
Data Visualization (CSCI 627/490)

Trees

Dr. David Koop

D. Koop, CSCI 627/490, Fall 2023

Arrange Networks and Trees

Node–Link Diagrams

Enclosure

Adjacency Matrix

TREESNETWORKS

Connection Marks

TREESNETWORKS

Derived Table

TREESNETWORKS

Containment Marks

Networks
• Network: nodes and edges

connecting the nodes
• Formally, G = (V,E) is a set of nodes V

and a set of edges E where each
edge connects two nodes.

• Nodes == items, edges connect
items

• Both nodes and edges may have
attributes

2

[Munzner (ill. Maguire), 2014]
D. Koop, CSCI 627/490, Fall 2022

Network Data Represented in Tables

3D. Koop, CSCI 627/490, Fall 2022

ID Atom Electrons Protons
0 N 7 7
1 C 6 6
2 S 16 16
3 C 6 6
4 N 7 7

ID1 ID2 Bonds
0 1 1
1 2 1
1 3 2
3 4 1

Nodes

Edges

SS

CC

CC

NN

CCNN

CC

NN

NNCC

NN

HH

HH
HH

HH

HH

Networks Need Layouts!
• Need to use spatial position when designing network visualizations
• Otherwise, nodes can occlude each other, links hard to distinguish
• How?
- With bar charts, we could order using an attribute…
- With networks, we want to be able to see connectivity and topology (not in

the data usually)
• Possible metrics:
- Edge crossings
- Node overlaps
- Total area

4D. Koop, CSCI 627/490, Fall 2022

Layout Algorithms

5

[Force-Directed and CoLa, M. Bostock]
D. Koop, CSCI 627/490, Fall 2022

https://observablehq.com/@d3/force-directed-graph
https://observablehq.com/@mbostock/hello-cola

Bundling Strength

6

[Holten, 2006]
D. Koop, CSCI 627/490, Fall 2022

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

Fig. 13. A software system and its associated call graph (caller = green, callee = red). (a) and (b) show the system with bundling strength β = 0.85
using a balloon layout (node labels disabled) and a radial layout, respectively. Bundling reduces visual clutter, making it easier to perceive the
actual connections than when compared to the non-bundled versions (figures 2a and 11a). Bundled visualizations also show relations between
sparsely connected systems more clearly (encircled regions); these are almost completely obscured in the non-bundled versions. The encircled
regions highlight identical parts of the system for (a), (b), and figure 15.

Fig. 14. Using the bundling strength β to provide a trade-off between low-level and high-level views of the adjacency relations. The value of β
increases from left-to-right; low values mainly provide low-level, node-to-node connectivity information, whereas high values provide high-level
information as well by implicit visualization of adjacency edges between parent nodes that are the result of explicit adjacency edges between their
respective child nodes.

regarded as being aesthetically pleasing. SIG and FEI Company Eind-
hoven are currently supporting further development by providing us
with additional data sets and feedback regarding the resulting visual-
izations.

More specifically, most of the participants particularly valued the
fact that relations between items at low levels of the hierarchy were
automatically lifted to implicit relations between items at higher lev-
els by means of bundles. This quickly gave them an impression of the
high-level connectivity information while still being able to inspect
the low-level relations that were responsible for the bundles by inter-
actively manipulating the bundling strength.

This is illustrated in figure 14, which shows visualizations using
different values for the bundling strength β . Low values result in vi-
sualizations that mainly provide low-level, node-to-node connectivity
information. High values result in visualizations that provide high-
level information as well by implicit visualization of adjacency edges
between parent nodes that are the result of explicit adjacency edges
between their respective child nodes.

Another aspect that was commented on was how the bundles gave

an impression of the hierarchical organization of the data as well,
thereby strengthening the visualization of the hierarchy. More specif-
ically, a thick bundle shows the presence of two elements at a fairly
high level of the hierarchy, whereas the fanning out of a bundle shows
the subdivision of an element into subelements.

Most participants preferred the radial layout over the balloon layout
and the squarified treemap layout. Another finding was the fact that the
rooted layout and the slice-and-dice treemap layout were considered
less pleasing according to several participants. This is probably due to
the large number of collinear nodes within these layouts, which causes
bundles to overlap along the collinearity axes. This is illustrated in
figure 17.

Although our main focus while developing hierarchical edge bun-
dles was on the visualization itself, interaction is an important aspect
in determining the usability of our technique. Based on our own in-
sight and feedback gathered from participants, we contend that bundle-
based interaction as described below could provide a convenient way
of interacting with the visualizations.

Figure 16 shows how the bundling strength β could be used in con-

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

Fig. 13. A software system and its associated call graph (caller = green, callee = red). (a) and (b) show the system with bundling strength β = 0.85
using a balloon layout (node labels disabled) and a radial layout, respectively. Bundling reduces visual clutter, making it easier to perceive the
actual connections than when compared to the non-bundled versions (figures 2a and 11a). Bundled visualizations also show relations between
sparsely connected systems more clearly (encircled regions); these are almost completely obscured in the non-bundled versions. The encircled
regions highlight identical parts of the system for (a), (b), and figure 15.

Fig. 14. Using the bundling strength β to provide a trade-off between low-level and high-level views of the adjacency relations. The value of β
increases from left-to-right; low values mainly provide low-level, node-to-node connectivity information, whereas high values provide high-level
information as well by implicit visualization of adjacency edges between parent nodes that are the result of explicit adjacency edges between their
respective child nodes.

regarded as being aesthetically pleasing. SIG and FEI Company Eind-
hoven are currently supporting further development by providing us
with additional data sets and feedback regarding the resulting visual-
izations.

More specifically, most of the participants particularly valued the
fact that relations between items at low levels of the hierarchy were
automatically lifted to implicit relations between items at higher lev-
els by means of bundles. This quickly gave them an impression of the
high-level connectivity information while still being able to inspect
the low-level relations that were responsible for the bundles by inter-
actively manipulating the bundling strength.

This is illustrated in figure 14, which shows visualizations using
different values for the bundling strength β . Low values result in vi-
sualizations that mainly provide low-level, node-to-node connectivity
information. High values result in visualizations that provide high-
level information as well by implicit visualization of adjacency edges
between parent nodes that are the result of explicit adjacency edges
between their respective child nodes.

Another aspect that was commented on was how the bundles gave

an impression of the hierarchical organization of the data as well,
thereby strengthening the visualization of the hierarchy. More specif-
ically, a thick bundle shows the presence of two elements at a fairly
high level of the hierarchy, whereas the fanning out of a bundle shows
the subdivision of an element into subelements.

Most participants preferred the radial layout over the balloon layout
and the squarified treemap layout. Another finding was the fact that the
rooted layout and the slice-and-dice treemap layout were considered
less pleasing according to several participants. This is probably due to
the large number of collinear nodes within these layouts, which causes
bundles to overlap along the collinearity axes. This is illustrated in
figure 17.

Although our main focus while developing hierarchical edge bun-
dles was on the visualization itself, interaction is an important aspect
in determining the usability of our technique. Based on our own in-
sight and feedback gathered from participants, we contend that bundle-
based interaction as described below could provide a convenient way
of interacting with the visualizations.

Figure 16 shows how the bundling strength β could be used in con-

Adjacency Matrix
• Change network to tabular data and use a

matrix representation
• Derived data: nodes are keys, edges are

boolean values
• Task: lookup connections, find well-

connected clusters
• Scalability: millions of edges

• Can encode edge weight, too

7

[Henry et al., 2007]
D. Koop, CSCI 627/490, Fall 2022

i
i

i
i

i
i

i
i

7.1. Using Space 135

Figure 7.5: Comparing matrix and node-link views of a five-node network.
a) Matrix view. b) Node-link view. From [Henry et al. 07], Figure 3b and
3a. (Permission needed.)

the number of available pixels per cell; typically only a few levels would
be distinguishable between the largest and the smallest cell size. Network
matrix views can also show weighted networks, where each link has an as-
sociated quantitative value attribute, by encoding with an ordered channel
such as color luminance or size.

For undirected networks where links are symmetric, only half of the
matrix needs to be shown, above or below the diagonal, because a link
from node A to node B necessarily implies a link from B to A. For directed
networks, the full square matrix has meaning, because links can be asym-
metric. Figure 7.5 shows a simple example of an undirected network, with
a matrix view of the five-node dataset in Figure 7.5a and a corresponding
node-link view in Figure 7.5b.

Matrix views of networks can achieve very high information density, up
to a limit of one thousand nodes and one million edges, just like cluster
heatmaps and all other matrix views that uses small area marks.

Technique network matrix view
Data Types network
Derived Data table: network nodes as keys, link status between two

nodes as values
View Comp. space: area marks in 2D matrix alignment
Scalability nodes: 1K

edges: 1M

. .

7.1.3.3 Multiple Keys: Partition and Subdivide When a dataset has only
one key, then it is straightforward to use that key to separate into one region

Structures from Adjacency Matrices

8

[McGuffin]
D. Koop, CSCI 627/490, Fall 2022

Node-Link or Adjacency Matrix?
• Empirical study: For most tasks, node-link is better for small graphs and

adjacency better for large graphs
• Multi-link paths are hard with adjacency matrices
• Immediate connectivity or neighbors are ok, estimating size (nodes & edges

also ok)
• People tend to be more familiar with node-link diagrams
• Link density is a problem with node-link but not with adjacency matrices

9D. Koop, CSCI 627/490, Fall 2022

Project
• Working through grading these to provide feedback
• Initial Feedback
- Some tasks are not tasks
- Some tasks are technically tasks but are phrased in terms of a visualization
- Think about the question "Why would someone care?"

• Example: Is there a correlation between the season and types of storms in
regions?

- Who cares?
- Why do they care?
- Are there specific instances where we can see how people might use info?

10D. Koop, CSCI 627/490, Fall 2022

http://faculty.cs.niu.edu/~dakoop/cs627-2020fa/project.html

Project
• Next steps:
- Start thinking about the designs that help answer the questions
- Tasks should drive your design
- Different designs are great

• Multiple views
• Single view with details on demand
• Interaction design (linked highlighting, navigation)
• In general, don't force the user to make choices without first seeing an

overview

11D. Koop, CSCI 627/490, Fall 2022

http://faculty.cs.niu.edu/~dakoop/cs627-2020fa/project.html

Assignment 4

12D. Koop, CSCI 627/490, Fall 2022

Trees
• Trees are directed acyclic networks
- each edge has a direction: the origin is the parent, the destination is the

child
- cannot get back to a node after leaving it

• …plus each node has at most one parent node
• A tree has a root (every other node hangs off it)
• Can consider enclosure in trees using parent-child relationships

13D. Koop, CSCI 627/490, Fall 2022

Quantifying the Space-Efficiency
of 2D Graphical Representations of Trees

Michael J. McGuffin and Jean-Marc Robert

Abstract— A mathematical evaluation and comparison of the space-efficiency of various 2D graphical representations of tree struc-
tures is presented. As part of the evaluation, a novel metric called the mean area exponent is introduced that quantifies the distribution
of area across nodes in a tree representation, and that can be applied to a broad range of different representations of trees. Several
representations are analyzed and compared by calculating their mean area exponent as well as the area they allocate to nodes and
labels. Our analysis inspires a set of design guidelines as well as a few novel tree representations that are also presented.

Index Terms—Tree visualization, graph drawing, efficiency metrics.

