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Containment Marks

Networks
• Network: nodes and edges 

connecting the nodes 
• Formally, G = (V,E) is a set of nodes V 

and a set of edges E where each 
edge connects two nodes. 

• Nodes == items, edges connect 
items 

• Both nodes and edges may have 
attributes
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Network Data Represented in Tables
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ID Atom Electrons Protons
0 N 7 7
1 C 6 6
2 S 16 16
3 C 6 6
4 N 7 7

ID1 ID2 Bonds
0 1 1
1 2 1
1 3 2
3 4 1

Nodes

Edges

SS

CC

CC

NN

CCNN

CC

NN

NNCC

NN

HH

HH
HH

HH

HH



Networks Need Layouts!
• Need to use spatial position when designing network visualizations 
• Otherwise, nodes can occlude each other, links hard to distinguish 
• How? 
- With bar charts, we could order using an attribute… 
- With networks, we want to be able to see connectivity and topology (not in 

the data usually) 
• Possible metrics: 
- Edge crossings 
- Node overlaps 
- Total area
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Layout Algorithms
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Bundling Strength
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Fig. 13. A software system and its associated call graph (caller = green, callee = red). (a) and (b) show the system with bundling strength β = 0.85
using a balloon layout (node labels disabled) and a radial layout, respectively. Bundling reduces visual clutter, making it easier to perceive the
actual connections than when compared to the non-bundled versions (figures 2a and 11a). Bundled visualizations also show relations between
sparsely connected systems more clearly (encircled regions); these are almost completely obscured in the non-bundled versions. The encircled
regions highlight identical parts of the system for (a), (b), and figure 15.

Fig. 14. Using the bundling strength β to provide a trade-off between low-level and high-level views of the adjacency relations. The value of β
increases from left-to-right; low values mainly provide low-level, node-to-node connectivity information, whereas high values provide high-level
information as well by implicit visualization of adjacency edges between parent nodes that are the result of explicit adjacency edges between their
respective child nodes.

regarded as being aesthetically pleasing. SIG and FEI Company Eind-
hoven are currently supporting further development by providing us
with additional data sets and feedback regarding the resulting visual-
izations.

More specifically, most of the participants particularly valued the
fact that relations between items at low levels of the hierarchy were
automatically lifted to implicit relations between items at higher lev-
els by means of bundles. This quickly gave them an impression of the
high-level connectivity information while still being able to inspect
the low-level relations that were responsible for the bundles by inter-
actively manipulating the bundling strength.

This is illustrated in figure 14, which shows visualizations using
different values for the bundling strength β . Low values result in vi-
sualizations that mainly provide low-level, node-to-node connectivity
information. High values result in visualizations that provide high-
level information as well by implicit visualization of adjacency edges
between parent nodes that are the result of explicit adjacency edges
between their respective child nodes.

Another aspect that was commented on was how the bundles gave

an impression of the hierarchical organization of the data as well,
thereby strengthening the visualization of the hierarchy. More specif-
ically, a thick bundle shows the presence of two elements at a fairly
high level of the hierarchy, whereas the fanning out of a bundle shows
the subdivision of an element into subelements.

Most participants preferred the radial layout over the balloon layout
and the squarified treemap layout. Another finding was the fact that the
rooted layout and the slice-and-dice treemap layout were considered
less pleasing according to several participants. This is probably due to
the large number of collinear nodes within these layouts, which causes
bundles to overlap along the collinearity axes. This is illustrated in
figure 17.

Although our main focus while developing hierarchical edge bun-
dles was on the visualization itself, interaction is an important aspect
in determining the usability of our technique. Based on our own in-
sight and feedback gathered from participants, we contend that bundle-
based interaction as described below could provide a convenient way
of interacting with the visualizations.

Figure 16 shows how the bundling strength β could be used in con-
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Adjacency Matrix
• Change network to tabular data and use a 

matrix representation 
• Derived data: nodes are keys, edges are 

boolean values 
• Task: lookup connections, find well-

connected clusters 
• Scalability: millions of edges 

• Can encode edge weight, too
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7.1. Using Space 135

Figure 7.5: Comparing matrix and node-link views of a five-node network.
a) Matrix view. b) Node-link view. From [Henry et al. 07], Figure 3b and
3a. (Permission needed.)

the number of available pixels per cell; typically only a few levels would
be distinguishable between the largest and the smallest cell size. Network
matrix views can also show weighted networks, where each link has an as-
sociated quantitative value attribute, by encoding with an ordered channel
such as color luminance or size.

