Rainbow Color Map 
Confusing -Perceptual ordering 
 

(a) We can easily place the gray paint chips in order based on perception,  
(b) but cannot do this with the colored chips 

Ordering Color?
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Rainbow Colormap
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Artifacts from Rainbow Colormaps
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Artifacts from Rainbow Colormaps
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Two-Hue Colormap
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"Get It Right in Black and White" - M. Stone
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jet colormap

http://blogs.mathworks.com/steve/2014/10/20/a-new-colormap-for-matlab-part-2-troubles-with-rainbows/


"Get It Right in Black and White" - M. Stone
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jet colormap

http://blogs.mathworks.com/steve/2014/10/20/a-new-colormap-for-matlab-part-2-troubles-with-rainbows/


"Get It Right in Black and White" - M. Stone
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parula colormap

http://blogs.mathworks.com/steve/2014/10/20/a-new-colormap-for-matlab-part-2-troubles-with-rainbows/


"Get It Right in Black and White" - M. Stone
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parula colormap

http://blogs.mathworks.com/steve/2014/10/20/a-new-colormap-for-matlab-part-2-troubles-with-rainbows/


Isoluminant Rainbow Colormap

74

[Kindlmann et al., 2002]
D. Koop, CSCI 627/490, Fall 2024

A Arg Agb Arb

0.552 0.557 0.557 0.551
0.593 0.611 0.586 0.614
0.598 0.605 0.600 0.600
0.599 0.606 0.587 0.593
0.613 0.622 0.600 0.604

Table 1: Data from informal additivity test on five participants.

Figure 6: Double face image for gamma measurement

range of hues in between, by interpolation. If we had the luxury
of matching a great many control points along the colormap, then
the choice of colorspace in which to do color interpolation would
not significantly matter. However, the trade-off we encounter, if we
aim to perform as few matches as possible, is that we must know
the gamma of the display device.
Luminance matching based on the image of the double face can

be employed to measure the gamma of the monitor. Specifically,
the black in Figure 1 is replaced by a constant gray value which can
be adjusted, and white is replaced by alternating black and white
scanlines, as seen in Figure 6. This relies on the same principle
used in existing gamma measurement images and applets, namely
that a gray value created by alternating black and white lines has
intensity half that of white, regardless of gamma [15].
Knowing the monitor gamma γ, we can perform interpolation in

what is essentially gamma-corrected RGB space. Suppose we have
two RGB colors c0 = (r0, g0, b0) and c1 = (r1, g1, b1) which
have been determined to have equal luminance. These could be, for
instance, two of the colors determined as part of our user study. The
interpolation between them can be parameterized by f ∈ [0.0, 1.0],
and is calculated by:

cf =

⎛

⎝

((1 − f)r0
γ + fr1

γ)1/γ

((1 − f)g0
γ + fg1

γ)1/γ

((1 − f)b0
γ + fb1

γ)1/γ

⎞

⎠ (2)

This has the effect of converting RGB component levels to inten-
sity, linearly interpolating, and converting back to RGB component
levels.
If we use the data generated by our user study, we can average

over all participants and all trials to produce six points along an
isoluminant rainbow colormap. These values, and the resulting col-
ormap, are shown in Figure 7.
The methods described thus far can also be applied to the

(a) Isoluminant colormap created by user study

red: (0.847,0.057,0.057) yellow: (0.527,0.527,0.000)
green: (0.000,0.592,0.000) cyan: (0.000,0.559,0.559)
blue: (0.316,0.316,0.991) magenta: (0.718,0.000,0.718)

(b) Isoluminant RGB triples

Figure 7: Isoluminant colormap (a) generated by averaging double
face luminance matching data across participants (b), using evenly
spaced control points, starting and ending with red. The gamma
used for interpolation (2.7) was estimated using the image in Fig-
ure 6.

problem of generating colormaps which monotonically increase
in luminance, while also varying in hue. Such a colormap com-
bines perceptual benefits from both grayscale and isoluminant col-
ormaps [25]. Instead of adjusting colors (in HLS space) to match
luminance with a fixed gray, we can specify a different gray level
for each colormap control point. Equation 2 is again used to in-
terpolate in a way that controls luminance, but now luminance is
linearly increasing between control points. The sequence of lumi-
nances chosen for the control points can increase linearly, or ac-
cording to a power law that accounts for the non-linearity of bright-
ness perception [26]. Figure 8 shows a colormap produced by one
of the authors, by sampling the standard rainbow colors (going from
magenta through blue and green to red), and matching against light-
ness increasing linearly from 0.0 to 1.0.

Figure 8: Monotonically increasing luminance colormap.

The properties of these colormaps can be demonstrated with the
help of the Craik-O’Brian-Cornsweet illusion, shown in Figure 9.
The gray region in the center of the circle should appear brighter
than the gray at the outer edge of the circle, because of how local
edge brightness contrast tends to propagate over neighboring re-
gions [16]. The effect is somewhat weaker with the monotonically
increasing colormap, but is eliminated with the isoluminant col-
ormap. Although the strength of these effects vary with the method
of printing or display, and with the observer, this is an example of
how isoluminant colormaps can be preferable for interpreting im-
age values.

7 DISCUSSION AND FUTURE WORK

We have shown that a simple perceptual test, observing the dou-
ble face image, allows a user to quickly create a luminance match
between two colors. As compared to luminance matching using
the minimally distinct border technique, the double face method
is equivalent in measured result, but more precise, and no slower.
Given that the monitors we generally use for creating and display-
ing visualizations are not calibrated, this test provides a convenient
means of creating colormaps with any pre-determined pattern of lu-
minance variation (such as constant, or increasing). We believe the
success of our method is due to the brain’s special ability to detect
and interpret images of human faces. Because of the simplicity of
the method, we feel these results should be simple to reproduce.
Also, since each color match takes about 20 seconds, a color map

Original

Isoluminant



Turbo Colormap (August 2019)
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Turbo: More Detail in Disparity Maps?

76

[A. Mikhailov]
D. Koop, CSCI 627/490, Fall 2024

https://ai.googleblog.com/2019/08/turbo-improved-rainbow-colormap-for.html


Turbo: Lightness Profiles
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Jet Viridis Turbo

https://ai.googleblog.com/2019/08/turbo-improved-rainbow-colormap-for.html


Turbo Discussion
• Turbo is an improvement over jet 
• Some fields (e.g. meteorology) have long used rainbow-like colormaps 
• Argument is that segments are more easily located 
• Turbo post claims that hue is prioritized in attention, but this seems to 

misinterpret the study… 
• Brightness and saturation are more important than hue in attracting attention 

[Camgöz et al., 2004 h/t J. Stevens]
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https://twitter.com/jscarto/status/1164190471222116352

