Data Visualization (CSCI 627/490)

Interaction

Dr. David Koop
What is wrong with here and how can it be fixed?

3D Category Scatter

[WTF Visualizations, 2017]
Good: Data magnitude \iff Mark magnitude

[Flowing Data, 2012]
Show when the baseline is not zero

See also: "Tear Up Your Baseline" [RJ Andrews]
Tufte's Lie Factor

• Size of effect = (2nd value - 1st value) / (1st value)
• Lie factor = (size of effect in graphic) / (size of effect in data)
• In the graphic:

\[
\text{Lie Factor} = \frac{5.3 - 0.6}{0.6} = \frac{27.5 - 18}{18} = 14.8
\]
Avoid Chartjunk

Extraneous visual elements that distract from the message

[T. Brey via A. Lex]
No Unjustified 3D

- Occlusion hides information
- Perspective distortion dangers
- Tilted text isn't legible

- Can help with shape perception
Validation at each level

- **Threat**: Wrong problem
 - **Validate**: Observe and interview target users

- **Threat**: Wrong task/data abstraction
 - **Threat**: Ineffective encoding/interaction idiom
 - **Validate**: Justify encoding/interaction design

- **Threat**: Slow algorithm
 - **Validate**: Analyze computational complexity
 - **Implement system**
 - **Validate**: Measure system time/memory

- **Validate**: Qualitative/quantitative result image analysis
 - *Test on any users, informal usability study*

- **Validate**: Lab study, measure human time/errors for task

- **Validate**: Test on target users, collect anecdotal evidence of utility

- **Validate**: Field study, document human usage of deployed system

- **Validate**: Observe adoption rates

[Munzner, 2014]
Five Design Sheet Method

Sheet 1: Generate Ideas, filter, categorize.
Sheet 2, 3, 4: Explore lots of possibilities and select a set of ideas.
Sheet 5: Explore & Ideate: Improvisation.

Fig. 2: Schematic that shows where the FdS design fits in with the methodology.

Fig. 3: The FdS sheets. (a) Sheet 1: Generate Ideas, filter, categorize, (b) Sheets 2, 3, 4 with the five sections (collect, relate, donate and create), (c) Sheet 5: Explore & Ideate: Improvisation.

Fig. 4: Flowchart of the FdS method.

The five-stage methodology is as follows:
1. **Goals**
2. **Requirements**
3. **User Observation**
4. **Context**
5. **Exploration & Ideation**
6. **Concept Development**
7. **Prototyping & Solution**
8. **Relate**
9. **Validate**
10. **Understand**

Data Collection
Visualizing
Context
Exploration
& ideation
Concept
Development
Prototyping Solution
User...

D. Koop, CSCI 627/490, Fall 2023

Northern Illinois University
Sheets 2-4

[Image of diagrams and data visualizations]

[J. Roberts et al., 2016]
Assignment 4

- Corn & Soybean Production in Illinois
- Geospatial Visualizations & Treemap
 - Choose colormaps carefully
 - Add legend
- You may use D3 or Observable Plot
 - Part 1a: D3
 - Part 3 will require some D3 for treemap layout
- Due Friday
Project Design

- Feedback available on Blackboard
- Work on turning your visualization ideas into designs
- Turn in:
 - Three Designs Sketches
 - One Bad Design
 - Progress on Implementation
- Options:
 - Try vastly different options
 - Refine an initial idea
- Due Nov. 15
Guidelines for Interaction Design
Interaction

- The view changes over time
- Changes can affect almost any aspect of the visualization
 - encoding
 - arrangement
 - ordering
 - viewpoint
 - attributes being shown
 - aggregation level
Interaction Overview

- **Change over Time**
- **Select**

- **Navigate**
 - **Item Reduction**
 - **Zoom**
 - **Pan/Translate**
 - **Constrained**
 - **Attribute Reduction**
 - **Slice**
 - **Cut**
 - **Project**

[Munzner (ill. Maguire), 2014]
Sorting

- Allow user to find patterns by reordering the data
- Do this with tabular data all the time
- Note that categorical attributes don't really need sorting
 - We can compare these attributes no matter what order
 - Instead, sort categorical attribute based on an ordered attribute
Example: LineUp

[Gratzl et al., 2013]
Example: LineUp

[Gratzl et al., 2013]
Slope Graphs

- Connection marks
- Link the same item appearing in different rows
- Show changes for different attributes (parallel coordinates idea) but with one highlighted item
- Also called bump charts
Animation: Jump Cut vs. Animated Transitions

