Data Visualization (CSCI 627/490)

Data

Dr. David Koop

Scalable Vector Graphics (SVG)

- Vector graphics vs. Raster graphics
- Drawing commands versus a grid of pixels
- Why vector graphics?

Raster

D. Koop, CSCI 627/490, Fall 2023

Vector

2

JavaScript in one slide

- Interpreted and Dynamically-typed Programming Language
- Statements end with semi-colons, normal blocking with brackets
- Variables: var a = 0; let b = 2; const c = 4;
- Operators: +, -, *, /, []
- Control Statements: if (<expr>) {...} else {...}, switch
- Loops: for, while, do-while
- Functions: function myFunction(a,b) { return a + b; }
- Objects: var obj; obj.x = 3; obj.y = 5;
 - Prototypes for instance functions
- Comments are /* Comment */ or // Single-line Comment

D. Koop, CSCI 627/490, Fall 2023

• Arrays: var a = [1, 2, 3]; a [99] = 100; console.log(a.length);

Including JavaScript in HTML

- Use the script tag
- Can either inline JavaScript or load it from an external file - <script type="text/javascript">
 - a = 5, b = 8;c = a * b + b - a;</script>
- <script type="text/javascript" src="script.js"/>
- Script tag can reference local or remote external javascript files The order the javascript is in is the order it is executed • Example: in the above, script.js can access the variables a, b, and c

JavaScript Objects

- "Senior", hometown: "Peoria, IL, USA"};
- Objects contain multiple values: key-value pairs called properties
- Accessing properties via dot-notation: student.name
- Always works via bracket-notation: student["name"]
- May also contain functions:
 - var student = {firstName: "John",
 - lastName: "Smith",
 - student.fullName()

```
• var student = {name: "John Smith", id: "000012345", class:
```

```
fullName: function() { return this.firstName +
                       " " + this.lastName; }};
```


Function Chaining in JavaScript

- When programming functionally, it is useful to chain functions
- No intermediate variables!
- Often more readable code
- jQuery Example:
 - \$("#myElt").css("color", "blue").height(200).width(320)
- Used a lot in Web programming, especially D3
- Can return the same object or a new object
- Lazy chaining keeps track of functions to be applied but will apply them later (e.g. when the page loads)

D. Koop, CSCI 627/490, Fall 2023

6

Closures in JavaScript

- Functions can return functions with some values set
- Allows assignment of some of the values
- Closures are functions that "remember their environments" [MDN]

```
function makeAdder(x) {
  return function(y) {
    return x + y;
  };
var add5 = makeAdder(5);
var add10 = makeAdder(10);
```

```
console.log(add5(2)); // 7
console.log(add10(2)); // 12
```

<u>Notebook</u>

7

Functional Programming in JavaScript

- Functions are first-class objects in JavaScript
- You can pass a function to a method just like you can pass an integer, string, or object
- Instead of writing loops to process data, we can instead use a map/filter/ reduce/forEach function on the data that runs our logic for each data item
- map: transform each element of an array
- filter: check each element of an array and keep only ones that pass
- forEach: run the function for each element of the array
- reduce: collapse an array to a single object

Quiz

- Using map, filter, reduce, and forEach, and given this data:
 - -var a = [6, 2, 6, 10, 7, 18, 0, 17, 20, 6];
- Questions:
 - How would I return a new array with values one less than in a?
 - How would I find only the values >= 10?
 - How would I sum the array?
 - How would I create a reversed version of the array?

Quiz Answers: Notebook

- Data: var a = [6, 2, 6, 10, 7, 18, 0, 17, 20, 6];
- How would I subtract one from each item?
 - a.map(function(d) { return d-1; })
- How would I find only the values >= 10?
 - a.filter(function(d) { return d >= 10; })
- How would I sum the array?
 - a.reduce(function(s,d) { return s + d; })
- How would I create a reversed version of the array?
 - b = []; a.forEach(function(d) { b.unshift(d); });
 - ... Or a. reverse () // modifies in place
- Arrow functions shorten such calls: a.map(d => d-1); a.filter(d => d >= 10); a.reduce((s,d) => s+d);

<u>Assignment 1</u>

- Write HTML, CSS, and SVG
- Text markup and styling (information)
- Drawing markup and styling (camera phone)
- Draw Bar chart using Plot library
- Due Today (Wed., Sept. 13)

n) ra phone)

<u>Assignment 1</u>

- Write HTML, CSS, and SVG
- Text markup and styling (information)
- Drawing markup and styling (camera phone)
- Draw Bar chart using Plot library
- Due Today (Wed., Sept. 13)

n) ra phone)

This Week

- I am traveling for a research meeting (Monday—Friday)
- No in-person office hours
 - Please ask any questions via email
- Assignment 2 should be released this week
- We are back in person on Monday (Sept. 18)

Example: JavaScript and the DOM

• Start with no real content, just divs:

<div id="firstSection"></div> <div id="secondSection"></div> <div id="finalSection"></div>

- Get existing elements:
 - document.querySelector/querySelectorAll
 - document.getElementById
- Programmatically add elements:
 - document.createElement
 - document.createTextNode
 - Element.appendChild
 - Element.setAttribute

D. Koop, CSCI 627/490, Fall 2023

Bears

Chicago, IL

2018-2019 NFC North Champions

What will happen this year?