1 INTRODUCTION

A variety of graphical representations are available for depicting tree
structures (Figure 1), from “classical” node-link diagrams [23, 7], to
treemaps [14, 26, 6, 30], concentric circles [2, 27, 31], and many others
(see [13] for a survey). A major consideration when designing, eval-
uating, or comparing such representations is how efficiently they use
screen space to show information about the tree. To date, however, it is
unclear how to go about evaluating space-efficiency in a way that can
be applied to the large variety of tree representations and that enables a
fair comparison of them. Space-efficiency might be described in terms
of area, aspect ratio, label size, or other measures. However, there is no
accepted standard set of metrics for evaluating the space-efficiency of
tree representations, and it is unclear what approach would be general
enough to be applied to all the forms in Figure 1.

Fig. 1. Several basic kinds of tree representations, here each showing
a complete 3-ary tree of depth 3 as an example. All representations
are drawn to just fit within a 1×1 unit square. A: classical (layered)
node-link [23, 7]. B: a variation on A, where the shape of nodes better
accommodates long labels. C: icicle. D: radial [10, 9]. E: concentric
circles [2, 27, 31]. F: nested circles, similar to [5, 28]. G: treemap [14,
26]. H: indented outline, sometimes called a “tree list”, and common in
file browsers such as Microsoft Explorer.

• Michael J. McGuffin is with École de technologie supérieure, Montréal,
Canada, E-mail: michael.mcguffin@etsmtl.ca.

• Jean-Marc Robert is with École de technologie supérieure, Montréal,
Canada, E-mail: jean-marc.robert@etsmtl.ca.

One basic metric of space-efficiency is the total area of a representa-
tion. Assuming the representation is bound within a 1×1 square, both
icicle diagrams and treemaps (Figures 1C and 1G) have a total area of
1, and are equally efficient (and both optimal) according to this met-
ric. Likewise, concentric circles and nested circles (Figures 1E and 1F)
both have a total area of π/4 ≈ 0.785 (the area of a circle of diameter
1), and are also equally efficient according to the metric of total area.
However, experience suggests that the representations within each of
these pairs do not scale equally well with larger, deeper trees. This
article shows that there are finer ways of distinguishing efficiency, i.e.
that there is more to space-efficiency than total area.

Treemaps are often described as optimally space-efficient, not just
because they have a total area of 1, but also because they allow for
what we call a weighted partitioning of the area. Nodes can be allo-
cated more or less area, depending on some attribute such as file size,
population, or number of species, and furthermore this weighted par-
titioning can be done without reducing the total area used. These are
indeed desirable properties, however they are not unique to treemaps.
Figure 2 shows that icicle diagrams also allow for a weighted parti-
tioning of area, and incidentally have no need for margins between the
borders of nodes as treemaps often do.

Furthermore, although a weighted partitioning is useful for showing
the relative sizes of nodes in Figures 2A and 2C, an unfortunate side
effect is that labels on small nodes are very difficult to read. If users
are more interested in seeing the identity of all nodes rather than their
relative sizes, an alternative approach would be to give equal weight to
each leaf node (Figures 2B and 2D), improving the overall legibility
of nodes. (Although not shown in the figure, the labels could also be
augmented to numerically show the “size” attribute of each node.) In
terms of label size or legibility, Figures 2B and 2D are clearly prefer-
able, but even they still result in much whitespace around certain la-
bels, suggesting that a more space-efficient (in terms of label size)
representation might be possible.

Clearly, it would be useful to have some way to quantitatively dis-
tinguish the four possibilities in Figure 2, e.g. in terms of their respec-
tive scalability and the sizes of their labels. If total area is the only
metric of space-efficiency used, and “optimal” space-efficiency is de-
fined as a total area of 1 (possibly partitioned by weight), then we
have no way of distinguishing these four cases. If alternative metrics
of space-efficiency are used, such as those investigated in this article,
it is not clear initially if treemaps, or any other representation, will still
turn out to be optimal with respect to such alternative metrics.

This article identifies several metrics related to space-efficiency,
and performs the first rigorous analysis and comparison of the space-
efficiency of most of the basic tree representation styles in the infor-
mation visualization literature, including all those in Figure 1. Some
of the key ideas involved are (1) the use of a metric of the size of the
smallest nodes (i.e. the leaf nodes) in the representation, in addition to
a metric of total area; (2) analyzing the area of labels on the nodes,
which implicitly takes into account both the size and aspect ratio of
the nodes, measuring how much “useful” area they contain; and (3)
analyzing how these metrics behave asymptotically, as the tree grows

Tree Visualizations

14

[McGuffin and Robert, 2010]
D. Koop, CSCI 627/490, Fall 2022

Quantifying the Space-Efficiency
of 2D Graphical Representations of Trees

Michael J. McGuffin and Jean-Marc Robert

Abstract— A mathematical evaluation and comparison of the space-efficiency of various 2D graphical representations of tree struc-
tures is presented. As part of the evaluation, a novel metric called the mean area exponent is introduced that quantifies the distribution
of area across nodes in a tree representation, and that can be applied to a broad range of different representations of trees. Several
representations are analyzed and compared by calculating their mean area exponent as well as the area they allocate to nodes and
labels. Our analysis inspires a set of design guidelines as well as a few novel tree representations that are also presented.

Index Terms—Tree visualization, graph drawing, efficiency metrics.

1 INTRODUCTION

A variety of graphical representations are available for depicting tree
structures (Figure 1), from “classical” node-link diagrams [23, 7], to
treemaps [14, 26, 6, 30], concentric circles [2, 27, 31], and many others
(see [13] for a survey). A major consideration when designing, eval-
uating, or comparing such representations is how efficiently they use
screen space to show information about the tree. To date, however, it is
unclear how to go about evaluating space-efficiency in a way that can
be applied to the large variety of tree representations and that enables a
fair comparison of them. Space-efficiency might be described in terms
of area, aspect ratio, label size, or other measures. However, there is no
accepted standard set of metrics for evaluating the space-efficiency of
tree representations, and it is unclear what approach would be general
enough to be applied to all the forms in Figure 1.

Fig. 1. Several basic kinds of tree representations, here each showing
a complete 3-ary tree of depth 3 as an example. All representations
are drawn to just fit within a 1×1 unit square. A: classical (layered)
node-link [23, 7]. B: a variation on A, where the shape of nodes better
accommodates long labels. C: icicle. D: radial [10, 9]. E: concentric
circles [2, 27, 31]. F: nested circles, similar to [5, 28]. G: treemap [14,
26]. H: indented outline, sometimes called a “tree list”, and common in
file browsers such as Microsoft Explorer.

• Michael J. McGuffin is with École de technologie supérieure, Montréal,
Canada, E-mail: michael.mcguffin@etsmtl.ca.

• Jean-Marc Robert is with École de technologie supérieure, Montréal,
Canada, E-mail: jean-marc.robert@etsmtl.ca.

One basic metric of space-efficiency is the total area of a representa-
tion. Assuming the representation is bound within a 1×1 square, both
icicle diagrams and treemaps (Figures 1C and 1G) have a total area of
1, and are equally efficient (and both optimal) according to this met-
ric. Likewise, concentric circles and nested circles (Figures 1E and 1F)
both have a total area of π/4 ≈ 0.785 (the area of a circle of diameter
1), and are also equally efficient according to the metric of total area.
However, experience suggests that the representations within each of
these pairs do not scale equally well with larger, deeper trees. This
article shows that there are finer ways of distinguishing efficiency, i.e.
that there is more to space-efficiency than total area.

Treemaps are often described as optimally space-efficient, not just
because they have a total area of 1, but also because they allow for
what we call a weighted partitioning of the area. Nodes can be allo-
cated more or less area, depending on some attribute such as file size,
population, or number of species, and furthermore this weighted par-
titioning can be done without reducing the total area used. These are
indeed desirable properties, however they are not unique to treemaps.
Figure 2 shows that icicle diagrams also allow for a weighted parti-
tioning of area, and incidentally have no need for margins between the
borders of nodes as treemaps often do.

Furthermore, although a weighted partitioning is useful for showing
the relative sizes of nodes in Figures 2A and 2C, an unfortunate side
effect is that labels on small nodes are very difficult to read. If users
are more interested in seeing the identity of all nodes rather than their
relative sizes, an alternative approach would be to give equal weight to
each leaf node (Figures 2B and 2D), improving the overall legibility
of nodes. (Although not shown in the figure, the labels could also be
augmented to numerically show the “size” attribute of each node.) In
terms of label size or legibility, Figures 2B and 2D are clearly prefer-
able, but even they still result in much whitespace around certain la-
bels, suggesting that a more space-efficient (in terms of label size)
representation might be possible.

Clearly, it would be useful to have some way to quantitatively dis-
tinguish the four possibilities in Figure 2, e.g. in terms of their respec-
tive scalability and the sizes of their labels. If total area is the only
metric of space-efficiency used, and “optimal” space-efficiency is de-
fined as a total area of 1 (possibly partitioned by weight), then we
have no way of distinguishing these four cases. If alternative metrics
of space-efficiency are used, such as those investigated in this article,
it is not clear initially if treemaps, or any other representation, will still
turn out to be optimal with respect to such alternative metrics.

This article identifies several metrics related to space-efficiency,
and performs the first rigorous analysis and comparison of the space-
efficiency of most of the basic tree representation styles in the infor-
mation visualization literature, including all those in Figure 1. Some
of the key ideas involved are (1) the use of a metric of the size of the
smallest nodes (i.e. the leaf nodes) in the representation, in addition to
a metric of total area; (2) analyzing the area of labels on the nodes,
which implicitly takes into account both the size and aspect ratio of
the nodes, measuring how much “useful” area they contain; and (3)
analyzing how these metrics behave asymptotically, as the tree grows

Quantifying the Space-Efficiency
of 2D Graphical Representations of Trees

Michael J. McGuffin and Jean-Marc Robert

Abstract— A mathematical evaluation and comparison of the space-efficiency of various 2D graphical representations of tree struc-
tures is presented. As part of the evaluation, a novel metric called the mean area exponent is introduced that quantifies the distribution
of area across nodes in a tree representation, and that can be applied to a broad range of different representations of trees. Several
representations are analyzed and compared by calculating their mean area exponent as well as the area they allocate to nodes and
labels. Our analysis inspires a set of design guidelines as well as a few novel tree representations that are also presented.

Index Terms—Tree visualization, graph drawing, efficiency metrics.

1 INTRODUCTION

A variety of graphical representations are available for depicting tree
structures (Figure 1), from “classical” node-link diagrams [23, 7], to
treemaps [14, 26, 6, 30], concentric circles [2, 27, 31], and many others
(see [13] for a survey). A major consideration when designing, eval-
uating, or comparing such representations is how efficiently they use
screen space to show information about the tree. To date, however, it is
unclear how to go about evaluating space-efficiency in a way that can
be applied to the large variety of tree representations and that enables a
fair comparison of them. Space-efficiency might be described in terms
of area, aspect ratio, label size, or other measures. However, there is no
accepted standard set of metrics for evaluating the space-efficiency of
tree representations, and it is unclear what approach would be general
enough to be applied to all the forms in Figure 1.

Fig. 1. Several basic kinds of tree representations, here each showing
a complete 3-ary tree of depth 3 as an example. All representations
are drawn to just fit within a 1×1 unit square. A: classical (layered)
node-link [23, 7]. B: a variation on A, where the shape of nodes better
accommodates long labels. C: icicle. D: radial [10, 9]. E: concentric
circles [2, 27, 31]. F: nested circles, similar to [5, 28]. G: treemap [14,
26]. H: indented outline, sometimes called a “tree list”, and common in
file browsers such as Microsoft Explorer.

• Michael J. McGuffin is with École de technologie supérieure, Montréal,
Canada, E-mail: michael.mcguffin@etsmtl.ca.