For undirected networks where links are symmetric, only half of the
matrix needs to be shown, above or below the diagonal, because a link
from node A to node B necessarily implies a link from B to A. For directed
networks, the full square matrix has meaning, because links can be asym-
metric. Figure 7.5 shows a simple example of an undirected network, with
a matrix view of the five-node dataset in Figure 7.5a and a corresponding
node-link view in Figure 7.5b.

Matrix views of networks can achieve very high information density, up
to a limit of one thousand nodes and one million edges, just like cluster
heatmaps and all other matrix views that uses small area marks.

Technique network matrix view
Data Types network
Derived Data table: network nodes as keys, link status between two

nodes as values
View Comp. space: area marks in 2D matrix alignment
Scalability nodes: 1K

edges: 1M

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.1.3.3 Multiple Keys: Partition and Subdivide When a dataset has only
one key, then it is straightforward to use that key to separate into one region



Structures from Adjacency Matrices
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Node-Link or Adjacency Matrix?
• Empirical study: For most tasks, node-link is better for small graphs and 

adjacency better for large graphs 
• Multi-link paths are hard with adjacency matrices 
• Immediate connectivity or neighbors are ok, estimating size (nodes & edges 

also ok) 
• People tend to be more familiar with node-link diagrams 
• Link density is a problem with node-link but not with adjacency matrices
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Project
• Working through grading these to provide feedback 
• Initial Feedback 
- Some tasks are not tasks 
- Some tasks are technically tasks but are phrased in terms of a visualization 
- Think about the question "Why would someone care?" 

• Example: Is there a correlation between the season and types of storms in 
regions?  

- Who cares? 
- Why do they care? 
- Are there specific instances where we can see how people might use info?
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Project
• Next steps: 
- Start thinking about the designs that help answer the questions 
- Tasks should drive your design 
- Different designs are great 

• Multiple views 
• Single view with details on demand 
• Interaction design (linked highlighting, navigation) 
• In general, don't force the user to make choices without first seeing an 

overview
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Assignment 4
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Trees
• Trees are directed acyclic networks 
- each edge has a direction: the origin is the parent, the destination is the 

child 
- cannot get back to a node after leaving it 

• …plus each node has at most one parent node 
• A tree has a root (every other node hangs off it) 
• Can consider enclosure in trees using parent-child relationships
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Quantifying the Space-Efficiency
of 2D Graphical Representations of Trees

Michael J. McGuffin and Jean-Marc Robert

Abstract— A mathematical evaluation and comparison of the space-efficiency of various 2D graphical representations of tree struc-
tures is presented. As part of the evaluation, a novel metric called the mean area exponent is introduced that quantifies the distribution
of area across nodes in a tree representation, and that can be applied to a broad range of different representations of trees. Several
representations are analyzed and compared by calculating their mean area exponent as well as the area they allocate to nodes and
labels. Our analysis inspires a set of design guidelines as well as a few novel tree representations that are also presented.

Index Terms—Tree visualization, graph drawing, efficiency metrics.

1 INTRODUCTION

A variety of graphical representations are available for depicting tree
structures (Figure 1), from “classical” node-link diagrams [23, 7], to
treemaps [14, 26, 6, 30], concentric circles [2, 27, 31], and many others
(see [13] for a survey). A major consideration when designing, eval-
uating, or comparing such representations is how efficiently they use
screen space to show information about the tree. To date, however, it is
unclear how to go about evaluating space-efficiency in a way that can
be applied to the large variety of tree representations and that enables a
fair comparison of them. Space-efficiency might be described in terms
of area, aspect ratio, label size, or other measures. However, there is no
accepted standard set of metrics for evaluating the space-efficiency of
tree representations, and it is unclear what approach would be general
enough to be applied to all the forms in Figure 1.

