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3D to 2D: Projection
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map, this circle transforms into an ellipse, known as the
Tissot indicatrix, with semi-axes with lengths a and b. If a 5
b for all locations, then angles between lines on the globe
are maintained after projection: The projection is con-
formal. The classic example is the Mercator projection.
Locally, conformality preserves shapes, but for larger areas
distortions occur. For example, in the Mercator projection
shapes near the poles are strongly distorted.

If ab 5 C for all locations on the map, then the
projection has the equal-area property: Areas are preserved
after projection. Examples are the sinusoidal, Lambert’s
cylindrical equal area and the Gall–Peters projection.

The problem is that for a double curved surface no
projection is possible that is both conformal and equal-area.
Along a curve on the surface, such as the equator, both
conditions can be met; however, at increasing distance from
such a curve the distortion accumulates. Therefore,
depending on the purpose of the map, one of these
properties or a compromise between them has to be
chosen. Concerning distortion, uniform distances are
another aspect to be optimised. Unfortunately, no map
projections are possible such that distances between any
two positions are depicted on a similar scale, but one can
aim at small variations overall or at proper depiction along
certain lines.

Besides these constraints from differential geometry, map
projection also has to cope with a topological issue. A
sphere is a surface without a boundary, whereas a finite flat
area has to be bounded. Hence, a cartographer has to
decide where to cut the globe and to which curve this cut
has to be mapped. Many choices are possible. One option,
used for azimuthal projections, is to cut the surface of the
globe at a single point, and to project this to a circle,
leading to very strong distortions at the boundary. The
most popular choice is to cut the globular surface along a
meridian, and to project the two edges of this cut to an
ellipse, a flattened ellipse or a rectangle, where in the last
two cases the point-shaped poles are projected to curves.

The use of interrupts reduces distortion. For the
production of globes, minimal distortion is vital for
production purposes; hence gore maps are used, where
the world is divided in for instance twelve gores. Goode’s
homolosine projection (1923) is an equal-area projection,
composed from twelve regions to form six interrupted
lobes, with interrupts through the oceans. The projection
of the earth on unfolded polyhedra instead of rectangles or
ellipses is an old idea, going back to Da Vinci and Dürer. All
regular polyhedra have been proposed as suitable candi-
dates. Some examples are Cahill’s Butterfly Map (1909,
octahedron) and the Dymaxion Map of Buckminster Fuller,
who used a cuboctahedron (1946) and an icosahedron
(1954). Steve Waterman has developed an appealing
polyhedral map, based on sphere packing.

Figure 1 visualises the trade-off to be made when dealing
with distortion in map projection. An ideal projection
should be equal-area, conformal, and have no interrupts;
however, at most, two of these can be satisfied simulta-
neously. Such projections are shown here at the corners of a
triangle, whereas edges denote solutions where one of the
requirements is satisfied. Existing solutions can be posi-
tioned in this solution space. Examples are given for some

cylindrical projections, with linear parallels and meridians.
Most of the existing solutions, using no interrupts, are
located at the bottom of the triangle. In this article, we
explore the top of the triangle, which is still terra incognita,
using geographic terminology. Or, in other words, we
discuss projections that are both (almost) equal area and
conformal, but do have a very large number of interrupts.

Related issues have been studied intensively in the fields
of computer graphics and geometric modelling, for
applications such as texture mapping, finite-element surface
meshing, and generation of clothing patterns. The problem
of earth mapping is a particular case of the general surface
parameterisation problem. A survey is given by Floater and
Hormann (2005). Finding strips on meshes has been
studied in the context of mesh compression and mesh
rendering, for instance by Karni et al. (2002). Bounded-
distortion flattening of curved surfaces via cuts was studied
by Sorkine et al. (2002). The work presented here has a
different scope and ambition as this related work. The
geometry to be handled is just a sphere. The aim is to
obtain zero distortion, and we accept a large number of
cuts. Finally, we aim at providing an integrated framework,
offering fine control over the results, and explore the effect
of different choices for the depiction of the surface of the
earth.