• Jean-Marc Robert is with École de technologie supérieure, Montréal,
Canada, E-mail: jean-marc.robert@etsmtl.ca.

One basic metric of space-efficiency is the total area of a representa-
tion. Assuming the representation is bound within a 1×1 square, both
icicle diagrams and treemaps (Figures 1C and 1G) have a total area of
1, and are equally efficient (and both optimal) according to this met-
ric. Likewise, concentric circles and nested circles (Figures 1E and 1F)
both have a total area of π/4 ≈ 0.785 (the area of a circle of diameter
1), and are also equally efficient according to the metric of total area.
However, experience suggests that the representations within each of
these pairs do not scale equally well with larger, deeper trees. This
article shows that there are finer ways of distinguishing efficiency, i.e.
that there is more to space-efficiency than total area.

Treemaps are often described as optimally space-efficient, not just
because they have a total area of 1, but also because they allow for
what we call a weighted partitioning of the area. Nodes can be allo-
cated more or less area, depending on some attribute such as file size,
population, or number of species, and furthermore this weighted par-
titioning can be done without reducing the total area used. These are
indeed desirable properties, however they are not unique to treemaps.
Figure 2 shows that icicle diagrams also allow for a weighted parti-
tioning of area, and incidentally have no need for margins between the
borders of nodes as treemaps often do.

Furthermore, although a weighted partitioning is useful for showing
the relative sizes of nodes in Figures 2A and 2C, an unfortunate side
effect is that labels on small nodes are very difficult to read. If users
are more interested in seeing the identity of all nodes rather than their
relative sizes, an alternative approach would be to give equal weight to
each leaf node (Figures 2B and 2D), improving the overall legibility
of nodes. (Although not shown in the figure, the labels could also be
augmented to numerically show the “size” attribute of each node.) In
terms of label size or legibility, Figures 2B and 2D are clearly prefer-
able, but even they still result in much whitespace around certain la-
bels, suggesting that a more space-efficient (in terms of label size)
representation might be possible.

Clearly, it would be useful to have some way to quantitatively dis-
tinguish the four possibilities in Figure 2, e.g. in terms of their respec-
tive scalability and the sizes of their labels. If total area is the only
metric of space-efficiency used, and “optimal” space-efficiency is de-
fined as a total area of 1 (possibly partitioned by weight), then we
have no way of distinguishing these four cases. If alternative metrics
of space-efficiency are used, such as those investigated in this article,
it is not clear initially if treemaps, or any other representation, will still
turn out to be optimal with respect to such alternative metrics.

This article identifies several metrics related to space-efficiency,
and performs the first rigorous analysis and comparison of the space-
efficiency of most of the basic tree representation styles in the infor-
mation visualization literature, including all those in Figure 1. Some
of the key ideas involved are (1) the use of a metric of the size of the
smallest nodes (i.e. the leaf nodes) in the representation, in addition to
a metric of total area; (2) analyzing the area of labels on the nodes,
which implicitly takes into account both the size and aspect ratio of
the nodes, measuring how much “useful” area they contain; and (3)
analyzing how these metrics behave asymptotically, as the tree grows

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-7, NO. 2, MARCH 1981

Tidier Drawings of Trees
EDWARD M. REINGOLD AND JOHN S. TILFORD

Abstract-Various algorithms have been proposed for producing tidy
drawings of trees-drawings that are aesthetically pleasing and use mini-
mum drawing space. We show that these algorithms contain some
difficulties that lead to aesthetically unpleasing, wider than necessary
drawings. We then present a new algorithm with comparable time and
storage requirements that produces tidier drawings. Generalizations
to forests and m-ary trees are discussed, as are some problems in dis-
cretization when alphanumeric output devices are used.

Index Terns-Data structures, trees, tree structures.

INTRODUCTION
IN a recent article [6], Wetherell and Shannon presented algo-

rithms for producing "tidy" drawings of trees-drawings
that use as little space as possible while satisfying certain
aesthetics. The basic task is the assignment of x and y co-
ordinates to each node of a tree, after which a straightforward
plotting or printing routine generates a drawing of the tree.
Wetherell and Shannon give three aesthetics in an attempt to
define a "tidy" drawing of a binary tree.
Aesthetic 1: Nodes at the same level of the tree should lie

along a straight line, and the straight lines defining the levels
should be parallel.
Aesthetic 2: A left son should be positioned to the left of

its father and a right son to the right.
Aesthetic 3: A father should be centered over its sons.
Although not mentioned in [6], Aesthetic 1 was also meant

to require that the relative order of nodes across any level be
the same as in the level order traversal of the tree. This can be
shown to guarantee that edges in the tree do not intersect
except at nodes.
The algorithms presented in [6], try to achieve these aes-

thetics while at the same time minimizing width. Similar algo-
rithms were developed by Sweet [3] for use in his thesis, but
were never published. The basic algorithm of [6] proceeds as
follows. First, store in each node its level in the tree; this is
essentially its y coordinate. Then traverse the tree in post-
order, pausing at each node to give it an x coordinate. Initially,
a provisional x coordinate is assigned according to this rule: if
the node is a leaf, give it the next available position on its
level; if it has only a left son, give it a position one unit to the
right of its son; if it has only a right son, give it a position one
unit to the left of its son; otherwise (the node has two sons)
give it the average of their positions. Meanwhile, keep track

Manuscript received April 10, 1980.
The authors are with the Department of Computer Science, Univer-

sity of Illinois, Urbana-Champaign, IL 61801.

Fig. 1. Final positioning of example tree as drawn by Algorithm WS.

of the next available position on each level with an array
NEXT POS, indexed by level, in which each value is set to two
greater than the coordinate of the last node assigned on the
corresponding level.

If a provisional position is less than the next available posi-
tion on that level, the node is given the next available position,
and its subtrees are shifted to the right so as to be properly
positioned relative to it. Actually, the amount of the shift is
just stored in the current node and applied with all the other
shifts during a subsequent preorder traversal. Whenever a shift
is applied to a node, all nonleaf nodes to its right on the same
level must have at least the same shift applied to them and
their subtrees (because the nodes in those subtrees were posi-
tioned without knowledge of shifts that would occur above
them). This necessitates another array, indexed by level,
containing the most recent shift applied on each level.

DIFFICULTIES
Algorithm WS works well in many cases; however, it con-

tains an important deficiency. It can produce drawings that are
not really pleasing and that can be made narrower within the
constraints of the aesthetics. In Fig. 1, for example, nodes Y
and Z are too far apart; instead, the tree ought to be drawn as
shown in Fig. 2 because that tree is both narrower and aes-
thetically more pleasing, in fact, "tidier."
The problem of Algorithm WS in the drawing of Fig. 1 is the

influence of the fixed left margin, defmed by the values of the
array NEXT _POS. Since node Y is a leaf, it receives the next
available position on its level, 6. Now the lower part of the

0098-5589/81/0300-0223$00.75 © 1981 IEEE

223

Node-Link Diagram
• Trees are graphs
• …but we have more structure
• Horizontal or vertical
• Idea 1: partition space for each node

via recursion
• Idea 2: “Tidy” Drawing
- Wetherell & Shannon: Don’t waste

space (overlapping parent nodes is
ok)

- Reingold and Tilford: Keep
symmetry, subtrees look similar

15

[WS Alg., Reingold and Tilford, 1981]
D. Koop, CSCI 627/490, Fall 2023

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-7, NO. 2, MARCH 1981

Fig. 4. A tree and its mirror image positioned by Algorithm WS.

Fig. 2. Example tree as drawn by Algorithm TR.

Fig. 3. Example tree drawn by a modified Algorithm WS.

right subtree is built as usual, with Z being placed at 12. X,
the father of Y and Z, is given the average of their positions,
i.e., 9, and V receives the average of the positions ofW and X,
which is 8. This is too far to the left according to NEXT_POS,
so the subtree rooted at V is shifted two units to the right.
The resulting tree is two units wider than necessary. The
culprit is the empty space in the middle of the tree; it caused
Y to be placed too far to the left when it should have been
the minimum distance from Z (as A is from B). As the num-
ber of nodes increases, this anomalous behavior of Algorithm
WS can worsen.
Wetherell and Shannon present a modification to Algorithm

WS that guarantees minimum width drawings at the expense of
Aesthetic 3. Although the drawing it produces for the sample
tree (see Fig. 3) is not too wide, the drawing of Fig. 2 is much
better. Vaucher [5], independently of [3] and [6], developed
a tree printing algorithm that seems to avoid this problem but
does not satisfy the additional aesthetic constraint introduced
in the next section.
As our example illustrates, the difficulty with Algorithm WS

Fig. 5. A tree for which the narrowest drawing that satisfies Aesthetics
1-3 violates Aesthetic 4. The subtrees rooted at P and Q are iso-
morphic, but must be drawn nonisomorphically (as shown) to obtain
a minimum width drawing.

stems from the fact that the shape of a subtree is influenced
by the positioning of nodes outside that subtree; Sweet [3]
made a similar observation. As a consequence, symmetric
trees may be drawn asymmetrically, or more generally, a tree
and its reflection will not always produce mirror image draw-
ings; even the same subtree may appear differently in different
parts of the tree. Fig. 4 shows a small tree and its reflection
whose drawings by Algorithm WS are not mirror images.

A NEW AESTHETIC AND ALGORITHM
It is certainly desirable that a symmetric tree be drawn

symmetrically; therefore, we introduce a new aesthetic that
guarantees this (along with a somewhat stronger requirement).
Aesthetic 4: A tree and its mirror image should produce

drawings that are reflections of one another; moreover, a sub-
tree should be drawn the same way regardless of where it
occurs in the tree.
We pay a price for this aesthetic in terms of the width of the

tree. Fig. 5 illustrates a tree for which the narrowest drawing
that satisfies Aesthetics 1-3 violates Aesthetic 4. Nevertheless,
we consider Aesthetic 4 to be more important than minimum
width since the shape of the printed tree and its reflection
ought to be independent of its surroundings to aid in human
perception. In any case, with the exception of the theoreti-
cally interesting but impractical linear programming technique
of [2], the published tree printing algorithms all fail to pro-
duce minimum width placements, even without the stricture
of Aesthetic 4.