<table>
<thead>
<tr>
<th>♦️</th>
<th>♠️</th>
<th>♣️</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>A</td>
<td>Q</td>
</tr>
<tr>
<td>K</td>
<td>Q</td>
<td>K</td>
</tr>
<tr>
<td>A</td>
<td>J</td>
<td>A</td>
</tr>
<tr>
<td>A</td>
<td>Q</td>
<td>J</td>
</tr>
<tr>
<td>Q</td>
<td>J</td>
<td>Q</td>
</tr>
<tr>
<td>Q</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>Q</td>
<td>J</td>
<td>Q</td>
</tr>
<tr>
<td>A</td>
<td>J</td>
<td>A</td>
</tr>
<tr>
<td>A</td>
<td>J</td>
<td>A</td>
</tr>
<tr>
<td>J</td>
<td>Q</td>
<td>K</td>
</tr>
<tr>
<td>Q</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>K</td>
<td>J</td>
<td>A</td>
</tr>
<tr>
<td>J</td>
<td>Q</td>
<td>K</td>
</tr>
<tr>
<td>J</td>
<td>K</td>
<td>A</td>
</tr>
<tr>
<td>J</td>
<td>A</td>
<td>K</td>
</tr>
<tr>
<td>J</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>♠️</td>
<td>♡️</td>
<td>♢️</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>J</td>
<td>A</td>
<td>Q</td>
</tr>
<tr>
<td>J</td>
<td>Q</td>
<td>K</td>
</tr>
<tr>
<td>A</td>
<td>Q</td>
<td>A</td>
</tr>
<tr>
<td>A</td>
<td>K</td>
<td>Q</td>
</tr>
<tr>
<td>J</td>
<td>A</td>
<td>K</td>
</tr>
<tr>
<td>J</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Animation: Jump Cut vs. Animated Transitions

<table>
<thead>
<tr>
<th>Q♣</th>
<th>A♣</th>
<th>Q♣</th>
</tr>
</thead>
<tbody>
<tr>
<td>K♦</td>
<td>Q♦</td>
<td>K♦</td>
</tr>
<tr>
<td>A♥</td>
<td>J♦</td>
<td>A♦</td>
</tr>
<tr>
<td>A♦</td>
<td>Q♠</td>
<td>J♦</td>
</tr>
<tr>
<td>Q♣</td>
<td>J♠</td>
<td>Q♣</td>
</tr>
<tr>
<td>Q♥</td>
<td>Q♥</td>
<td>J♥</td>
</tr>
<tr>
<td>A♠</td>
<td>J♥</td>
<td>A♠</td>
</tr>
<tr>
<td>K♠</td>
<td>J♠</td>
<td>K♠</td>
</tr>
<tr>
<td>K♥</td>
<td>K♥</td>
<td>J♥</td>
</tr>
<tr>
<td>A♣</td>
<td>A♠</td>
<td>K♠</td>
</tr>
<tr>
<td>J♥</td>
<td>K♥</td>
<td>Q♥</td>
</tr>
<tr>
<td>Q♥</td>
<td>A♣</td>
<td>Q♥</td>
</tr>
<tr>
<td>K♠</td>
<td>K♠</td>
<td>J♥</td>
</tr>
<tr>
<td>J♠</td>
<td>A♥</td>
<td>Q♦</td>
</tr>
<tr>
<td>J♥</td>
<td>K♥</td>
<td>K♦</td>
</tr>
<tr>
<td>J♠</td>
<td>A♥</td>
<td>K♦</td>
</tr>
<tr>
<td>J♠</td>
<td>A♥</td>
<td>K♦</td>
</tr>
</tbody>
</table>
Animation: Jump Cut vs. Animated Transitions

<table>
<thead>
<tr>
<th>♠️</th>
<th>♦️</th>
<th>♣️</th>
<th>♠️</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q️</td>
<td>A️</td>
<td>Q️</td>
<td>Q️</td>
</tr>
<tr>
<td>K️</td>
<td>Q️</td>
<td>J️</td>
<td>Q️</td>
</tr>
<tr>
<td>A️</td>
<td>J️</td>
<td>Q️</td>
<td>J️</td>
</tr>
<tr>
<td>A️</td>
<td>J️</td>
<td>J️</td>
<td>J️</td>
</tr>
<tr>
<td>Q️</td>
<td>J️</td>
<td>Q️</td>
<td>J️</td>
</tr>
<tr>
<td>Q️</td>
<td>J️</td>
<td>J️</td>
<td>J️</td>
</tr>
<tr>
<td>A️</td>
<td>J️</td>
<td>J️</td>
<td>J️</td>
</tr>
<tr>
<td>A️</td>
<td>Q️</td>
<td>Q️</td>
<td>Q️</td>
</tr>
<tr>
<td>J️</td>
<td>K️</td>
<td>K️</td>
<td>K️</td>
</tr>
<tr>
<td>Q️</td>
<td>Q️</td>
<td>Q️</td>
<td>Q️</td>
</tr>
<tr>
<td>Q️</td>
<td>Q️</td>
<td>Q️</td>
<td>Q️</td>
</tr>
<tr>
<td>K️</td>
<td>A️</td>
<td>A️</td>
<td>A️</td>
</tr>
<tr>
<td>J️</td>
<td>K️</td>
<td>K️</td>
<td>K️</td>
</tr>
<tr>
<td>J️</td>
<td>A️</td>
<td>A️</td>
<td>A️</td>
</tr>
<tr>
<td>J️</td>
<td>K️</td>
<td>K️</td>
<td>K️</td>
</tr>
</tbody>
</table>
Animation: Jump Cut vs. Animated Transitions