METHOD

We project the globe on a polyhedral mesh, label edges as
cuts or folds, and unfold the mesh. We assume that the
faces of the mesh are small compared with the radius of the
globe, such that area and angular distortion are almost
negligible. We first discuss the labelling problem. A mesh
can be considered as a (planar) graph G 5 (V, E), consisting
of a set of vertices V and undirected edges E that connect
vertices. Consider the dual graph H 5 (V’, E’), where each
vertex denotes a face of the mesh, and each edge
corresponds to an edge of the original graph, but now

Figure 1. Distortion in map projection

Unfolding the Earth: Myriahedral Projections 33Projection Classification
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Angle-preserving

https://www.win.tue.nl/~vanwijk/myriahedral/CAJ103.pdf


Choropleth (Two Hues)
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Choropleth (Diverging Attribute)
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https://www.washingtonpost.com/news/politics/wp/2018/07/30/presenting-the-least-misleading-map-of-the-2016-election/


Don't Just Create Population Maps!
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Size Encoding
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Cartograms
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House Races: Non-Contiguous "Cartogram"
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12 Lean Democratic

 AZ-02 Open (McSally)

 CA-49 Open (Issa)

 CO-06 Coffman

 IA-01 Blum

 KS-03 Yoder

 MI-11 Open (Trott)

 MN-02 Lewis

 MN-03 Paulsen

 NV-03 Open (Rosen)

 NJ-11 Open (Frelinghuysen)

 PA-07 Vacant (formerly Dent)

 VA-10 Comstock

31 Tossups

 CA-10 Denham

 CA-25 Knight

 CA-39 Open (Royce)

 CA-45 Walters

 CA-48 Rohrabacher

 FL-26 Curbelo

 FL-27 Open (Ros-Lehtinen)

 IL-06 Roskam

 IL-12 Bost

 IA-03 Young

 KS-02 Open (Jenkins)

 KY-06 Barr

 ME-02 Poliquin

 MI-08 Bishop

 MN-01 Open (Walz)

 MN-08 Open (Nolan)

 NJ-03 MacArthur

 NJ-07 Lance
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 NY-22 Tenney

 NC-09 Open (Pittenger)

 NC-13 Budd

 OH-01 Chabot

 PA-01 Fitzpatrick

 TX-07 Culberson

 TX-32 Sessions

 UT-04 Love

 VA-02 Taylor

 VA-07 Brat

 WA-08 Open (Reichert)

25 Lean Republican

 AR-02 Hill

 CA-50 Hunter

 FL-15 Open (Ross)

 FL-16 Buchanan

 GA-06 Handel

 GA-07 Woodall

 IL-13 Davis

 IL-14 Hultgren

 MO-02 Wagner

 MT-AL Gianforte

 NE-02 Bacon

 NY-24 Katko

 NY-27 Collins

 NC-02 Holding

 OH-12 Balderson

 PA-10 Perry

 PA-16 Kelly

 SC-01 Open (Sanford)

 TX-23 Hurd

 TX-31 Carter

 VA-05 Open (Garrett)

 WA-03 Herrera Beutler

 WA-05 McMorris Rodgers

 WV-03 Vacant (formerly Jenkins)

 WI-01 Open (Ryan)

Maps Aren't Always Best: Close House Races
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Project Proposal
• Two Possibilities: 
- Create an interactive visualization 
- Work on a research project 

• Dataset Choices 
- New Mexico School Discipline 
- NFL Data 
- Storm Events Database 
- Louisiana Home Rebuilding Grants 
- Others? 

• Proposal Due Friday

12D. Koop, CSCI 627/490, Fall 2023

https://faculty.cs.niu.edu/~dakoop/cs627-2023fa/project.html#proposal


Assignment 4
• To be announced soon

13D. Koop, CSCI 627/490, Fall 2023



Next Week
• Barring any setbacks, return to in-person lectures and office hours on 

Monday

14D. Koop, CSCI 627/490, Fall 2023
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D3 Map Examples
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https://observablehq.com/d/417154b4ebb77101


Networks
• Why not graphs? 
- Bar graph 
- Graphing functions in mathematics 

• Network: nodes and edges connecting the nodes 
• Formally, G = (V,E) is a set of nodes V and a set of edges E where each edge 

connects two nodes. 
• Nodes == items, edges connect items 
• Both nodes and edges may have attributes