224 Reingold-Tilford Algorithm
• Recurse on left and right subtrees
• Shift subtree over as long as it

doesn’t overlap
• Place parent centered above the

subtrees
• Originally, only binary trees, extended

by Walker

16

[Reingold and Tilford, 1981]
D. Koop, CSCI 627/490, Fall 2023

Icicle Plot
• Line marks
• Vertical position shows depth
• Horizontal position shows links and

sibling order
• Scalability: 1 pixel leaves, but harder

to label

17

[Bostock, 2011]
D. Koop, CSCI 627/490, Fall 2023

TreeM
apLayout

TreeM
apLayout

StackedAreaLayout
StackedAreaLayout

Random
Layout

Random
Layout

RadialTreeLayout
RadialTreeLayout

PieLayout
PieLayout

NodeLinkTreeLayout
NodeLinkTreeLayout

Layout
Layout

IndentedTreeLayout
IndentedTreeLayout

IcicleTreeLayout
IcicleTreeLayout

ForceDirectedLayout

ForceDirectedLayout

Dendrogram
Layout

Dendrogram
Layout

CirclePackingLayout

CirclePackingLayout

CircleLayout
CircleLayout

BundledEdgeRouter

BundledEdgeRouter

AxisLayout
AxisLayout

StackedAreaLabeler

StackedAreaLabeler

RadialLabeler

RadialLabeler

Labeler
Labeler

VisibilityFilter

VisibilityFilter

GraphDistanceFilter

GraphDistanceFilter

FisheyeTreeFilter

FisheyeTreeFilter

SizeEncoder

SizeEncoder

ShapeEncoder

ShapeEncoder

PropertyEncoder

PropertyEncoder

Encoder

Encoder

ColorEncoder

ColorEncoder

FisheyeDistortion

FisheyeDistortion

Distortion

Distortion

BifocalDistortion

BifocalDistortion

ShapeRenderer

ShapeRenderer
IRenderer

IRenderer

EdgeRenderer

EdgeRenderer
ArrowType
ArrowType

layout
layoutlabel

labelfilter
filterencoder

encoder

distortion

distortion

SortOperator

SortOperator

OperatorSwitch

OperatorSwitch

OperatorSequence

OperatorSequence

OperatorList

OperatorList

Operator

Operator

IOperator

IOperator

LegendRange

LegendRange

LegendItem

LegendItem
Legend
Legend

VisualizationEvent

VisualizationEvent

TooltipEvent

TooltipEvent

SelectionEvent

SelectionEvent
DataEvent

DataEvent

render
render

TreeBuilder

TreeBuilderTreeTree
ScaleBinding

ScaleBindingNodeSprite
NodeSpriteEdgeSprite
EdgeSpriteDataSprite
DataSpriteDataList
DataListDataData

TooltipControl
TooltipControlSelectionControl

SelectionControlPanZoomControl
PanZoomControlIControlIControlHoverControlHoverControlExpandControlExpandControl

DragControlDragControl
ControlListControlList

ControlControl
ClickControlClickControl

AnchorControlAnchorControl

CartesianAxe
s

CartesianAxe
s

AxisLabelAxisLabel

AxisGridL
ine

AxisGridL
ine
AxisAxis
AxesAxes

SizeP
alette

SizeP
alette

Shape
Palett

e
Shape

Palett
e

Palet
te

Palet
te

Colo
rPale

tte
Colo

rPale
tte

Spar
seM

atrix

Spar
seM

atrix

IMat
rix

IMat
rix

Den
seM

atrix

Den
seM

atrix

Hea
pNo

de

Hea
pNo

de

Fibo
nac

ciH
eap

Fibo
nac

ciH
eap

xo
r

xo
r

wh
er
e

wh
er
e

va
ria
nc
e

va
ria
nc
e

up
da
te

up
da
te

su
m

su
m

su
b

su
b

st
dd
ev

st
dd
ev

se
le
ct

se
le
ct

ra
ng
e

ra
ng
e

or
de
rb
y

or
de
rb
y oror

not
not
neq
neq
m
ul

m
ul

m
od

m
od

m
in

m
in

m
ax

m
ax

ltelte ltlt
isaisa
iffiff gte
gte
gtgt
fnfn eqeq

divdiv
distinct
distinct
count
count
average
average
and
and
add
add
__

JSON
Conv

erter

JSON
Conv

erter
IData

Conv
erter

IData
Conv

erter
Grap

hML
Conv

erter

Grap
hML

Conv
erter

Delim
itedT

extC
onve

rter

Delim
itedT

extC
onve

rter

Con
vert

ers

Con
vert

ers

Re
cta
ngl
eIn
terp

ola
tor

Re
cta
ngl
eIn
terp

ola
tor

Po
intI
nte
rpo
lato

r

Po
intI
nte
rpo
lato

r

Ob
jec
tInt
erp
ola
tor

Ob
jec
tInt
erp
ola
tor

Nu
mb
erI
nte
rpo
lato
r

Nu
mb
erI
nte
rpo
lato
r

Ma
trix
Int
erp
ola
tor

Ma
trix
Int
erp
ola
tor

Int
erp
ola
tor

Int
erp
ola
tor

Da
teI
nte
rpo
lat
or

Da
teI
nte
rpo
lat
or

Co
lor
Int
erp
ola
tor

Co
lor
Int
erp
ola
tor

Ar
ray
Int
erp
ola
tor

Ar
ray
Int
erp
ola
tor

As
pe
ct
Ra
tio
Ba
nk
er

As
pe
ct
Ra
tio
Ba
nk
er

Sp
an
ni
ng
Tr
ee

Sp
an
ni
ng
Tr
ee

Sh
or
te
st
Pa
th
s

Sh
or
te
st
Pa
th
s

M
ax
Fl
ow
M
in
Cu
t

M
ax
Fl
ow
M
in
Cu
t

Li
nk
Di
st
an
ce

Li
nk
Di
st
an
ce

Be
tw
ee
nn
es
sC
en
tra
lity

Be
tw
ee
nn
es
sC
en
tra
lity

M
er
ge
Ed
ge

M
er
ge
Ed
ge

Hi
er
ar
ch
ica

lC
lu
st
er

Hi
er
ar
ch
ica

lC
lu
st
er

Co
m
m
un
ity
St
ru
ct
ur
e

Co
m
m
un
ity
St
ru
ct
ur
e

Ag
gl
om

er
at
ive

Cl
us
te
r

Ag
gl
om

er
at
ive

Cl
us
te
r

operator
operator

legend
legendevents

events

datadata

controlscontrols

axisaxis

Visualiz
ation

Visualiz
ation

palett
e

palett
e

mathmath

hea
p

hea
p

Stri
ngs

Stri
ngs

Sta
ts

Sta
ts
So
rt

So
rt

Sh
ape

s

Sh
ape

s

Pro
pe
rty

Pro
pe
rty

Or
ien
tat
ion

Or
ien
tat
ion

Ma
ths

Ma
ths

IVa
lue
Pr
ox
y

IVa
lue
Pr
ox
y

IP
red
ica
te

IP
red
ica
te

IE
va
lua
ble

IE
va
lua
ble

Ge
om
etr
y

Ge
om
etr
y

Fil
ter

Fil
ter

Di
sp
lay
s

Di
sp
lay
s

Da
te
s

Da
te
s

Co
lor
s

Co
lor
s

Ar
ra
ys

Ar
ra
ys

Ti
m
eS
ca
le

Ti
m
eS
ca
le

Sc
al
eT
yp
e

Sc
al
eT
yp
e

Sc
al
e

Sc
al
e

Ro
ot
Sc
al
e

Ro
ot
Sc
al
e

Q
ua
nt
ita
tiv
eS
ca
le

Q
ua
nt
ita
tiv
eS
ca
le

Q
ua
nt
ile
Sc
al
e

Q
ua
nt
ile
Sc
al
e

O
rd
in
al
Sc
al
e

O
rd
in
al
Sc
al
e

Lo
gS
ca
le

Lo
gS
ca
le

LinearScale
LinearScale
IScaleM

ap
IScaleM

ap
m
ethods

m
ethods

Xor
Xor
Variance
Variance
Variable
Variable
Sum
Sum
StringUtil
StringUtil
Range
Range
Query
Query
OrOr
Not
Not
Minimum
Minimum
Maximum

Maximum
Match
Match
Literal
Literal
IsAIsA
IfIf

FnFn

ExpressionIterator

ExpressionIterator

Expression

Expression

Distinct

Distinct

DateUtil

DateUtil

Count
Count

CompositeExpression

CompositeExpression

Comparison

Comparison

BinaryExpression

BinaryExpression

Average
Average

Arithmetic
Arithmetic

AndAnd
AggregateExpression

AggregateExpression

SpringForce
SpringForce

SpringSpring
SimulationSimulation
ParticleParticle
NBodyForceNBodyForce
IForceIForce
GravityForceGravityForce
DragForceDragForce
FlareVisFlareVis
TextSpri

te
TextSpri

teRectSp
rite

RectSp
riteLineSp
rite

LineSp
riteDirtyS

prite
DirtyS

prite

conv
erter

s
conv

erter
s
Data

Util
Data

UtilDat
aTa

ble

Dat
aTa

bleDat
aSo

urce

Dat
aSo

urce
Dat

aSe
t

Dat
aSe

t
Da
taS
che

ma

Da
taS
che

ma

Da
taF
ield

Da
taF
ield

inte
rpo
late

inte
rpo
late

Tw
ee
n

Tw
ee
n

Tra
ns
itio
ne
r

Tra
ns
itio
ne
r

Tra
ns
itio
nE
ve
nt

Tra
ns
itio
nE
ve
nt

Tra
ns
itio
n

Tra
ns
itio
n

Se
qu
en
ce

Se
qu
en
ce

Sc
he
du
ler

Sc
he
du
ler

Pa
us
e

Pa
us
e

Pa
ra
lle
l

Pa
ra
lle
l

IS
ch
ed
ula
ble

IS
ch
ed
ula
ble

Fu
nc
tio
nS
eq
ue
nc
e

Fu
nc
tio
nS
eq
ue
nc
e

Ea
sin
g

Ea
sin
g

op
tim
iza
tio
n

op
tim
iza
tio
n

gr
ap
h

gr
ap
h

clu
st
er

clu
st
er

visvis

utilutil

sc
al
e

sc
al
e

query
query

physicsphysics

flexflex
displaydisplay

datadata

an
im
ate

an
im
atean
al
yt
ics

an
al
yt
ics

flare
flare
flare

an
al
yt
ics

an
im
ate

data

display
flex

physics

query

sc
al
e

util

vis

clu
st
er

gr
ap
h

op
tim
iza
tio
n

Ea
sin
g

Fu
nc
tio
nS
eq
ue
nc
e

IS
ch
ed
ula
ble

Pa
ra
lle
l

Pa
us
e

Sc
he
du
ler

Se
qu
en
ce

Tra
ns
itio
n

Tra
ns
itio
nE
ve
nt

Tra
ns
itio
ne
r

Tw
ee
n

inte
rpo
late Da

taF
ield

Da
taS
che

ma

Dat
aSe

t

Dat
aSo

urce

Dat
aTa

ble

Data
Util

conv
erter

s
DirtyS

prite

LineSp
rite

RectSp
rite

TextSpri
te

FlareVis

DragForce
GravityForce
IForce
NBodyForceParticleSimulationSpringSpringForceAggregateExpression