Fig. 1. Several basic kinds of tree representations, here each showing
a complete 3-ary tree of depth 3 as an example. All representations
are drawn to just fit within a 1×1 unit square. A: classical (layered)
node-link [23, 7]. B: a variation on A, where the shape of nodes better
accommodates long labels. C: icicle. D: radial [10, 9]. E: concentric
circles [2, 27, 31]. F: nested circles, similar to [5, 28]. G: treemap [14,
26]. H: indented outline, sometimes called a “tree list”, and common in
file browsers such as Microsoft Explorer.

• Michael J. McGuffin is with École de technologie supérieure, Montréal,
Canada, E-mail: michael.mcguffin@etsmtl.ca.

• Jean-Marc Robert is with École de technologie supérieure, Montréal,
Canada, E-mail: jean-marc.robert@etsmtl.ca.

One basic metric of space-efficiency is the total area of a representa-
tion. Assuming the representation is bound within a 1×1 square, both
icicle diagrams and treemaps (Figures 1C and 1G) have a total area of
1, and are equally efficient (and both optimal) according to this met-
ric. Likewise, concentric circles and nested circles (Figures 1E and 1F)
both have a total area of π/4 ≈ 0.785 (the area of a circle of diameter
1), and are also equally efficient according to the metric of total area.
However, experience suggests that the representations within each of
these pairs do not scale equally well with larger, deeper trees. This
article shows that there are finer ways of distinguishing efficiency, i.e.
that there is more to space-efficiency than total area.

Treemaps are often described as optimally space-efficient, not just
because they have a total area of 1, but also because they allow for
what we call a weighted partitioning of the area. Nodes can be allo-
cated more or less area, depending on some attribute such as file size,
population, or number of species, and furthermore this weighted par-
titioning can be done without reducing the total area used. These are
indeed desirable properties, however they are not unique to treemaps.
Figure 2 shows that icicle diagrams also allow for a weighted parti-
tioning of area, and incidentally have no need for margins between the
borders of nodes as treemaps often do.

Furthermore, although a weighted partitioning is useful for showing
the relative sizes of nodes in Figures 2A and 2C, an unfortunate side
effect is that labels on small nodes are very difficult to read. If users
are more interested in seeing the identity of all nodes rather than their
relative sizes, an alternative approach would be to give equal weight to
each leaf node (Figures 2B and 2D), improving the overall legibility
of nodes. (Although not shown in the figure, the labels could also be
augmented to numerically show the “size” attribute of each node.) In
terms of label size or legibility, Figures 2B and 2D are clearly prefer-
able, but even they still result in much whitespace around certain la-
bels, suggesting that a more space-efficient (in terms of label size)
representation might be possible.

Clearly, it would be useful to have some way to quantitatively dis-
tinguish the four possibilities in Figure 2, e.g. in terms of their respec-
tive scalability and the sizes of their labels. If total area is the only
metric of space-efficiency used, and “optimal” space-efficiency is de-
fined as a total area of 1 (possibly partitioned by weight), then we
have no way of distinguishing these four cases. If alternative metrics
of space-efficiency are used, such as those investigated in this article,
it is not clear initially if treemaps, or any other representation, will still
turn out to be optimal with respect to such alternative metrics.

This article identifies several metrics related to space-efficiency,
and performs the first rigorous analysis and comparison of the space-
efficiency of most of the basic tree representation styles in the infor-
mation visualization literature, including all those in Figure 1. Some
of the key ideas involved are (1) the use of a metric of the size of the
smallest nodes (i.e. the leaf nodes) in the representation, in addition to
a metric of total area; (2) analyzing the area of labels on the nodes,
which implicitly takes into account both the size and aspect ratio of
the nodes, measuring how much “useful” area they contain; and (3)
analyzing how these metrics behave asymptotically, as the tree grows

Tree Visualizations
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of 2D Graphical Representations of Trees
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Abstract— A mathematical evaluation and comparison of the space-efficiency of various 2D graphical representations of tree struc-
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• Michael J. McGuffin is with École de technologie supérieure, Montréal,
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Tidier Drawings of Trees
EDWARD M. REINGOLD AND JOHN S. TILFORD

Abstract-Various algorithms have been proposed for producing tidy
drawings of trees-drawings that are aesthetically pleasing and use mini-
mum drawing space. We show that these algorithms contain some
difficulties that lead to aesthetically unpleasing, wider than necessary
drawings. We then present a new algorithm with comparable time and
storage requirements that produces tidier drawings. Generalizations
to forests and m-ary trees are discussed, as are some problems in dis-
cretization when alphanumeric output devices are used.