16D. Koop, CSCI 627/490, Fall 2023



Arrange Networks and Trees

Node–Link Diagrams

Enclosure

Adjacency Matrix

TREESNETWORKS

Connection Marks

TREESNETWORKS

Derived Table

TREESNETWORKS

Containment Marks

Arrange Networks and Trees
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•Nodes may have attributes  
(e.g. element)
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•Nodes may have attributes  
(e.g. element)

•Edges may have attributes 
(e.g. number of bonds)



Web Sites as Graphs (amazon.com)
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Social Networks
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Networks as Data
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ID Atom Electrons Protons
0 N 7 7
1 C 6 6
2 S 16 16
3 C 6 6
4 N 7 7

ID1 ID2 Bonds
0 1 1
1 2 1
1 3 2
3 4 1
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Node-Link Diagrams
• Data: nodes and edges 
• Task: understand connectivity, paths, 

structure (topology) 
• Encoding: nodes as point marks, 

connections as line marks 
• Scalability: hundreds 

• …but high density of links can be 
problematic! 

• Issue with the encoding?
22D. Koop, CSCI 627/490, Fall 2023



Arc Diagram
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Network Layout
• Need to use spatial position when designing network visualizations 
• Otherwise, nodes can occlude each other, links hard to distinguish 
• How? 
- With bar charts, we could order using an attribute… 
- With networks, we want to be able to see connectivity and topology (not in 

the data usually) 
• Possible metrics: 
- Edge crossings 
- Node overlaps 
- Total area

24D. Koop, CSCI 627/490, Fall 2023



Force-Directed Layout
• Nodes push away from each other but 

edges are springs that pull them together 
• Weakness: nondeterminism, algorithm may 

produce difference results each time it runs

25

[M. Bostock, 2017]
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https://observablehq.com/@d3/force-directed-graph


Constraint-Based Optimization (CoLa)
• Higher quality layout 
• More stable in interactive 

applications (no "jitter") 
• Allows user specified constraints 

such as alignments and grouping 
• Can avoid overlapping nodes 
• Provides flow layout for directed 

graphs 
• May be less scalable to very large 

graphs 
• Can route edges around nodes

26

[T. Dwyer et al. (WebCoLa); M. Bostock (Example), 2018]
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https://marvl.infotech.monash.edu/webcola/
https://observablehq.com/@mbostock/hello-cola


sfdp
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“Hairball”
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IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

Fig. 13. A software system and its associated call graph (caller = green, callee = red). (a) and (b) show the system with bundling strength β = 0.85
using a balloon layout (node labels disabled) and a radial layout, respectively. Bundling reduces visual clutter, making it easier to perceive the
actual connections than when compared to the non-bundled versions (figures 2a and 11a). Bundled visualizations also show relations between
sparsely connected systems more clearly (encircled regions); these are almost completely obscured in the non-bundled versions. The encircled
regions highlight identical parts of the system for (a), (b), and figure 15.

Fig. 14. Using the bundling strength β to provide a trade-off between low-level and high-level views of the adjacency relations. The value of β
increases from left-to-right; low values mainly provide low-level, node-to-node connectivity information, whereas high values provide high-level
information as well by implicit visualization of adjacency edges between parent nodes that are the result of explicit adjacency edges between their
respective child nodes.

regarded as being aesthetically pleasing. SIG and FEI Company Eind-
hoven are currently supporting further development by providing us
with additional data sets and feedback regarding the resulting visual-
izations.

More specifically, most of the participants particularly valued the
fact that relations between items at low levels of the hierarchy were
automatically lifted to implicit relations between items at higher lev-
els by means of bundles. This quickly gave them an impression of the
high-level connectivity information while still being able to inspect
the low-level relations that were responsible for the bundles by inter-
actively manipulating the bundling strength.

This is illustrated in figure 14, which shows visualizations using
different values for the bundling strength β . Low values result in vi-
sualizations that mainly provide low-level, node-to-node connectivity
information. High values result in visualizations that provide high-
level information as well by implicit visualization of adjacency edges
between parent nodes that are the result of explicit adjacency edges
between their respective child nodes.