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Q♣</td>
<td>A♠</td>
<td>Q♣</td>
</tr>
<tr>
<td>K♦</td>
<td>Q♦</td>
<td>K♦</td>
</tr>
<tr>
<td>A♥</td>
<td>J♠</td>
<td>A♦</td>
</tr>
<tr>
<td>A♦</td>
<td>Q♠</td>
<td>J♦</td>
</tr>
<tr>
<td>Q♦</td>
<td>J♥</td>
<td>Q♥</td>
</tr>
<tr>
<td>Q♥</td>
<td>Q♦</td>
<td>J♥</td>
</tr>
<tr>
<td>A♠</td>
<td>J♥</td>
<td>A♠</td>
</tr>
<tr>
<td>K♣</td>
<td>J♠</td>
<td>K♣</td>
</tr>
<tr>
<td>K♥</td>
<td>K♦</td>
<td>J♦</td>
</tr>
<tr>
<td>A♠</td>
<td>K♣</td>
<td>A♥</td>
</tr>
<tr>
<td>J♥</td>
<td>Q♥</td>
<td>K♥</td>
</tr>
<tr>
<td>Q♦</td>
<td>K♥</td>
<td>Q♦</td>
</tr>
<tr>
<td>K♠</td>
<td>A♠</td>
<td>Q♥</td>
</tr>
<tr>
<td>J♥</td>
<td>K♣</td>
<td>K♥</td>
</tr>
</tbody>
</table>

D. Koop, CSCI 627/490, Fall 2023
Side-by-side views

<table>
<thead>
<tr>
<th>♣️</th>
<th>♠️</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>A</td>
</tr>
<tr>
<td>K</td>
<td>♠️</td>
</tr>
<tr>
<td>A</td>
<td>Q</td>
</tr>
<tr>
<td>A</td>
<td>♣️</td>
</tr>
<tr>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>Q</td>
<td>J</td>
</tr>
<tr>
<td>A</td>
<td>K</td>
</tr>
<tr>
<td>K</td>
<td>Q</td>
</tr>
<tr>
<td>K</td>
<td>♠️</td>
</tr>
<tr>
<td>A</td>
<td>♠️</td>
</tr>
<tr>
<td>J</td>
<td>♠️</td>
</tr>
<tr>
<td>Q</td>
<td>♠️</td>
</tr>
<tr>
<td>K</td>
<td>♠️</td>
</tr>
<tr>
<td>J</td>
<td>♠️</td>
</tr>
<tr>
<td>J</td>
<td>♠️</td>
</tr>
<tr>
<td>J</td>
<td>♠️</td>
</tr>
</tbody>
</table>
Side-by-side views

<table>
<thead>
<tr>
<th>♠️</th>
<th>♠️</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>A</td>
</tr>
<tr>
<td>K</td>
<td>Q</td>
</tr>
<tr>
<td>A</td>
<td>Q</td>
</tr>
<tr>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>Q</td>
<td>J</td>
</tr>
<tr>
<td>A</td>
<td>K</td>
</tr>
<tr>
<td>K</td>
<td>Q</td>
</tr>
<tr>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>J</td>
<td>J</td>
</tr>
<tr>
<td>Q</td>
<td>A</td>
</tr>
<tr>
<td>A</td>
<td>J</td>
</tr>
<tr>
<td>K</td>
<td>J</td>
</tr>
<tr>
<td>J</td>
<td>K</td>
</tr>
<tr>
<td>J</td>
<td>J</td>
</tr>
</tbody>
</table>
Animated Transitions

Stacked Grouped
Animated Transitions

- "Jump cuts" are hard to follow
- Animations help users maintain sense of context between two states
- Empirical study showed that they work (Heer & Robertson, 2007)
Studying Animated Transitions

[Heer and Robertson, 2007]
Studying Animated Transitions

[Heer and Robertson, 2007]
Design Considerations

• Based on Tversky et al.'s Congruence and Apprehension Principles

• Congruence (Expressiveness):
 - Use consistent semantic-syntactic mappings
 - Respect semantic correspondence
 - Avoid ambiguity

• Apprehension (Effectiveness):
 - Group similar transitions
 - Minimize occlusion
 - Maximize predictability
 - Use simple transitions
 - Use staging for complex transitions
 - Transitions as long as needed, but no longer

[Heer and Robertson, 2007]
Experiment 1 (Syntactic)

- Object Tracking: Follow objects across a transition and identify the locations of the objects in the final graphic
 - Tests: bar chart to donut chart, stacked to grouped bars, sorting a bar chart, scatter plot to bar chart, timestep in a scatterplot
 - Either a jump cut or an animated transition
 - Users pick highlighted elements after transition (measure #pixels from correct)

![Graph showing average error in pixels for different transitions.