Index Terns-Data structures, trees, tree structures.

INTRODUCTION
IN a recent article [6], Wetherell and Shannon presented algo-

rithms for producing "tidy" drawings of trees-drawings
that use as little space as possible while satisfying certain
aesthetics. The basic task is the assignment of x and y co-
ordinates to each node of a tree, after which a straightforward
plotting or printing routine generates a drawing of the tree.
Wetherell and Shannon give three aesthetics in an attempt to
define a "tidy" drawing of a binary tree.
Aesthetic 1: Nodes at the same level of the tree should lie

along a straight line, and the straight lines defining the levels
should be parallel.
Aesthetic 2: A left son should be positioned to the left of

its father and a right son to the right.
Aesthetic 3: A father should be centered over its sons.
Although not mentioned in [6], Aesthetic 1 was also meant

to require that the relative order of nodes across any level be
the same as in the level order traversal of the tree. This can be
shown to guarantee that edges in the tree do not intersect
except at nodes.
The algorithms presented in [6], try to achieve these aes-

thetics while at the same time minimizing width. Similar algo-
rithms were developed by Sweet [3] for use in his thesis, but
were never published. The basic algorithm of [6] proceeds as
follows. First, store in each node its level in the tree; this is
essentially its y coordinate. Then traverse the tree in post-
order, pausing at each node to give it an x coordinate. Initially,
a provisional x coordinate is assigned according to this rule: if
the node is a leaf, give it the next available position on its
level; if it has only a left son, give it a position one unit to the
right of its son; if it has only a right son, give it a position one
unit to the left of its son; otherwise (the node has two sons)
give it the average of their positions. Meanwhile, keep track

Manuscript received April 10, 1980.
The authors are with the Department of Computer Science, Univer-

sity of Illinois, Urbana-Champaign, IL 61801.

Fig. 1. Final positioning of example tree as drawn by Algorithm WS.

of the next available position on each level with an array
NEXT POS, indexed by level, in which each value is set to two
greater than the coordinate of the last node assigned on the
corresponding level.

If a provisional position is less than the next available posi-
tion on that level, the node is given the next available position,
and its subtrees are shifted to the right so as to be properly
positioned relative to it. Actually, the amount of the shift is
just stored in the current node and applied with all the other
shifts during a subsequent preorder traversal. Whenever a shift
is applied to a node, all nonleaf nodes to its right on the same
level must have at least the same shift applied to them and
their subtrees (because the nodes in those subtrees were posi-
tioned without knowledge of shifts that would occur above
them). This necessitates another array, indexed by level,
containing the most recent shift applied on each level.

DIFFICULTIES
Algorithm WS works well in many cases; however, it con-

tains an important deficiency. It can produce drawings that are
not really pleasing and that can be made narrower within the
constraints of the aesthetics. In Fig. 1, for example, nodes Y
and Z are too far apart; instead, the tree ought to be drawn as
shown in Fig. 2 because that tree is both narrower and aes-
thetically more pleasing, in fact, "tidier."
The problem of Algorithm WS in the drawing of Fig. 1 is the

influence of the fixed left margin, defmed by the values of the
array NEXT _POS. Since node Y is a leaf, it receives the next
available position on its level, 6. Now the lower part of the

0098-5589/81/0300-0223$00.75 © 1981 IEEE
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Node-Link Diagram
• Trees are graphs 
• …but we have more structure 
• Horizontal or vertical 
• Idea 1: partition space for each node 

via recursion 
• Idea 2: “Tidy” Drawing 
- Wetherell & Shannon: Don’t waste 

space (overlapping parent nodes is 
ok) 

- Reingold and Tilford: Keep 
symmetry, subtrees look similar
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Fig. 4. A tree and its mirror image positioned by Algorithm WS.

Fig. 2. Example tree as drawn by Algorithm TR.