AndArithmeticAverageBinaryExpression

Comparison
CompositeExpression

CountDateUtil
Distinct
Expression

ExpressionIterator

FnIfIsALiteral

Match

Maximum

Minimum

NotOrQuery
Range
StringUtil

Sum
Variable
Variance
Xor

m
ethods

IScaleM
ap

LinearScaleL
og
Sc
al
e

O
rd
in
al
Sc
al
e

Q
ua
nt
ile
Sc
al
e

Q
ua
nt
ita
tiv
eS
ca
le

Ro
ot
Sc
al
e

Sc
al
e

Sc
al
eT
yp
e

Ti
m
eS
ca
le

Ar
ra
ys

Co
lor
s

Da
te
s

Di
sp
lay
s

Fil
ter

Ge
om
etr
y

IE
va
lua
ble

IP
red
ica
te

IVa
lue
Pr
ox
y

Ma
ths

Or
ien
tat
ion

Pro
pe
rtySh

ape
sSo

rtSta
tsStri

ngs
hea

p
math

palett
eVisualiz

ation
axis

controls

data

events

legend

operator

Ag
gl
om

er
at
ive

Cl
us
te
r

Co
m
m
un
ity
St
ru
ct
ur
e

Hi
er
ar
ch
ica

lC
lu
st
er

M
er
ge
Ed
ge

Be
tw
ee
nn
es
sC
en
tra
lity

Li
nk
Di
st
an
ce

M
ax
Fl
ow
M
in
Cu
t

Sh
or
te
st
Pa
th
s

Sp
an
ni
ng
Tr
ee

As
pe
ct
Ra
tio
Ba
nk
er

Ar
ray
Int
erp
ola
tor

Co
lor
Int
erp
ola
tor

Da
teI
nte
rpo
lat
or

Int
erp
ola
tor

Ma
trix
Int
erp
ola
tor

Nu
mb
erI
nte
rpo
lato
r

Ob
jec
tInt
erp
ola
tor

Po
intI
nte
rpo
lato

r

Re
cta
ngl
eIn
terp

ola
tor

Con
vert

ers

Delim
itedT

extC
onve

rter

Grap
hML

Conv
erter

IData
Conv

erter

JSON
Conv

erter

_addandaverage

count
distinct

diveqfngtgteiffisaltltem
ax

m
in

m
od

m
ul

neq
noto

r
or
de
rb
y

ra
ng
e

se
le
ct

st
dd
evsu
b

su
m

up
da
te

va
ria
nc
e

wh
er
exo
r

Fibo
nac

ciH
eapHea

pNo
deDen

seM
atrixIMat
rix

Spar
seM

atrixColo
rPale

ttePalet
teShape

Palett
eSizeP

alette
Axes
AxisAxisGridL
ineAxisLabel

CartesianAxe
s

AnchorControl
ClickControl

Control
ControlList
DragControl

ExpandControl
HoverControl

IControl

PanZoomControl

SelectionControl

TooltipControl

Data
DataList

DataSprite

EdgeSprite

NodeSprite

ScaleBinding
Tree

TreeBuilder render

DataEvent

SelectionEvent

TooltipEvent

VisualizationEvent

Legend

LegendItem

LegendRange

IOperator

Operator

OperatorList

OperatorSequence

OperatorSwitch

SortOperator distortion
encoder

filter

label

layout

ArrowType

EdgeRenderer

IRenderer

ShapeRenderer

BifocalDistortion
Distortion

FisheyeDistortion
ColorEncoder

Encoder

PropertyEncoder

ShapeEncoder
SizeEncoder

FisheyeTreeFilter

GraphDistanceFilter
VisibilityFilter

Labeler
RadialLabeler

StackedAreaLabeler
AxisLayout

BundledEdgeRouter
CircleLayout

CirclePackingLayout
Dendrogram

Layout
ForceDirectedLayout

IcicleTreeLayout
IndentedTreeLayout

Layout
NodeLinkTreeLayout

PieLayout
RadialTreeLayout
Random

Layout
StackedAreaLayout

TreeM
apLayout

Radial Node-Link
• Use polar coordinates instead of

rectilinear
• Same layout algorithms work

(e.g. Reingold-Tilford)
• Benefit: space usage, labels

18

[M. Bostock, 2017]
D. Koop, CSCI 627/490, Fall 2023

https://observablehq.com/@d3/radial-tidy-tree

an
al
yt
ics

cl
us
te
r

H
ie
ra
rc
hi
ca
lC
lu
st
er

gr
ap
h

Li
nk
Di
st
an
ce

M
ax
Fl
ow
M
in
Cu
t

Sh
or
te
st
Pa
th
s

As
pe
ct
Ra
tio
Ba
nk
er

an
im
ate

Ea
sin
g

Tr
an
sit
ion

Tra
ns
itio
ne
r

inte
rpo
late

Inte
rpo
lato
r

data

conv
erte

rs
Gra

phM
LCo

nver
ter

TextSp
rite

physics
NBodyForc

e

Simulation

query

Query
methods

scale

util

Colors

Displays

Geom
etry

M
aths

Shapes

St
rin
gs

he
ap

Fi
bo
na
cc
iH
ea
p

m
at
h

pa
le
tte

Co
lo
rP
al
et
te

vis

Vi
su
al
iza
tio
n

ax
is

Ax
is

Ca
rte
sia
nA
xe
s

co
ntr
ols

Se
lec
tion
Co
ntr
ol

Too
ltip
Co
ntr
ol

data

Dat
a

Data
List

Data
Sprite

NodeSp
rite

ScaleBinding
Tree

TreeBuilder

renderEdgeRenderer

legend
Legend

LegendRange
operator

distortion

BifocalDistortion

Distortion
encoder

Encoder

PropertyEncoder
filter

FisheyeTreeFilter

label

Labeler

layout

AxisLayout
CircleLayout

CirclePackingLayout

Dendrogram
Layout

ForceDirectedLayout
IcicleTreeLayout
Layout

NodeLinkTreeLayout

RadialTreeLayout

StackedAreaLayout

TreeM
apLayout

The Flare package tree laid out in progressive radial layout. The angles of the wedges are
sized to correctly partition their parent wedge by their angle.

Sunburst
• Icicle plot in a radial layout
• Reading labels?
• Intuitive navigation

19

[Heer et al., 2012]
D. Koop, CSCI 627/490, Fall 2023

Indented Outline
• Like a filesystem tree
• Use horizontal position to show depth,

vertical positions show sibling/order

20D. Koop, CSCI 627/490, Fall 2023

Node
Link
Tree
Layout
12,870

Radial
Tree
Layout
12,348

Circle
Packing
Layout
12,003

Circle
Layout
9,317

Tree
Map
Layout
9,191

Stacked
Area
Layout
9,121

Force
Directed
Layout
8,411

Layout
7,881

Axis
Layout
6,725

Icicle
Tree
Layout
4,864

Dendrogram
Layout
4,853

Bundled
Edge
Router
3,727

Indented
Tree
Layout
3,174

Pie
Layout
2,728

Random
Layout
870

Labeler
9,956

Radial
Labeler
3,899

Stacked
Area
Labeler
3,202

Property
Encoder
4,138
Encoder
4,060

Color
Encoder
3,179

Size
Encoder
1,830

Shape
Encoder

Distortion
6,314

Bifocal
Distortion
4,461

Fisheye
Distortion
3,444

Fisheye
Tree
Filter
5,219
Visibility
Filter
3,509

Graph
Distance
Filter
3,165

Operator
List
5,248

Operator
Sequence
4,190

Operator
Switch
2,581

Operator
2,490

Sort
Operator
2,023

I
Operator
1,286

Data
20,544

Data
List
19,788

Node
Sprite
19,382

Scale
Binding
11,275

Data
Sprite
10,349

Tree
Builder
9,930

Edge
Renderer
5,569

Shape
Renderer
2,247

Arrow
Type
698
I
Renderer

Tree
7,147

Edge
Sprite
3,301

Tooltip
Control
8,435

Selection
Control
7,862

Pan
Zoom
Control
5,222

Hover
Control
4,896

Control
List
4,665

Click
Control
3,824

Expand
Control
2,832
Drag
Control

Anchor
Control
2,138

Control
1,353

I
Control

Legend
20,859

Legend
Range
10,530

Legend
Item
4,614

Axis
24,593

Cartesian
Axes
6,703

Axes
1,302

Axis
Grid
LineAxis
Label

Visualization
16,540

Data
Event
2,313
Selection
Event

Tooltip
Event
1,701
Visualization
Event

Strings
22,026

Shapes
19,118

Maths
17,705

Displays
12,555

Color
Palette
6,367

Size
Palette
2,291

Shape
Palette
2,059

Palette
1,229Geometry

10,993

Fibonacci
Heap
9,354

Heap
Node
1,233

Colors
10,001

Sparse
Matrix
3,366
Dense
Matrix
3,165

I
Matrix
2,815

Arrays
8,258

Dates
8,217

Sort
6,887

Stats
6,557

Property
5,559

Filter
2,324

Orientation
1,486

I
Value
ProxyI
Predicate

I
Evaluable
335

Interpolator
8,746

Matrix
Interpolator

Color
Interpolator
2,047

Rectangle
Interpolator
2,042

Array
Interpolator
1,983

Point
Interpolator
1,675
Object
Interpolator
1,629

Number
Interpolator
1,382
Date
Interpolator
1,375

Transitioner
19,975

Easing
17,010

Transition
9,201

Tween
6,006

Function
Sequence
5,842

Scheduler
5,593

Sequence
5,534

Parallel
5,176

Transition
Event
I
Schedulable

Pause
449

range
772iff
748gte
lte
gt
mul

sub
600

neq
599

lt
597

div
595

eq
594

add
593
mod
591
isa
fn

not
386

stddev
363

xor
354

variance
335and

or
orderby
update

where
299

select
296

distinct
292average

max
min

sum
280
count
277

_

Query
13,896

Expression
5,130

Comparison
5,103

Date
Util
4,141

String
Util
4,130

Arithmetic
3,891

Match
3,748

Composite
Expression
3,677

Expression
Iterator
3,617

Fn
3,240

Binary
Expression
2,893

If
2,732

IsA
2,039

Variance
1,876

Aggregate
Expression
1,616
Range
1,594

Not
1,554
Literal
1,214
Variable
1,124
Xor
1,101

And
1,027

Or
970

Distinct
933

Average
891Maximum
843Minimum
843

Sum
791
Count
781

Max
Flow
Min
Cut
7,840

Shortest
Paths
5,914

Link
Distance
5,731

Betweenness
Centrality
3,534

Spanning
Tree
3,416

Hierarchical
Cluster
6,714

Agglomerative
Cluster
3,938

Community
Structure
3,812

Merge
Edge

Aspect
Ratio
Banker
7,074

Time
Scale
5,833

Quantitative
Scale
4,839

Scale
4,268

Ordinal
Scale
3,770

Log
Scale
3,151

Quantile
Scale
2,435

I
Scale
Map
2,105

Scale
Type
1,821

Root
Scale
1,756

Linear
Scale

GraphML
Converter
9,800

Delimited
Text
Converter
4,294

JSON
Converter
2,220

I
Data
Converter

Converters
721

Data
Source
3,331

Data
Util
3,322

Data
Schema
2,165
Data
Field

Data
Table
772
Data
Set

N
Body
Force
10,498

Simulation
9,983

Particle
2,822

Spring
2,213

Spring
Force
1,681

Gravity
Force
1,336

Drag
Force

I
Force

Text
Sprite
10,066

Dirty
Sprite
8,833

Rect
Sprite
3,623

Line
Sprite
1,732

Flare
Vis
4,116

Treemap

21

[M. Bostock, 2017]
D. Koop, CSCI 627/490, Fall 2023

https://observablehq.com/@d3/treemap?collection=@d3/d3-hierarchy

Car/Truck Treemap

22

[A. Cox and H. Fairfield, NYTimes, 2012]
D. Koop, CSCI 627/490, Fall 2023

http://www.nytimes.com/imagepages/2007/02/25/business/20070225_CHRYSLER_GRAPHIC.html

Car/Truck Treemap

23

[A. Cox and H. Fairfield, NYTimes, 2012]
D. Koop, CSCI 627/490, Fall 2023

http://www.nytimes.com/imagepages/2007/02/25/business/20070225_CHRYSLER_GRAPHIC.html

Treemap
• Containment marks instead of connection marks
• Encodes some attribute of the items as the size of the rectangles
• Not as easy to see the intermediate rectangles
• Scalability: millions of leaf nodes and links possible

• Need a layout algorithm!

24D. Koop, CSCI 627/490, Fall 2023

Layout Algorithms
• How do we generate the area marks?
• What considerations should we try to keep in mind?