- Static
- Animation
- Staged Animation

[Heer and Robertson, 2007]
Experiment 2 (Semantic)

- Estimating Changing Values: Follow a single target across transition and estimate the percentage change in value
 - Tests: axis rescaling + timestep animations
 - In stacked bars, each stack level updates separately, donut charts are multi-stage
 - Users asked to enter an estimate of change (increments of 20% from -90% to 90% or click "?" for no idea)

![Graph showing average error and number of unknown responses for different chart types and animation types]

[Heer and Robertson, 2007]
Results/Conclusions

- User Preferences: Staged animation > animation > static transitions

- Animation improves graphical perception
- Staging is better (do axis rescaling before value changes)
- Avoid axis rescaling when possible

[Heer and Robertson, 2007]
Change Blindness

- https://www.youtube.com/watch?v=uO8wpm9HSB0
Change Blindness

- https://www.youtube.com/watch?v=uO8wpm9HSB0
Selection

- Selection is often used to initiate other changes
- User needs to select something to drive the next change
- What can be a selection target?
 - Items, links, attributes, (views)
- How?
 - mouse click, mouse hover, touch
 - keyboard modifiers, right/left mouse click, force
- Selection modes:
 - Single, multiple
 - Contiguous?
Highlighting

- Selection is the user action
- Feedback is important!
- How? Change selected item's visual encoding
 - Change color: want to achieve visual popout
 - Add outline mark: allows original color to be preserved
 - Change size (line width)
 - Add motion: marching ants
Highlighting

- Selection is the user action
- Feedback is important!
- How? Change selected item's visual encoding
 - Change color: want to achieve visual popout
 - Add outline mark: allows original color to be preserved
 - Change size (line width)
 - Add motion: marching ants
Highlighting

Obama has 431 ways to win (80% of paths)
5 ties (0.9% of paths)
Romney has 76 ways to win (10% of paths)

If Romney wins Ohio...

Florida

Ohio
North Carolina
Virginia
Wisconsin
Colorado
Iowa
Nevada
New Hampshire

and N.H., Romney wins.
Selection Outcomes

• Selection is usually a part of an action sequence
• Can filter, aggregate, reorder selected items
Responsiveness Required

- Delays are perceived by users
- Visual feedback
 - Show the user they did something (highlighting, etc)
 - Interaction should happen quick!
- Latency: mouse click versus mouse hover
- Popup versus detail displays
Interaction Latency

- The Effects of Interactive Latency on Exploratory Visual Analysis, Z. Liu and J. Heer, 2014
- Brush & link, select, pan, zoom

- 500ms added latency causes significant cost
 - decreases user activity and dataset coverage
 - reduces rate of observations, generalizations, and hypotheses
Interaction Overview

- **Change over Time**

- **Navigate**
 - Item Reduction
 - Zoom
 - Geometric or Semantic
 - Pan/Translate
 - Constrained

- **Attribute Reduction**
 - Slice
 - Cut
 - Project

[Munzner (ill. Maguire), 2014]
Navigation

- Fix the layout of all visual elements but provide methods for the viewpoint to change
- Camera analogy: only certain features visible in a frame
 - Zooming
 - Panning (aka scrolling)
 - Translating
 - Rotating (rare in 2D, important in 3D)
Navigation

- **Item Reduction**
 - **Zoom**
 - Geometric or Semantic
 - **Pan/Translate**
 - **Constrained**

- **Attribute Reduction**
 - **Slice**
 - **Cut**
 - **Project**

[Munzner (ill. Maguire), 2014]
Zooming
Geometric Zooming
Zooming
Semantic Zooming
Zooming

- Geometric Zooming: just like a camera
- Semantic Zooming: visual appearance of objects can change at different scales
- LiveRAC Example: (focus + context)

[McLachlan et al., 2008]
Navigation Constraints

- **Unconstrained** navigation: walking around in the world or an immersive 3D environment
 - Fairly standard in computer games to go where you want
 - Constrained by walls, objects (collision detection)

- **Constrained navigation:**
 - 3D: camera must be right-side up
 - Limit pan/zoom to certain areas
 - Comes up often with **multiple views**: want to show an area in one view that corresponds to a selection in another view
van Wijk Smooth Zooming
van Wijk Smooth Zooming

[van Wijk, 2003, M. Bostock]