Fig. 3. Example tree drawn by a modified Algorithm WS.

right subtree is built as usual, with Z being placed at 12. X,
the father of Y and Z, is given the average of their positions,
i.e., 9, and V receives the average of the positions ofW and X,
which is 8. This is too far to the left according to NEXT_POS,
so the subtree rooted at V is shifted two units to the right.
The resulting tree is two units wider than necessary. The
culprit is the empty space in the middle of the tree; it caused
Y to be placed too far to the left when it should have been
the minimum distance from Z (as A is from B). As the num-
ber of nodes increases, this anomalous behavior of Algorithm
WS can worsen.
Wetherell and Shannon present a modification to Algorithm

WS that guarantees minimum width drawings at the expense of
Aesthetic 3. Although the drawing it produces for the sample
tree (see Fig. 3) is not too wide, the drawing of Fig. 2 is much
better. Vaucher [5], independently of [3] and [6], developed
a tree printing algorithm that seems to avoid this problem but
does not satisfy the additional aesthetic constraint introduced
in the next section.
As our example illustrates, the difficulty with Algorithm WS

Fig. 5. A tree for which the narrowest drawing that satisfies Aesthetics
1-3 violates Aesthetic 4. The subtrees rooted at P and Q are iso-
morphic, but must be drawn nonisomorphically (as shown) to obtain
a minimum width drawing.

stems from the fact that the shape of a subtree is influenced
by the positioning of nodes outside that subtree; Sweet [3]
made a similar observation. As a consequence, symmetric
trees may be drawn asymmetrically, or more generally, a tree
and its reflection will not always produce mirror image draw-
ings; even the same subtree may appear differently in different
parts of the tree. Fig. 4 shows a small tree and its reflection
whose drawings by Algorithm WS are not mirror images.

A NEW AESTHETIC AND ALGORITHM
It is certainly desirable that a symmetric tree be drawn

symmetrically; therefore, we introduce a new aesthetic that
guarantees this (along with a somewhat stronger requirement).
Aesthetic 4: A tree and its mirror image should produce

drawings that are reflections of one another; moreover, a sub-
tree should be drawn the same way regardless of where it
occurs in the tree.
We pay a price for this aesthetic in terms of the width of the

tree. Fig. 5 illustrates a tree for which the narrowest drawing
that satisfies Aesthetics 1-3 violates Aesthetic 4. Nevertheless,
we consider Aesthetic 4 to be more important than minimum
width since the shape of the printed tree and its reflection
ought to be independent of its surroundings to aid in human
perception. In any case, with the exception of the theoreti-
cally interesting but impractical linear programming technique
of [2], the published tree printing algorithms all fail to pro-
duce minimum width placements, even without the stricture
of Aesthetic 4.

224 Reingold-Tilford Algorithm
• Recurse on left and right subtrees 
• Shift subtree over as long as it 

doesn’t overlap 
• Place parent centered above the 

subtrees 
• Originally, only binary trees, extended 

by Walker
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Icicle Plot
• Line marks 
• Vertical position shows depth 
• Horizontal position shows links and 

sibling order 
• Scalability: 1 pixel leaves, but harder 

to label
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Radial Node-Link
• Use polar coordinates instead of 

rectilinear 
• Same layout algorithms work 

(e.g. Reingold-Tilford) 
• Benefit: space usage, labels
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The Flare package tree laid out in progressive radial layout. The angles of the wedges are
sized to correctly partition their parent wedge by their angle. 

Sunburst
• Icicle plot in a radial layout 
• Reading labels? 
• Intuitive navigation
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Indented Outline
• Like a filesystem tree 
• Use horizontal position to show depth, 

vertical positions show sibling/order
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[M. Bostock, 2017]
D. Koop, CSCI 627/490, Fall 2023

https://observablehq.com/@d3/treemap?collection=@d3/d3-hierarchy


Car/Truck Treemap
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[A. Cox and H. Fairfield, NYTimes, 2012]
D. Koop, CSCI 627/490, Fall 2023

http://www.nytimes.com/imagepages/2007/02/25/business/20070225_CHRYSLER_GRAPHIC.html


Car/Truck Treemap
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[A. Cox and H. Fairfield, NYTimes, 2012]
D. Koop, CSCI 627/490, Fall 2023

http://www.nytimes.com/imagepages/2007/02/25/business/20070225_CHRYSLER_GRAPHIC.html


Treemap
• Containment marks instead of connection marks 
• Encodes some attribute of the items as the size of the rectangles 
• Not as easy to see the intermediate rectangles 
• Scalability: millions of leaf nodes and links possible 

• Need a layout algorithm!