Another aspect that was commented on was how the bundles gave

an impression of the hierarchical organization of the data as well,
thereby strengthening the visualization of the hierarchy. More specif-
ically, a thick bundle shows the presence of two elements at a fairly
high level of the hierarchy, whereas the fanning out of a bundle shows
the subdivision of an element into subelements.

Most participants preferred the radial layout over the balloon layout
and the squarified treemap layout. Another finding was the fact that the
rooted layout and the slice-and-dice treemap layout were considered
less pleasing according to several participants. This is probably due to
the large number of collinear nodes within these layouts, which causes
bundles to overlap along the collinearity axes. This is illustrated in
figure 17.

Although our main focus while developing hierarchical edge bun-
dles was on the visualization itself, interaction is an important aspect
in determining the usability of our technique. Based on our own in-
sight and feedback gathered from participants, we contend that bundle-
based interaction as described below could provide a convenient way
of interacting with the visualizations.

Figure 16 shows how the bundling strength β could be used in con-

Hierarchical Edge Bundling

29

[Holten, 2006]
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IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006
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using a balloon layout (node labels disabled) and a radial layout, respectively. Bundling reduces visual clutter, making it easier to perceive the
actual connections than when compared to the non-bundled versions (figures 2a and 11a). Bundled visualizations also show relations between
sparsely connected systems more clearly (encircled regions); these are almost completely obscured in the non-bundled versions. The encircled
regions highlight identical parts of the system for (a), (b), and figure 15.

Fig. 14. Using the bundling strength β to provide a trade-off between low-level and high-level views of the adjacency relations. The value of β
increases from left-to-right; low values mainly provide low-level, node-to-node connectivity information, whereas high values provide high-level
information as well by implicit visualization of adjacency edges between parent nodes that are the result of explicit adjacency edges between their
respective child nodes.

regarded as being aesthetically pleasing. SIG and FEI Company Eind-
hoven are currently supporting further development by providing us
with additional data sets and feedback regarding the resulting visual-
izations.

More specifically, most of the participants particularly valued the
fact that relations between items at low levels of the hierarchy were
automatically lifted to implicit relations between items at higher lev-
els by means of bundles. This quickly gave them an impression of the
high-level connectivity information while still being able to inspect
the low-level relations that were responsible for the bundles by inter-
actively manipulating the bundling strength.

This is illustrated in figure 14, which shows visualizations using
different values for the bundling strength β . Low values result in vi-
sualizations that mainly provide low-level, node-to-node connectivity
information. High values result in visualizations that provide high-
level information as well by implicit visualization of adjacency edges
between parent nodes that are the result of explicit adjacency edges
between their respective child nodes.

Another aspect that was commented on was how the bundles gave

an impression of the hierarchical organization of the data as well,
thereby strengthening the visualization of the hierarchy. More specif-
ically, a thick bundle shows the presence of two elements at a fairly
high level of the hierarchy, whereas the fanning out of a bundle shows
the subdivision of an element into subelements.

Most participants preferred the radial layout over the balloon layout
and the squarified treemap layout. Another finding was the fact that the
rooted layout and the slice-and-dice treemap layout were considered
less pleasing according to several participants. This is probably due to
the large number of collinear nodes within these layouts, which causes
bundles to overlap along the collinearity axes. This is illustrated in
figure 17.

Although our main focus while developing hierarchical edge bun-
dles was on the visualization itself, interaction is an important aspect
in determining the usability of our technique. Based on our own in-
sight and feedback gathered from participants, we contend that bundle-
based interaction as described below could provide a convenient way
of interacting with the visualizations.