Observable's HTML Templating

- Allows JavaScript expressions to be inlined in HTML (or SVG content)
- Use \$ { ... }
- Example:
 - [JavaScript] name = "Prof. Koop"
 - [HTML] Hello, my name is \${name}

Using Observable's HTML Templating

<div id="firstSection">

<h1>Bears</h1>Chicago, IL </div>

<div id="secondSection">

<h2>2018-2019 NFC North Champions</h2> </div>

<div id="finalSection">

\${scores.map((game) => html`\${game.date}:

</imq> What will happen this year? </div>

Notebook

D. Koop, CSCI 627/490, Fall 2023

\${game.win ? "Win" : "Loss"} (\${game.score})`)}

SVG Manipulation Example

- Draw a horizontal bar chart
 - var a = [6, 2, 6, 10, 7, 18, 0, 17, 20, 6];
- Steps?

SVG Manipulation Example

- Draw a horizontal bar chart
 - -var a = [6, 2, 6, 10, 7, 18, 0, 17, 20, 6];
- Steps:
 - Programmatically create SVG
 - Create individual rectangle for each item
- Notebook

...or Use Templating

- Same with SVG as with HTML
- <u>Notebook</u>

"Computer-based visualization systems provide visual tasks more effectively."

D. Koop, CSCI 627/490, Fall 2023

representations of datasets designed to help people carry out

– T. Munzner

- What? the data
 Why? the tasks
 How? the techniques
- Data visualization begins with data

Data

• What is this data?

R011	42ND STREET & 8TH AVENUE	00228985	00008471	00000441	00001455	00000134	00033341	00071255
R170	14TH STREET-UNION SQUARE	00224603	00011051	00000827	00003026	00000660	00089367	00199841
R046	42ND STREET & GRAND CENTRAL	00207758	00007908	00000323	00001183	00003001	00040759	00096613

- Semantics: real-world meaning of the data
- **Type**: structural or mathematical interpretation
- Both often require **metadata**
 - Sometimes we can infer some of this information
 - Line between data and metadata isn't always clear

- The meaning of the data
- Example: 94023, 90210, 02747, 60115

- The meaning of the data
- Example: 94023, 90210, 02747, 60115
 - Attendance at college football games?

- The meaning of the data
- Example: 94023, 90210, 02747, 60115
 - Attendance at college football games?
 - Salaries?

- The meaning of the data
- Example: 94023, 90210, 02747, 60115
 - Attendance at college football games?
 - Salaries?
 - Zip codes?
- Cannot always infer based on what the data looks like
- Often require semantics to better understand data
- Column names help with semantics
- May also include rules about data: a zip code is part of an address that uniquely identifies a residence
- Useful for asking good questions about the data

Data

	REMOTE	STATION	FF V	SEN/DIS	7-D AFAS UNL	D AFAS/RMF L	JOINT RR TKT	7-D UNL	30-D UNL
1	R011	42ND STREET & 8TH AVENUE	00228985	00008471	00000441	00001455	00000134	00033341	00071255
2	R170	14TH STREET-UNION SQUARE	00224603	00011051	00000827	00003026	00000660	00089367	00199841
3	R046	42ND STREET & GRAND CENTRAL	00207758	00007908	00000323	00001183	00003001	00040759	00096613
4	R012	34TH STREET & 8TH AVENUE	00188311	00006490	00000498	00001279	00003622	00035527	00067483
5	R293	34TH STREET – PENN STATION	00168768	00006155	00000523	00001065	00005031	00030645	00054376
6	R033	42ND STREET/TIMES SQUARE	00159382	00005945	00000378	00001205	00000690	00058931	00078644
7	R022	34TH STREET & 6TH AVENUE	00156008	00006276	00000487	00001543	00000712	00058910	00110466
8	R084	59TH STREET/COLUMBUS CIRCLE	00155262	00009484	00000589	00002071	00000542	00053397	00113966
9	R020	47-50 STREETS/ROCKEFELLER	00143500	00006402	00000384	00001159	00000723	00037978	00090745
10	R179	86TH STREET-LEXINGTON AVE	00142169	00010367	00000470	00001839	00000271	00050328	00125250
11	R023	34TH STREET & 6TH AVENUE	00134052	00005005	00000348	00001112	00000649	00031531	00075040
12	R029	PARK PLACE	00121614	00004311	00000287	00000931	00000792	00025404	00065362
13	R047	42ND STREET & GRAND CENTRAL	00100742	00004273	00000185	00000704	00001241	00022808	00068216