24D. Koop, CSCI 627/490, Fall 2023



Layout Algorithms
• How do we generate the area marks? 
• What considerations should we try to keep in mind?

25D. Koop, CSCI 627/490, Fall 2023



Layout Algorithms
• How do we generate the area marks? 
• What considerations should we try to keep in mind? 
- area true to quantitative value 
- show hierarchy 
- aspect ratio 

• Also… 
- ordering  
- stability

26D. Koop, CSCI 627/490, Fall 2023
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Treemap Layouts: Slice
• Just divide horizontally 
• Dice is similar, just vertical 
• Problem: Bad aspect ratio! 
- Very skinny rectangles 
- Makes it harder to compare sizes, 

see labels, select rectangles 
- Want rectangles that are closer to 

squares 
- Aspect ratio = width/height
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Treemap Layouts: Slice & Dice
• Split at each level into strips 
• At each step, orientation of division 

(horizontal/vertical) changes 
• Better, but some rectangles still have 

bad aspect ratio
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Treemap Layouts: Strip
• Consider aspect ratio when adding 

rectangles 
• Do one row at a time by processing 

rectangles in sorted order by size 
- Check if adding the next rectangle 

to the row improves aspect ratio 
- When it doesn't, go to next row 

• Problem: Last rectangles have bad 
aspect ratios 

• Solution: Look ahead to decide if 
would be better to add to previous row
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Treemap Layouts: Squarify
• Slice & Dice and Strip can lead to 

bad aspect ratios 
• Solution: Strip only uses rows, allow 

columns to be used, too 
• Choose divisions (x/y) based on the 

width/height of region in order to 
maintain good aspect ratios 
- Use left and right side 
- Process large rectangles first 

• Ordering not preserved which may 
cause issues if the data is updated
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Fig. 4. Subdivision algorithm

These steps are repeated until all rectangles have been processed. Again, an optimal
result can not be guaranteed, and counterexamples can be set up. The order in which the
rectangles are processed is important.We found that a decreasing order usually gives the
best results. The initially large rectangle is then filled in first with the larger subrectan-
gles.

3.2 Algorithm

Following the example, we present our algorithm for the layout of the children in one
rectangle as a recursive procedure squarify. This procedure lays out the rectangles in
horizontal and vertical rows. When a rectangle is processed, a decision is made between
two alternatives. Either the rectangle is added to the current row, or the current row is
fixed and a new row is started in the remaining subrectangle. This decision depends only
on whether adding a rectangle to the row will improve the layout of the current row or
not.

We assume a datatypeRectangle that contains the layout during the computation and
is global to the procedure squarify. It supports a functionwidth() that gives the length of
the shortest side of the remaining subrectangle in which the current row is placed and a
function layoutrow() that adds a new row of children to the rectangle. To keep the de-
scription simple, we use some list notation: ++ is concatenation of lists, is the list
containing element , and is the empty list. The input of squarify() is basically a list
of real numbers, representing the areas of the children to be laid out. The list row con-

Squarification Algorithm
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Fig. 4. Subdivision algorithm

These steps are repeated until all rectangles have been processed. Again, an optimal
result can not be guaranteed, and counterexamples can be set up. The order in which the
rectangles are processed is important.We found that a decreasing order usually gives the
best results. The initially large rectangle is then filled in first with the larger subrectan-
gles.

3.2 Algorithm

Following the example, we present our algorithm for the layout of the children in one
rectangle as a recursive procedure squarify. This procedure lays out the rectangles in
horizontal and vertical rows. When a rectangle is processed, a decision is made between
two alternatives. Either the rectangle is added to the current row, or the current row is
fixed and a new row is started in the remaining subrectangle. This decision depends only
on whether adding a rectangle to the row will improve the layout of the current row or
not.