Figure 16 shows how the bundling strength β could be used in con-

Hierarchical Edge Bundling
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Hierarchical Edge Bundling
• Flexible and generic method 
• Reduces visual clutter when dealing with large numbers of adjacency edges 
• Provides an intuitive and continuous way to control the strength of bundling. 
- Low bundling strength mainly provides low-level, node-to-node connectivity 

information 
- High bundling strength provides high-level information as well by implicit 

visualization of adjacency edges between parent nodes that are the result of 
explicit adjacency edges between their respective child nodes

31

[Holten, 2006]
D. Koop, CSCI 627/490, Fall 2023



Bundling Strength

32

[Holten, 2006]
D. Koop, CSCI 627/490, Fall 2023

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

Fig. 13. A software system and its associated call graph (caller = green, callee = red). (a) and (b) show the system with bundling strength β = 0.85
using a balloon layout (node labels disabled) and a radial layout, respectively. Bundling reduces visual clutter, making it easier to perceive the
actual connections than when compared to the non-bundled versions (figures 2a and 11a). Bundled visualizations also show relations between
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increases from left-to-right; low values mainly provide low-level, node-to-node connectivity information, whereas high values provide high-level
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regarded as being aesthetically pleasing. SIG and FEI Company Eind-
hoven are currently supporting further development by providing us
with additional data sets and feedback regarding the resulting visual-
izations.

More specifically, most of the participants particularly valued the
fact that relations between items at low levels of the hierarchy were
automatically lifted to implicit relations between items at higher lev-
els by means of bundles. This quickly gave them an impression of the
high-level connectivity information while still being able to inspect
the low-level relations that were responsible for the bundles by inter-
actively manipulating the bundling strength.

This is illustrated in figure 14, which shows visualizations using
different values for the bundling strength β . Low values result in vi-
sualizations that mainly provide low-level, node-to-node connectivity
information. High values result in visualizations that provide high-
level information as well by implicit visualization of adjacency edges
between parent nodes that are the result of explicit adjacency edges
between their respective child nodes.

Another aspect that was commented on was how the bundles gave

an impression of the hierarchical organization of the data as well,
thereby strengthening the visualization of the hierarchy. More specif-
ically, a thick bundle shows the presence of two elements at a fairly
high level of the hierarchy, whereas the fanning out of a bundle shows
the subdivision of an element into subelements.

Most participants preferred the radial layout over the balloon layout
and the squarified treemap layout. Another finding was the fact that the
rooted layout and the slice-and-dice treemap layout were considered
less pleasing according to several participants. This is probably due to
the large number of collinear nodes within these layouts, which causes
bundles to overlap along the collinearity axes. This is illustrated in
figure 17.

Although our main focus while developing hierarchical edge bun-
dles was on the visualization itself, interaction is an important aspect
in determining the usability of our technique. Based on our own in-
sight and feedback gathered from participants, we contend that bundle-
based interaction as described below could provide a convenient way
of interacting with the visualizations.

Figure 16 shows how the bundling strength β could be used in con-
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regarded as being aesthetically pleasing. SIG and FEI Company Eind-
hoven are currently supporting further development by providing us
with additional data sets and feedback regarding the resulting visual-
izations.

More specifically, most of the participants particularly valued the
fact that relations between items at low levels of the hierarchy were
automatically lifted to implicit relations between items at higher lev-
els by means of bundles. This quickly gave them an impression of the
high-level connectivity information while still being able to inspect
the low-level relations that were responsible for the bundles by inter-
actively manipulating the bundling strength.

This is illustrated in figure 14, which shows visualizations using
different values for the bundling strength β . Low values result in vi-
sualizations that mainly provide low-level, node-to-node connectivity
information. High values result in visualizations that provide high-
level information as well by implicit visualization of adjacency edges
between parent nodes that are the result of explicit adjacency edges
between their respective child nodes.

Another aspect that was commented on was how the bundles gave

an impression of the hierarchical organization of the data as well,
thereby strengthening the visualization of the hierarchy. More specif-
ically, a thick bundle shows the presence of two elements at a fairly
high level of the hierarchy, whereas the fanning out of a bundle shows
the subdivision of an element into subelements.