25D. Koop, CSCI 627/490, Fall 2023

Layout Algorithms
• How do we generate the area marks?
• What considerations should we try to keep in mind?
- area true to quantitative value
- show hierarchy
- aspect ratio

• Also…
- ordering
- stability

26D. Koop, CSCI 627/490, Fall 2023

Node
Link
Tree
Layout
Radial
Tree
LayoutCircle
Packing
LayoutCircle
LayoutTree
Map
Layout
Stacked
Area
Layout
Force
Directed
Layout
LayoutAxis
LayoutIcicle
Tree
Layout
Dendrogram
LayoutBundled
Edge
Router
Indented
Tree
Layout
Pie
Layout
2,728
Labeler
Radial
LabelerStacked
Area
Labeler
Property
EncoderEncoderColor
Encoder
3,179

Size
Encoder
1,830
DistortionBifocal
DistortionFisheye
DistortionFisheye
Tree
Filter
Visibility
Filter
3,509

Graph
Distance
Filter
Operator
ListOperator
SequenceOperator
SwitchOperator
2,490
Sort
Operator
2,023

I
Operator
1,286
Data
20,544
Data
List
Node
Sprite
Scale
BindingData
SpriteTree
BuilderEdge
RendererTreeEdge
SpriteTooltip
ControlSelection
ControlPan
Zoom
Control
Hover
ControlControl
ListClick
ControlExpand
ControlDrag
Control
2,649

Anchor
ControlLegend
20,859Legend
RangeLegend
ItemAxis
24,593
Cartesian
AxesAxes
1,302
Visualization
16,540Data
Event
2,313
Strings
22,026
Shapes
19,118Maths
17,705Displays
Color
PaletteSize
Palette
2,291
Geometry
Fibonacci
HeapColors
Sparse
MatrixDense
Matrix
3,165

I
MatrixArrays
Dates
SortStatsPropertyFilter
2,324Interpolator
Matrix
Interpolator
2,202
Rectangle
Interpolator
2,042

Array
Interpolator
1,983
Object
Interpolator
1,629
Transitioner
19,975
Easing
17,010Transition
TweenFunction
SequenceSchedulerSequenceParallel

Query
ExpressionComparisonDate
UtilString
UtilArithmeticMatchComposite
ExpressionExpression
IteratorFnBinary
ExpressionIf
2,732
IsA
2,039
Variance
1,876
Aggregate
Expression
1,616
Not
1,554Max
Flow
Min
Cut

Shortest
PathsLink
DistanceBetweenness
CentralitySpanning
TreeHierarchical
ClusterAgglomerative
ClusterCommunity
StructureAspect
Ratio
Banker
Time
ScaleQuantitative
ScaleScaleOrdinal
ScaleLog
ScaleQuantile
Scale
2,435

I
Scale
Map
2,105

Scale
Type
1,821
Linear
Scale
1,316
GraphML
ConverterDelimited
Text
Converter
JSON
Converter
2,220
Data
SourceData
UtilData
Schema
2,165

Data
Field
1,759
N
Body
Force
Simulation
ParticleSpring
2,213Text
SpriteDirty
SpriteRect
SpriteLineFlare

Treemap Layouts: Slice
• Just divide horizontally
• Dice is similar, just vertical
• Problem: Bad aspect ratio!
- Very skinny rectangles
- Makes it harder to compare sizes,

see labels, select rectangles
- Want rectangles that are closer to

squares
- Aspect ratio = width/height

27

[Notebook]
D. Koop, CSCI 627/490, Fall 2023

https://observablehq.com/@dakoop/treemap

Node
Link
Tree
Layout
12,870
Radial
Tree
Layout
12,348
Circle
Packing
Layout
12,003
Circle
Layout
9,317
Tree
Map
Layout
9,191Stacked
Area
Layout
9,121Force
Directed
Layout
Layout
7,881
Axis
Layout
6,725Icicle
Tree
LayoutDendrogram
Layout
Bundled
Edge
RouterIndented
Tree
LayoutPie
LayoutRandom
Layout

Labeler
9,956

Radial
Labeler
3,899

Stacked
Area
Labeler
3,202

Property
Encoder
4,138

Encoder
4,060

Color
Encoder
3,179

Size
Encoder
1,830

Shape
Encoder
1,690

Distortion
6,314

Bifocal
Distortion
4,461

Fisheye
Distortion
3,444

Fisheye
Tree
Filter
5,219

Visibility
Filter
3,509

Graph
Distance
Filter
3,165

Operator
List
5,248

Operator
Sequence
4,190

Operator
Switch
2,581

Operator
2,490
Sort
Operator
2,023

I
Operator
1,286

Data
20,544

Data
List
19,788

Node
Sprite
19,382

Scale
Binding
11,275

Data
Sprite
10,349

Tree
Builder
9,930

Edge
Renderer
5,569

Shape
Renderer
2,247

Arrow
Type
I
Renderer

Tree
7,147

Edge
Sprite
3,301

Tooltip
Control
8,435

Selection
Control
7,862

Pan
Zoom
Control
5,222

Hover
Control
4,896

Control
List
4,665

Click
Control
3,824

Expand
Control
2,832

Drag
Control
2,649

Anchor
Control
2,138

Control
1,353
I
Control
763

Legend
20,859

Legend
Range
10,530

Legend
Item
4,614

Axis
24,593

Cartesian
Axes
6,703

Axes
1,302

Axis
Grid
Line
652

Axis
Label
636

Visualization
16,540

Data
Event

Selection
Event

Tooltip
Event

Visualization
Event

Strings
22,026

Shapes
19,118

Maths
17,705

Displays
12,555

Color
Palette
6,367

Size
Palette
2,291

Shape
Palette
2,059

Palette
1,229

Geometry
10,993

Fibonacci
Heap
9,354

Heap
Node
1,233

Colors
10,001

Sparse
Matrix
3,366

Dense
Matrix
3,165

I
Matrix
2,815

Arrays
8,258

Dates
8,217

Sort
6,887

Stats
6,557

Property
5,559

Filter
Orientation
I
ValueII

Interpolator
8,746

Matrix
Interpolator
2,202

Color
Interpolator
2,047

Rectangle
Interpolator
2,042

Array
Interpolator
1,983

Point
Interpolator
1,675

Object
Interpolator
1,629

Number
Interpolator
1,382

Date
Interpolator
1,375

Transitioner
19,975

Easing
17,010

Transition
9,201

Tween
6,006

Function
Sequence
5,842

Scheduler
5,593

Sequence
5,534

Parallel
5,176

Transition
EventI
SchedulablePause

range
772
iff
748
gte
625
lte
619
gt
603
mul
603
sub
600
neq
599
lt
597
div
595
eq
594
add
593
mod
591
isa
461
fn
460
not
386
stddev
363
xor
354
variance
335
and
330
or
323
orderby
307
update
307
select
296
distinct
292
average
287
min
283
sum
280
_
264

Query
13,896

Expression
5,130

Comparison
5,103

Date
Util
4,141

String
Util
4,130

Arithmetic
3,891

Match
3,748

Composite
Expression
3,677
Expression
Iterator
3,617
Fn
3,240

Binary
Expression
2,893
If
2,732
IsA
2,039
Variance
1,876
Aggregate
Expression
Range
1,594Not
1,554Literal
Variable
Xor
And
Or
Distinct
Average
Maximum
Minimum
Sum
Count

Max
Flow
Min
Cut
7,840

Shortest
Paths
5,914

Link
Distance
5,731

Betweenness
Centrality
3,534

Spanning
Tree
3,416

Hierarchical
Cluster
6,714

Agglomerative
Cluster
3,938

Community
Structure
3,812

Merge
Edge
743

Aspect
Ratio
Banker
7,074

Time
Scale
5,833

Quantitative
Scale
4,839

Scale
4,268

Ordinal
Scale
3,770

Log
Scale
3,151

Quantile
Scale
2,435

I
Scale
Map
2,105

Scale
Type
1,821

Root
Scale
1,756

Linear
Scale
1,316

GraphML
Converter
9,800

Delimited
Text
Converter
4,294

JSON
Converter
2,220

I
Data
Converter
1,314

Data
Source
3,331

Data
Util
3,322

Data
Schema
2,165

Data
Field
1,759

Data
Table
772Data
Set

N
Body
Force
10,498

Simulation
9,983

Particle
2,822

Spring
2,213

Spring
Force
1,681

Gravity
Force
1,336

Drag
Force
1,082
I
Force

Text
Sprite
10,066

Dirty
Sprite
8,833

Rect
Sprite
3,623

Line
Sprite
1,732

Flare
Vis
4,116

Treemap Layouts: Slice & Dice
• Split at each level into strips
• At each step, orientation of division

(horizontal/vertical) changes
• Better, but some rectangles still have

bad aspect ratio

28

[Notebook]
D. Koop, CSCI 627/490, Fall 2023

https://observablehq.com/@dakoop/treemap

Node
Link
Tree
Layout
12,870

Radial
Tree
Layout
12,348

Circle
Packing
Layout
12,003

Circle
Layout
9,317

Tree
Map
Layout
9,191

Stacked
Area
Layout
9,121

Force
Directed
Layout
8,411

Layout
7,881Axis
LayoutIcicle
Tree
Layout
Dendrogram
LayoutBundled
Edge
Router
Indented
Tree
Layout
Pie
LayoutRandom
Layout
870
Labeler
9,956

Radial
LabelerStacked
Area
Labeler

Property
Encoder
4,138

Encoder
4,060

Color
EncoderSize
EncoderShape
EncoderDistortion

Bifocal
DistortionFisheye
DistortionFisheye
Tree
FilterVisibility
FilterGraph
Distance
Filter
Operator
ListOperator
SequenceOperator
SwitchOperatorSort
OperatorI
Operator

Data
20,544

Data
List
19,788

Node
Sprite
19,382

Scale
Binding
11,275

Data
Sprite
10,349

Tree
Builder
9,930
Edge
Renderer
Shape
RendererArrow
Type
698
Tree
7,147
Edge
SpriteTooltip

ControlSelection
ControlPan
Zoom
Control
Hover
ControlControl
ListClick
ControlExpand
ControlDrag
ControlAnchor
ControlControl
1,353Legend
20,859
Legend
RangeLegend
ItemAxis
24,593

Cartesian
AxesAxes
1,302Visualization
16,540
Data
EventSelection
Event
1,880

Tooltip
Event
1,701

Strings
22,026

Shapes
19,118

Maths
17,705

Displays
12,555

Color
Palette
6,367

Size
Palette
2,291

Shape
Palette
2,059

Palette
1,229Geometry

10,993
Fibonacci
Heap
9,354

Heap
Node

Colors
10,001

Sparse
Matrix
3,366

Dense
Matrix
3,165

I
Matrix
2,815

Arrays
8,258

Dates
8,217

Sort
6,887
Stats
6,557
Property
5,559
Filter
OrientationI
Value
Proxy
I
Predicate
383

Interpolator
8,746
Matrix
InterpolatorColor
InterpolatorRectangle
InterpolatorArray
InterpolatorPoint
InterpolatorObject
InterpolatorNumber
InterpolatorDate
Interpolator

Transitioner
19,975

Easing
17,010

Transition
9,201Tween
Function
SequenceScheduler
Sequence
Parallel
Transition
Event
1,116

I
Schedulable
1,041

range iff gte
lte gt mul
sub neqlt diveq addmod isafn notstddev
363
and
330
update
307sum
280

Query
13,896

Expression
5,130

Comparison
5,103

Date
Util

String
Util

Arithmetic
3,891

Match
3,748Composite

Expression
Expression
IteratorFnBinary

ExpressionIfIsAVarianceAggregate
ExpressionRangeNotLiteralVariable
1,124
Xor
1,101
And
1,027
Or
970
Distinct
933
Average
891
Maximum
843
Minimum
843
Count
781Max