We assume a datatypeRectangle that contains the layout during the computation and
is global to the procedure squarify. It supports a functionwidth() that gives the length of
the shortest side of the remaining subrectangle in which the current row is placed and a
function layoutrow() that adds a new row of children to the rectangle. To keep the de-
scription simple, we use some list notation: ++ is concatenation of lists, is the list
containing element , and is the empty list. The input of squarify() is basically a list
of real numbers, representing the areas of the children to be laid out. The list row con-

Squarification Algorithm
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(a) File system (b) Organization

Fig. 5. Squarified treemaps

(a) File system (b) Organization

Fig. 6. Squarified cushion treemaps

figure 7(a). This method has some disadvantages. Extra screen-space is used, and fur-
thermore, it gives rise to maze-like images, which can be puzzling for the viewer.

However, the second disadvantage can be remedied in a similar way as for the visual-
ization of the nodes.We fill in the borderswith grey-shades, based on a simple geometric
model (figure 8). The width in pixels of a border of level , with is given
by:

where is the width of the root level border, and a factor that can be used to decrease
the width for lower level borders. For the profile of the border we use a parabola:

with

Squarified Treemaps
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Squarified Layout
• Sort values 
• Switch orientation whenever necessary to obtain best aspect ratios
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Improving Treemaps (Cushion)
• Leaves are ok, but it can be difficult to find the hierarchy 
• Encode this as shading information 
• More effective to understand hierarchy
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Figure 4. Binary subdivision of interval

intervals. Next, we repeat this step recursively. To each new
sub-interval we add a bump again, with the same shape but
half of the size of the previous one. If we do this for three
levels, the results are eight segments and the top-most curve
in figure 4. If we interpret this curve as a side view of a bent
strip, and render it as viewed from above, the bumps trans-
form into a sequence of ridges. The separate segments are
clearly visible, each is bounded by the sharp discontinuities
in the shading. Furthermore, also the binary tree structure is
clearly visible, because the depth of the valleys between the
segments is proportional to the distance between segments
in the tree.
We can generalize this idea to the two-dimensional case.

Suppose that the x-axis is horizontal, the y-axis is vertical,
and that the z-axis points towards the viewer. If we subdi-
vide the rectangle in the x-direction, we add ridges aligned
with the y-direction, and vice versa for subdivision in the
y-direction. As a result, cushions are generated: The sum-
mation of orthogonal ridges gives a cushion-like shape. Nu-
merically, the simplest bump that can be used is a parabola,
hence for each rectangle of the treemap we use a segment of
a parabolic surface. The height z of such a surface is given
by

z(x, y) = ax2 + by2 + cx + dy + e. (1)

Initially, the surface is flat: all coefficients are zero. Con-
sider now a new rectangle which results from subdivision
along the x-axis. The ridge1z we add is:

1z(x, y) = 4h
x2 ° x1

(x ° x1)(x2 ° x), (2)

where x1 and x2 are the bounds of the rectangle in the x-
direction. The height of this ridge is 0 for x = x1 and
x = x2, and equal to (x2°x1)h in the center (x1+x2)/2. The
parameter h denotes the height proportional to the width,
hence it controls only the shape of the ridge. The ridge 1z
in (2) does not depend on y, the bump has the same shape at

each cross section y = C . Subdivision along the y-axis is
done similarly, here the ridge 1z that is added is:

1z(x, y) = 4h
y2 ° y1

(y ° y1)(y2 ° y). (3)

The same value for h for each level of the tree gives a self-
similar surface. A decreasing value for h is useful to empha-
size the global structure of the tree. A convenient solution is
to use:

hi = f i h (4)

where hi is the actual value of h at level i , and f a scale fac-
tor between 0 and 1.

Figure 5. Cushion treemap, h = 0.5, f = 1

For the shading of the geometry a simple model, i.e. dif-
fuse reflection, suffices [5]. The normal follows from:

= [1, 0, @z/@x]£ [0, 1, @z/@y]
= [°@z/@x,°@z/@y, 1]
= [°(2ax + c),°(2by + d), 1].

(5)

The intensity I is then given by:

I = Ia + Is max(0,
·

| || |
) (6)

where Ia is the intensity of ambient light, Is is the intensity
of a directional light source, and is a vector that points to-
wards this light source.
Results of this method are shown in figure 5 and figure 6:

a cushion treemap of the file system, and three cushion tree-
maps of the organization, with different values for the scale
factor f . All images have a resolution of 640£480 pixels. If
we compare these with the treemap versions, it is clear that
the shading provides a strong cue for the hierarchical struc-
ture: substructures can be identified effortlessly. With the
scale factor f a continuous trade off between the visualiza-
tion of global and detailed information can be made.