Most participants preferred the radial layout over the balloon layout
and the squarified treemap layout. Another finding was the fact that the
rooted layout and the slice-and-dice treemap layout were considered
less pleasing according to several participants. This is probably due to
the large number of collinear nodes within these layouts, which causes
bundles to overlap along the collinearity axes. This is illustrated in
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Although our main focus while developing hierarchical edge bun-
dles was on the visualization itself, interaction is an important aspect
in determining the usability of our technique. Based on our own in-
sight and feedback gathered from participants, we contend that bundle-
based interaction as described below could provide a convenient way
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Figure 16 shows how the bundling strength β could be used in con-



Adjacency Matrix
• Change network to tabular data and use a 

matrix representation 
• Derived data: nodes are keys, edges are 

boolean values 
• Task: lookup connections, find well-

connected clusters 
• Scalability: millions of edges 

• Can encode edge weight, too
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7.1. Using Space 135

Figure 7.5: Comparing matrix and node-link views of a five-node network.
a) Matrix view. b) Node-link view. From [Henry et al. 07], Figure 3b and
3a. (Permission needed.)

the number of available pixels per cell; typically only a few levels would
be distinguishable between the largest and the smallest cell size. Network
matrix views can also show weighted networks, where each link has an as-
sociated quantitative value attribute, by encoding with an ordered channel
such as color luminance or size.

For undirected networks where links are symmetric, only half of the
matrix needs to be shown, above or below the diagonal, because a link
from node A to node B necessarily implies a link from B to A. For directed
networks, the full square matrix has meaning, because links can be asym-
metric. Figure 7.5 shows a simple example of an undirected network, with
a matrix view of the five-node dataset in Figure 7.5a and a corresponding
node-link view in Figure 7.5b.

Matrix views of networks can achieve very high information density, up
to a limit of one thousand nodes and one million edges, just like cluster
heatmaps and all other matrix views that uses small area marks.

Technique network matrix view
Data Types network
Derived Data table: network nodes as keys, link status between two

nodes as values
View Comp. space: area marks in 2D matrix alignment
Scalability nodes: 1K

edges: 1M

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.1.3.3 Multiple Keys: Partition and Subdivide When a dataset has only
one key, then it is straightforward to use that key to separate into one region



Cliques in Adjacency Matrices

34

[Gehlenborg and Wong]
D. Koop, CSCI 627/490, Fall 2023



Structures from Adjacency Matrices
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Node-Link or Adjacency Matrix?
• Empirical study: For most tasks, node-link is better for small graphs and 

adjacency better for large graphs 
• Multi-link paths are hard with adjacency matrices 
• Immediate connectivity or neighbors are ok, estimating size (nodes & edges 

also ok) 
• People tend to be more familiar with node-link diagrams 
• Link density is a problem with node-link but not with adjacency matrices
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Trees
• Trees are directed acyclic networks 
- each edge has a direction: the origin is the parent, the destination is the 

child 
- cannot get back to a node after leaving it 

• …plus each node has at most one parent node 
• A tree has a root (every other node hangs off it) 
• Can consider enclosure in trees using parent-child relationships
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Quantifying the Space-Efficiency
of 2D Graphical Representations of Trees

Michael J. McGuffin and Jean-Marc Robert

Abstract— A mathematical evaluation and comparison of the space-efficiency of various 2D graphical representations of tree struc-
tures is presented. As part of the evaluation, a novel metric called the mean area exponent is introduced that quantifies the distribution
of area across nodes in a tree representation, and that can be applied to a broad range of different representations of trees. Several
representations are analyzed and compared by calculating their mean area exponent as well as the area they allocate to nodes and
labels. Our analysis inspires a set of design guidelines as well as a few novel tree representations that are also presented.

Index Terms—Tree visualization, graph drawing, efficiency metrics.

1 INTRODUCTION

A variety of graphical representations are available for depicting tree
structures (Figure 1), from “classical” node-link diagrams [23, 7], to
treemaps [14, 26, 6, 30], concentric circles [2, 27, 31], and many others
(see [13] for a survey). A major consideration when designing, eval-
uating, or comparing such representations is how efficiently they use
screen space to show information about the tree. To date, however, it is
unclear how to go about evaluating space-efficiency in a way that can
be applied to the large variety of tree representations and that enables a
fair comparison of them. Space-efficiency might be described in terms
of area, aspect ratio, label size, or other measures. However, there is no
accepted standard set of metrics for evaluating the space-efficiency of
tree representations, and it is unclear what approach would be general
enough to be applied to all the forms in Figure 1.