Flow
Min
Cut

Shortest
PathsLink
DistanceBetweenness
CentralitySpanning
TreeHierarchical
ClusterAgglomerative
ClusterCommunity
StructureAspect
Ratio
Banker
Time
ScaleQuantitative
ScaleScaleOrdinal
ScaleLog
ScaleQuantile
Scale
2,435

I
Scale
Map
2,105

Scale
Type
1,821
Linear
Scale
1,316
GraphML
ConverterDelimited
Text
Converter
JSON
Converter
2,220
Data
SourceData
UtilData
Schema
2,165

Data
Field
1,759
N
Body
Force
Simulation
ParticleSpring
2,213Text
SpriteDirty
SpriteRect
SpriteLineFlare

Treemap Layouts: Strip
• Consider aspect ratio when adding

rectangles
• Do one row at a time by processing

rectangles in sorted order by size
- Check if adding the next rectangle

to the row improves aspect ratio
- When it doesn't, go to next row

• Problem: Last rectangles have bad
aspect ratios

• Solution: Look ahead to decide if
would be better to add to previous row

29

[Notebook]
D. Koop, CSCI 627/490, Fall 2023

https://observablehq.com/@dakoop/treemap

Node
Link
Tree
Layout
12,870

Radial
Tree
Layout
12,348

Circle
Packing
Layout
12,003

Circle
Layout
9,317

Tree
Map
Layout
9,191

Stacked
Area
Layout
9,121

Force
Directed
Layout
8,411

Layout
7,881

Axis
Layout
6,725

Icicle
Tree
Layout
4,864

Dendrogram
Layout
4,853

Bundled
Edge
Router
3,727

Indented
Tree
Layout
3,174Pie
Layout
2,728

Random
Layout
870

Labeler
9,956

Radial
Labeler
3,899

Stacked
Area
Labeler
3,202

Property
Encoder
4,138

Encoder
4,060

Color
Encoder
3,179

Size
Encoder
1,830

Shape
Encoder

Distortion
6,314

Bifocal
Distortion
4,461

Fisheye
Distortion
3,444

Fisheye
Tree
Filter
5,219

Visibility
Filter
3,509

Graph
Distance
Filter
3,165

Operator
List
5,248

Operator
Sequence
4,190

Operator
Switch
2,581

Operator
2,490

Sort
Operator
2,023

I
Operator
1,286

Data
20,544

Data
List
19,788

Node
Sprite
19,382

Scale
Binding
11,275

Data
Sprite
10,349

Tree
Builder
9,930

Edge
Renderer
5,569

Shape
Renderer
2,247

Arrow
Type
698
I
Renderer

Tree
7,147

Edge
Sprite
3,301

Tooltip
Control
8,435

Selection
Control
7,862

Pan
Zoom
Control
5,222

Hover
Control
4,896

Control
List
4,665

Click
Control
3,824

Expand
Control
2,832

Drag
Control
2,649

Anchor
Control
2,138

Control
1,353

I
Control
763

Legend
20,859

Legend
Range
10,530

Legend
Item
4,614

Axis
24,593

Cartesian
Axes
6,703

Axes
1,302

Axis
Grid
LineAxis
Label

Visualization
16,540

Data
Event
2,313
Selection
Event
1,880

Tooltip
Event
1,701
Visualization
Event
1,117Strings

22,026

Shapes
19,118

Maths
17,705

Displays
12,555

Color
Palette
6,367

Size
Palette
2,291

Shape
Palette
2,059

Palette
1,229

Geometry
10,993

Fibonacci
Heap
9,354

Heap
Node
1,233

Colors
10,001

Sparse
Matrix
3,366

Dense
Matrix
3,165

I
Matrix
2,815

Arrays
8,258

Dates
8,217

Sort
6,887

Stats
6,557

Property
5,559

Filter
2,324

Orientation
1,486

I
Value
Proxy
874I
Predicate
383

I
Evaluable
335

Interpolator
8,746

Matrix
Interpolator
2,202

Color
Interpolator
2,047

Rectangle
Interpolator
2,042

Array
Interpolator
1,983

Point
Interpolator
1,675

Object
Interpolator
1,629

Number
Interpolator
1,382

Date
Interpolator

Transitioner
19,975

Easing
17,010

Transition
9,201

Tween
6,006

Function
Sequence
5,842

Scheduler
5,593

Sequence
5,534

Parallel
5,176

Transition
Event
1,116

I
Schedulable
1,041

Pause
449

range
772

iff
748

gte
625

lte
619

gt
603

mul
603

sub
600

neq
599

lt
597

div
595

eq
594

add
593

mod
591

isa
461fn
460not
stddev

xor
354

variance
335

and
330

or
323

orderby
update
where
select

distinct
292
average
287
max
283

min
sum

count
277
_
264

Query
13,896

Expression
5,130

Comparison
5,103

Date
Util
4,141

String
Util
4,130

Arithmetic
3,891

Match
3,748

Composite
Expression
3,677

Expression
Iterator
3,617

Fn
3,240

Binary
Expression
2,893

If
2,732

IsA
2,039

Variance
1,876

Aggregate
Expression
1,616

Range
1,594

Not
1,554

Literal
1,214
Variable
1,124

Xor
1,101

And
1,027

Or
970

Distinct
933
Average
891
Maximum
843

Minimum
843

Sum
791

Count
781

Max
Flow
Min
Cut
7,840

Shortest
Paths
5,914

Link
Distance
5,731

Betweenness
Centrality
3,534

Spanning
Tree
3,416

Hierarchical
Cluster
6,714

Agglomerative
Cluster
3,938
Community
Structure
3,812

Merge
Edge
743

Aspect
Ratio
Banker
7,074

Time
Scale
5,833

Quantitative
Scale
4,839

Scale
4,268

Ordinal
Scale
3,770

Log
Scale
3,151

Quantile
Scale
2,435

I
Scale
Map
2,105

Scale
Type
1,821
Root
Scale
1,756

Linear
Scale
1,316

GraphML
Converter
9,800

Delimited
Text
Converter
4,294

JSON
Converter
2,220

I
Data
Converter
1,314Converters
721

Data
Source
3,331

Data
Util
3,322

Data
Schema
2,165
Data
Field

Data
Table
772
Data
Set

N
Body
Force
10,498

Simulation
9,983

Particle
2,822

Spring
2,213

Spring
Force
1,681
Gravity
Force

Drag
Force
1,082

I
Force

Text
Sprite
10,066

Dirty
Sprite
8,833

Rect
Sprite
3,623

Line
Sprite
1,732

Flare
Vis
4,116

Treemap Layouts: Squarify
• Slice & Dice and Strip can lead to

bad aspect ratios
• Solution: Strip only uses rows, allow

columns to be used, too
• Choose divisions (x/y) based on the

width/height of region in order to
maintain good aspect ratios
- Use left and right side
- Process large rectangles first

• Ordering not preserved which may
cause issues if the data is updated

30

[Notebook]
D. Koop, CSCI 627/490, Fall 2023

https://observablehq.com/@dakoop/treemap

6

6

6

6

6

6

6

6

6

6

6

6

8/3

9/4

25/18

25/18

144/50

49/27

3/2 4/1

9/2

step 2

step 4 step 5

step 1

step 7

step 9

step 8

step 3

step 6

6

6

25/9step 10

4 4 3
4 3 2

6

6
6

4 3

2

4 3

2
2

4 3

2 2

4 3

2 2 1

6

6

4

Fig. 4. Subdivision algorithm

These steps are repeated until all rectangles have been processed. Again, an optimal
result can not be guaranteed, and counterexamples can be set up. The order in which the
rectangles are processed is important.We found that a decreasing order usually gives the
best results. The initially large rectangle is then filled in first with the larger subrectan-
gles.

3.2 Algorithm

Following the example, we present our algorithm for the layout of the children in one
rectangle as a recursive procedure squarify. This procedure lays out the rectangles in
horizontal and vertical rows. When a rectangle is processed, a decision is made between
two alternatives. Either the rectangle is added to the current row, or the current row is
fixed and a new row is started in the remaining subrectangle. This decision depends only
on whether adding a rectangle to the row will improve the layout of the current row or
not.

We assume a datatypeRectangle that contains the layout during the computation and
is global to the procedure squarify. It supports a functionwidth() that gives the length of
the shortest side of the remaining subrectangle in which the current row is placed and a
function layoutrow() that adds a new row of children to the rectangle. To keep the de-
scription simple, we use some list notation: ++ is concatenation of lists, is the list
containing element , and is the empty list. The input of squarify() is basically a list
of real numbers, representing the areas of the children to be laid out. The list row con-

Squarification Algorithm

31

[Brus et al., 1999]
D. Koop, CSCI 627/490, Fall 2023

6

6

6

6

6

6

6

6

6

6

6

6

8/3

9/4

25/18

25/18

144/50

49/27

3/2 4/1

9/2

step 2

step 4 step 5

step 1

step 7

step 9

step 8

step 3

step 6

6

6

25/9step 10

4 4 3
4 3 2

6

6
6

4 3

2

4 3

2
2

4 3

2 2

4 3

2 2 1

6

6

4

Fig. 4. Subdivision algorithm

These steps are repeated until all rectangles have been processed. Again, an optimal
result can not be guaranteed, and counterexamples can be set up. The order in which the
rectangles are processed is important.We found that a decreasing order usually gives the
best results. The initially large rectangle is then filled in first with the larger subrectan-
gles.

3.2 Algorithm

Following the example, we present our algorithm for the layout of the children in one
rectangle as a recursive procedure squarify. This procedure lays out the rectangles in
horizontal and vertical rows. When a rectangle is processed, a decision is made between
two alternatives. Either the rectangle is added to the current row, or the current row is
fixed and a new row is started in the remaining subrectangle. This decision depends only
on whether adding a rectangle to the row will improve the layout of the current row or
not.

We assume a datatypeRectangle that contains the layout during the computation and
is global to the procedure squarify. It supports a functionwidth() that gives the length of
the shortest side of the remaining subrectangle in which the current row is placed and a
function layoutrow() that adds a new row of children to the rectangle. To keep the de-
scription simple, we use some list notation: ++ is concatenation of lists, is the list
containing element , and is the empty list. The input of squarify() is basically a list
of real numbers, representing the areas of the children to be laid out. The list row con-

Squarification Algorithm

32

[Brus et al., 1999]
D. Koop, CSCI 627/490, Fall 2023

(a) File system (b) Organization

Fig. 5. Squarified treemaps

(a) File system (b) Organization

Fig. 6. Squarified cushion treemaps

figure 7(a). This method has some disadvantages. Extra screen-space is used, and fur-
thermore, it gives rise to maze-like images, which can be puzzling for the viewer.

However, the second disadvantage can be remedied in a similar way as for the visual-
ization of the nodes.We fill in the borderswith grey-shades, based on a simple geometric
model (figure 8). The width in pixels of a border of level , with is given
by:

where is the width of the root level border, and a factor that can be used to decrease
the width for lower level borders. For the profile of the border we use a parabola:

with

Squarified Treemaps

33

[Brus et al., 1999]
D. Koop, CSCI 627/490, Fall 2023

Squarified Layout
• Sort values
• Switch orientation whenever necessary to obtain best aspect ratios

34D. Koop, CSCI 627/490, Fall 2023

Improving Treemaps (Cushion)
• Leaves are ok, but it can be difficult to find the hierarchy
• Encode this as shading information
• More effective to understand hierarchy

35

[van Wijk and van de Wetering, 1999]
D. Koop, CSCI 627/490, Fall 2023

Figure 4. Binary subdivision of interval

intervals. Next, we repeat this step recursively. To each new
sub-interval we add a bump again, with the same shape but
half of the size of the previous one. If we do this for three
levels, the results are eight segments and the top-most curve
in figure 4. If we interpret this curve as a side view of a bent
strip, and render it as viewed from above, the bumps trans-
form into a sequence of ridges. The separate segments are
clearly visible, each is bounded by the sharp discontinuities
in the shading. Furthermore, also the binary tree structure is
clearly visible, because the depth of the valleys between the
segments is proportional to the distance between segments
in the tree.
We can generalize this idea to the two-dimensional case.