3
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The same value for h for each level of the tree gives a self-
similar surface. A decreasing value for h is useful to empha-
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to use:

hi = f i h (4)

where hi is the actual value of h at level i , and f a scale fac-
tor between 0 and 1.
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For the shading of the geometry a simple model, i.e. dif-
fuse reflection, suffices [5]. The normal follows from:

= [1, 0, @z/@x]£ [0, 1, @z/@y]
= [°@z/@x,°@z/@y, 1]
= [°(2ax + c),°(2by + d), 1].

(5)

The intensity I is then given by:

I = Ia + Is max(0,
·

| || |
) (6)

where Ia is the intensity of ambient light, Is is the intensity
of a directional light source, and is a vector that points to-
wards this light source.
Results of this method are shown in figure 5 and figure 6:

a cushion treemap of the file system, and three cushion tree-
maps of the organization, with different values for the scale
factor f . All images have a resolution of 640£480 pixels. If
we compare these with the treemap versions, it is clear that
the shading provides a strong cue for the hierarchical struc-
ture: substructures can be identified effortlessly. With the
scale factor f a continuous trade off between the visualiza-
tion of global and detailed information can be made.
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(a) File system (b) Organization

Fig. 5. Squarified treemaps

(a) File system (b) Organization

Fig. 6. Squarified cushion treemaps

figure 7(a). This method has some disadvantages. Extra screen-space is used, and fur-
thermore, it gives rise to maze-like images, which can be puzzling for the viewer.

However, the second disadvantage can be remedied in a similar way as for the visual-
ization of the nodes.We fill in the borderswith grey-shades, based on a simple geometric
model (figure 8). The width in pixels of a border of level , with is given
by:

where is the width of the root level border, and a factor that can be used to decrease
the width for lower level borders. For the profile of the border we use a parabola:

with

Squarified + Cushioned Treemaps
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Variations: Marimekko Chart
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Nested Circles
• Looks more like cluster diagram, but 

shows hierarchy 
• Containment shown by the layering 

of semi-transparent circles 
• Labeling becomes more difficult
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Compound Networks
• Add a hierarchy to the network (e.g. from clustering)  
• GrouseFlocks: uses nested circles with colors
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(a) Input Graph

Graph Hierarchy 1 Graph Hierarchy 2 Graph Hierarchy 3

(b) Graph Hierarchies

Fig. 3. Multiple graph hierarchies superimposed on the same graph. In (a), we see the input graph without any hierarchies superimposed on top of it. In (b),
we have a table of three of the many possible hierarchies which can be superimposed on (a). The first row of the table shows the three graph hierarchies. The
second row of the table shows these graph hierarchies superimposed on the same base graph. As a graph hierarchy defines the types of abstractions which
can be visualized by cuts, a single graph hierarchy is not suitable for all interesting views of the graph data.

(a) Hierarchy Graph (b) Edge Exists (c) Edge Does Not Exist

Fig. 4. Edge conservation. In (a) a metaedge exists between two metanodes at some level of the hierarchy. A valid input graph is shown in (b) where
there exist edges which connect leaf nodes which are descendants of both metanodes. An invalid input graph is shown in (c) where edges do not connect
descendants of the two metanodes.

(a) Hierarchy Graph (b) Metanode Connected (c) Metanode Not Connected

Fig. 5. Connectivity conservation. In (a), there is a cycle between three metanodes at some level of the hierarchy. A valid input graph for this hierarchy is
shown in (b) as there exists a cycle in the underlying graph. An invalid input graph is shown in (c) where there is not a cycle in the underlying graph. Thus,
subgraphs must be connected for our hierarchies to be topologically preserving.

hierarchy space which would allow users to see abstractions of

their graph data based on attributes. In our software engineering
example, it may prove useful to restructure the hierarchy to view

methods which are or are not involved with some cross-cutting

concern. A hierarchy based on this information would be better

than the one of packages and classes to investigate the concern as

significant parts of the graph can be abstracted away. Only a few
systems allow hierarchy editing and these systems are limited to

manual selection of nodes in the graph [7], [14] or provide limited

tools for exploring the created hierarchy [25].