Fig. 1. Several basic kinds of tree representations, here each showing
a complete 3-ary tree of depth 3 as an example. All representations
are drawn to just fit within a 1×1 unit square. A: classical (layered)
node-link [23, 7]. B: a variation on A, where the shape of nodes better
accommodates long labels. C: icicle. D: radial [10, 9]. E: concentric
circles [2, 27, 31]. F: nested circles, similar to [5, 28]. G: treemap [14,
26]. H: indented outline, sometimes called a “tree list”, and common in
file browsers such as Microsoft Explorer.

• Michael J. McGuffin is with École de technologie supérieure, Montréal,
Canada, E-mail: michael.mcguffin@etsmtl.ca.

• Jean-Marc Robert is with École de technologie supérieure, Montréal,
Canada, E-mail: jean-marc.robert@etsmtl.ca.

One basic metric of space-efficiency is the total area of a representa-
tion. Assuming the representation is bound within a 1×1 square, both
icicle diagrams and treemaps (Figures 1C and 1G) have a total area of
1, and are equally efficient (and both optimal) according to this met-
ric. Likewise, concentric circles and nested circles (Figures 1E and 1F)
both have a total area of π/4 ≈ 0.785 (the area of a circle of diameter
1), and are also equally efficient according to the metric of total area.
However, experience suggests that the representations within each of
these pairs do not scale equally well with larger, deeper trees. This
article shows that there are finer ways of distinguishing efficiency, i.e.
that there is more to space-efficiency than total area.

Treemaps are often described as optimally space-efficient, not just
because they have a total area of 1, but also because they allow for
what we call a weighted partitioning of the area. Nodes can be allo-
cated more or less area, depending on some attribute such as file size,
population, or number of species, and furthermore this weighted par-
titioning can be done without reducing the total area used. These are
indeed desirable properties, however they are not unique to treemaps.
Figure 2 shows that icicle diagrams also allow for a weighted parti-
tioning of area, and incidentally have no need for margins between the
borders of nodes as treemaps often do.

Furthermore, although a weighted partitioning is useful for showing
the relative sizes of nodes in Figures 2A and 2C, an unfortunate side
effect is that labels on small nodes are very difficult to read. If users
are more interested in seeing the identity of all nodes rather than their
relative sizes, an alternative approach would be to give equal weight to
each leaf node (Figures 2B and 2D), improving the overall legibility
of nodes. (Although not shown in the figure, the labels could also be
augmented to numerically show the “size” attribute of each node.) In
terms of label size or legibility, Figures 2B and 2D are clearly prefer-
able, but even they still result in much whitespace around certain la-
bels, suggesting that a more space-efficient (in terms of label size)
representation might be possible.

Clearly, it would be useful to have some way to quantitatively dis-
tinguish the four possibilities in Figure 2, e.g. in terms of their respec-
tive scalability and the sizes of their labels. If total area is the only
metric of space-efficiency used, and “optimal” space-efficiency is de-
fined as a total area of 1 (possibly partitioned by weight), then we
have no way of distinguishing these four cases. If alternative metrics
of space-efficiency are used, such as those investigated in this article,
it is not clear initially if treemaps, or any other representation, will still
turn out to be optimal with respect to such alternative metrics.

This article identifies several metrics related to space-efficiency,
and performs the first rigorous analysis and comparison of the space-
efficiency of most of the basic tree representation styles in the infor-
mation visualization literature, including all those in Figure 1. Some
of the key ideas involved are (1) the use of a metric of the size of the
smallest nodes (i.e. the leaf nodes) in the representation, in addition to
a metric of total area; (2) analyzing the area of labels on the nodes,
which implicitly takes into account both the size and aspect ratio of
the nodes, measuring how much “useful” area they contain; and (3)
analyzing how these metrics behave asymptotically, as the tree grows

Tree Visualizations
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tinguish the four possibilities in Figure 2, e.g. in terms of their respec-
tive scalability and the sizes of their labels. If total area is the only
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