Suppose that the x-axis is horizontal, the y-axis is vertical,
and that the z-axis points towards the viewer. If we subdi-
vide the rectangle in the x-direction, we add ridges aligned
with the y-direction, and vice versa for subdivision in the
y-direction. As a result, cushions are generated: The sum-
mation of orthogonal ridges gives a cushion-like shape. Nu-
merically, the simplest bump that can be used is a parabola,
hence for each rectangle of the treemap we use a segment of
a parabolic surface. The height z of such a surface is given
by

z(x, y) = ax2 + by2 + cx + dy + e. (1)

Initially, the surface is flat: all coefficients are zero. Con-
sider now a new rectangle which results from subdivision
along the x-axis. The ridge1z we add is:

1z(x, y) = 4h
x2 ° x1

(x ° x1)(x2 ° x), (2)

where x1 and x2 are the bounds of the rectangle in the x-
direction. The height of this ridge is 0 for x = x1 and
x = x2, and equal to (x2°x1)h in the center (x1+x2)/2. The
parameter h denotes the height proportional to the width,
hence it controls only the shape of the ridge. The ridge 1z
in (2) does not depend on y, the bump has the same shape at

each cross section y = C . Subdivision along the y-axis is
done similarly, here the ridge 1z that is added is:

1z(x, y) = 4h
y2 ° y1

(y ° y1)(y2 ° y). (3)

The same value for h for each level of the tree gives a self-
similar surface. A decreasing value for h is useful to empha-
size the global structure of the tree. A convenient solution is
to use:

hi = f i h (4)

where hi is the actual value of h at level i , and f a scale fac-
tor between 0 and 1.

Figure 5. Cushion treemap, h = 0.5, f = 1

For the shading of the geometry a simple model, i.e. dif-
fuse reflection, suffices [5]. The normal follows from:

= [1, 0, @z/@x]£ [0, 1, @z/@y]
= [°@z/@x,°@z/@y, 1]
= [°(2ax + c),°(2by + d), 1].

(5)

The intensity I is then given by:

I = Ia + Is max(0,
·

| || |
) (6)

where Ia is the intensity of ambient light, Is is the intensity
of a directional light source, and is a vector that points to-
wards this light source.
Results of this method are shown in figure 5 and figure 6:

a cushion treemap of the file system, and three cushion tree-
maps of the organization, with different values for the scale
factor f . All images have a resolution of 640£480 pixels. If
we compare these with the treemap versions, it is clear that
the shading provides a strong cue for the hierarchical struc-
ture: substructures can be identified effortlessly. With the
scale factor f a continuous trade off between the visualiza-
tion of global and detailed information can be made.

3

Figure 4. Binary subdivision of interval

intervals. Next, we repeat this step recursively. To each new
sub-interval we add a bump again, with the same shape but
half of the size of the previous one. If we do this for three
levels, the results are eight segments and the top-most curve
in figure 4. If we interpret this curve as a side view of a bent
strip, and render it as viewed from above, the bumps trans-
form into a sequence of ridges. The separate segments are
clearly visible, each is bounded by the sharp discontinuities
in the shading. Furthermore, also the binary tree structure is
clearly visible, because the depth of the valleys between the
segments is proportional to the distance between segments
in the tree.
We can generalize this idea to the two-dimensional case.

Suppose that the x-axis is horizontal, the y-axis is vertical,
and that the z-axis points towards the viewer. If we subdi-
vide the rectangle in the x-direction, we add ridges aligned
with the y-direction, and vice versa for subdivision in the
y-direction. As a result, cushions are generated: The sum-
mation of orthogonal ridges gives a cushion-like shape. Nu-
merically, the simplest bump that can be used is a parabola,
hence for each rectangle of the treemap we use a segment of
a parabolic surface. The height z of such a surface is given
by

z(x, y) = ax2 + by2 + cx + dy + e. (1)

Initially, the surface is flat: all coefficients are zero. Con-
sider now a new rectangle which results from subdivision
along the x-axis. The ridge1z we add is:

1z(x, y) = 4h
x2 ° x1

(x ° x1)(x2 ° x), (2)

where x1 and x2 are the bounds of the rectangle in the x-
direction. The height of this ridge is 0 for x = x1 and
x = x2, and equal to (x2°x1)h in the center (x1+x2)/2. The
parameter h denotes the height proportional to the width,
hence it controls only the shape of the ridge. The ridge 1z
in (2) does not depend on y, the bump has the same shape at

each cross section y = C . Subdivision along the y-axis is
done similarly, here the ridge 1z that is added is:

1z(x, y) = 4h
y2 ° y1

(y ° y1)(y2 ° y). (3)

The same value for h for each level of the tree gives a self-
similar surface. A decreasing value for h is useful to empha-
size the global structure of the tree. A convenient solution is
to use:

hi = f i h (4)

where hi is the actual value of h at level i , and f a scale fac-
tor between 0 and 1.

Figure 5. Cushion treemap, h = 0.5, f = 1

For the shading of the geometry a simple model, i.e. dif-
fuse reflection, suffices [5]. The normal follows from:

= [1, 0, @z/@x]£ [0, 1, @z/@y]
= [°@z/@x,°@z/@y, 1]
= [°(2ax + c),°(2by + d), 1].

(5)

The intensity I is then given by:

I = Ia + Is max(0,
·

| || |
) (6)

where Ia is the intensity of ambient light, Is is the intensity
of a directional light source, and is a vector that points to-
wards this light source.
Results of this method are shown in figure 5 and figure 6:

a cushion treemap of the file system, and three cushion tree-
maps of the organization, with different values for the scale
factor f . All images have a resolution of 640£480 pixels. If
we compare these with the treemap versions, it is clear that
the shading provides a strong cue for the hierarchical struc-
ture: substructures can be identified effortlessly. With the
scale factor f a continuous trade off between the visualiza-
tion of global and detailed information can be made.

3

Disk Inventory

36

[Disk Inventory X]
D. Koop, CSCI 627/490, Fall 2023

http://www.derlien.com

(a) File system (b) Organization

Fig. 5. Squarified treemaps

(a) File system (b) Organization

Fig. 6. Squarified cushion treemaps

figure 7(a). This method has some disadvantages. Extra screen-space is used, and fur-
thermore, it gives rise to maze-like images, which can be puzzling for the viewer.

However, the second disadvantage can be remedied in a similar way as for the visual-
ization of the nodes.We fill in the borderswith grey-shades, based on a simple geometric
model (figure 8). The width in pixels of a border of level , with is given
by:

where is the width of the root level border, and a factor that can be used to decrease
the width for lower level borders. For the profile of the border we use a parabola:

with

Squarified + Cushioned Treemaps

37

[Brus et al., 1999]
D. Koop, CSCI 627/490, Fall 2023

Variations: Marimekko Chart

38

[J. Muyskens, Washington Post]
D. Koop, CSCI 627/490, Fall 2023

https://www.washingtonpost.com/climate-environment/2020/07/30/biden-calls-100-percent-clean-electricity-by-2035-heres-how-far-we-have-go/

Aggl

CommHiera M

Betw

LinkD

MaxFlo

Short

Spa

Aspec

Easing

Funct

Arr
Col

Da

Interp

Mat
Nu

ObPo

Rec

ISPara P
SchedSeque

Transi

Transitio

Tr

Tween

CDeli

GraphM

ID
JSO

DaDatD
Dat
D

Dat

DirtyS

Li RectTextSp
Flar

Dr
Gr
I

NBodyF

Par

Simula

Spr
Sp

Ag An

Arit

Av
Bin

Comp

Comp

C

Date
Di

Expr

Expr

Fn

IfIsA

Li

Matc

M aa
a cd

d e

f
g

g i
i

l

l

mm mm

n

n

o o

r
ss

s suv wx _
M

No

Or

Query

Ra
Stri S

Va

Va

Xo

ISc
Li

Log Ordi
Qua

Quan

Ro Scal
Sc

TimeS

Arrays

Colors

Dates

Display

Fil

Geometr

FibonaHeI I
IV

DenIMa

Spa

Maths
Or

Color
PaSha
Siz

Prope
Shapes

Sort
Stats

Strings

Ax

Axis

AA
Carte

Anc

Clic

Co Cont
Dra

Exp

Hove

I

PanZSelect

Toolti

Data

DataList

DataSp

Edg

NodeSprit

AEdgeR I
Sha

ScaleBi

Tree
TreeBu

Dat Se
ToVi

Legend

Lege Legend

Bifo

Disto

Fis

ColEnco

Prop
Sh Si

Fish

Gra Visi

IOLabele

RadiSta

AxisL
Bund

Circle
CircleP

Dend

ForceD

Icic

Ind
Layout

NodeLin
Pie

RadialT

Ra

Stacke

TreeMa

Ope

Oper
Oper

Ope
Sor

Visualiz

Nested Circles
• Looks more like cluster diagram, but

shows hierarchy
• Containment shown by the layering

of semi-transparent circles
• Labeling becomes more difficult

39

[Bostock, 2012]
D. Koop, CSCI 627/490, Fall 2023

Compound Networks
• Add a hierarchy to the network (e.g. from clustering)
• GrouseFlocks: uses nested circles with colors

40

[Archambault et al., 2008]
D. Koop, CSCI 627/490, Fall 2023

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, 200X 2

(a) Input Graph

Graph Hierarchy 1 Graph Hierarchy 2 Graph Hierarchy 3

(b) Graph Hierarchies

Fig. 3. Multiple graph hierarchies superimposed on the same graph. In (a), we see the input graph without any hierarchies superimposed on top of it. In (b),
we have a table of three of the many possible hierarchies which can be superimposed on (a). The first row of the table shows the three graph hierarchies. The
second row of the table shows these graph hierarchies superimposed on the same base graph. As a graph hierarchy defines the types of abstractions which
can be visualized by cuts, a single graph hierarchy is not suitable for all interesting views of the graph data.

(a) Hierarchy Graph (b) Edge Exists (c) Edge Does Not Exist

Fig. 4. Edge conservation. In (a) a metaedge exists between two metanodes at some level of the hierarchy. A valid input graph is shown in (b) where
there exist edges which connect leaf nodes which are descendants of both metanodes. An invalid input graph is shown in (c) where edges do not connect
descendants of the two metanodes.

(a) Hierarchy Graph (b) Metanode Connected (c) Metanode Not Connected

Fig. 5. Connectivity conservation. In (a), there is a cycle between three metanodes at some level of the hierarchy. A valid input graph for this hierarchy is
shown in (b) as there exists a cycle in the underlying graph. An invalid input graph is shown in (c) where there is not a cycle in the underlying graph. Thus,
subgraphs must be connected for our hierarchies to be topologically preserving.

hierarchy space which would allow users to see abstractions of

their graph data based on attributes. In our software engineering
example, it may prove useful to restructure the hierarchy to view

methods which are or are not involved with some cross-cutting

concern. A hierarchy based on this information would be better

than the one of packages and classes to investigate the concern as

significant parts of the graph can be abstracted away. Only a few
systems allow hierarchy editing and these systems are limited to

manual selection of nodes in the graph [7], [14] or provide limited

tools for exploring the created hierarchy [25].