Data Terminology

- Items
 - An item is an individual discrete entity
 - e.g. row in a table, node in a network
- Attributes
 - An attribute is some specific prop logged
 - a.k.a. variable, (data) dimension
 - e.g. a column in a table

D. Koop, CSCI 627/490, Fall 2023

ntity ork

- An attribute is some specific property that can be measured, observed, or

24

Items & Attributes

Α	В	С	S	Т	U
Order ID	Order Date	Order Priority	Product Container	Product Base Margin	Ship Date
3	10/14/06	5-Low	Large Box	0.8	10/21/06
6	2/21/08	4-Not Specified	Small Pack	0.55	2/22/08
32	7/16/07	2-High	Small Pack	0.79	7/17/07
32	7/16/07	2-High	Jumbo Box	•••	7/17/07
32	7/16/07	2-High	Medium Box	attribute	7/18/07
32	7/16/07	2-High	Medium Box	0.03	7/18/07
35	10/23/07	4-Not Specified	Wrap Bag	0.52	10/24/07
35	10/23/07	4-Not Specified	Small Box	0.58	10/25/07
36	11/3/07	1-Urgent	Small Box	0.55	11/3/07
65	3/18/07	1-Urgent	Small Pack	0.49	3/19/07
66	1 (20 (05	5-Low	Wrap Bag	0.56	1/20/05
69	item	4-Not Specified	Small Pack	0.44	6/6/05
69	5	4-Not Specified	Wrap Bag	0.6	6/6/05
70	12/18/06	5-Low	Small Box	0.59	12/23/06
70	12/18/06	5-Low	Wrap Bag	0.82	12/23/06
96	4/17/05	2-High	Small Box	0.55	4/19/05
97	1/29/06	3-Medium	Small Box	0.38	1/30/06
129	11/19/08	5-Low	Small Box	0.37	11/28/08
130	5/8/08	2-High	Small Box	0.37	5/9/08
130	5/8/08	2-High	Medium Box	0.38	5/10/08
130	5/8/08	2-High	Small Box	0.6	5/11/08
132	6/11/06	3-Medium	Medium Box	0.6	6/12/06
132	6/11/06	3-Medium	Jumbo Box	0.69	6/14/06
134	5/1/08	4-Not Specified	Large Box	0.82	5/3/08
135	10/21/07	4-Not Specified	Small Pack	0.64	10/23/07
166	9/12/07		Small Box	0.55	9/14/07
193		1-Urgent	Medium Box	0.57	8/10/06
194		3-Medium	Wrap Bag	0.42	4/7/08

Data Types

- Nodes
 - Synonym for item but in the context of networks (graphs)
- Links
 - A **link** is a relation between two items
 - e.g. social network friends, computer network links

Items & Links

Data Types

- Positions:
 - A **position** is a location in space (usually 2D or 3D)
 - May be subject to projections
 - e.g. cities on a map, a sampled region in an CT scan
- Grids:

 - e.g. how CT scan data is stored

- A grid specifies how data is sampled both geometrically and topologically

Positions and Grids

Dataset Types

→ Tables

→ Networks

 \rightarrow Multidimensional Table

D. Koop, CSCI 627/490, Fall 2023

→ Geometry (Spatial)

Tables

Α	В	С	S	Т	U
Order ID	Order Date	Order Priority	Product Container	Product Base Margin	Ship Date
3	10/14/06	5-Low	Large Box	0.8	10/21/06
6	2/21/08	4-Not Specified	Small Pack	0.55	2/22/08
32	7/16/07	2-High	Small Pack	0.79	7/17/07
32	7/16/07	2-High	Jumbo Box	•1 .	7/17/07
32	7/16/07	2-High	Medium Box	attribute	7/18/07
32	7/16/07	2-High	Medium Box	0.05	7/18/07
35	10/23/07	4-Not Specified	Wrap Bag	0.52	10/24/07
35	10/23/07	4-Not Specified	Small Box	0.58	10/25/07
36	11/3/07	1-Urgent	Small Box	0.55	11/3/07
65	3/18/07	1-Urgent	Small Pack	0.49	3/19/07
66	1 (20 (05	5-Low	Wrap Bag	0.56	1/20/05
69	item	4-Not Specified	Small Pack	0.44	6/6/05
69	5	4-Not Specified	Wrap Bag	0.6	6/6/05
70	12/18/06	5-Low	Small Box	0.59	12/23/06
70	12/18/06	5-Low	Wrap Bag	0.82	12/23/06
96	4/17/05	2-High	Small Box	0.55	4/19/05
97	1/29/06	3-Medium	Small Box	0.38	1/30/06
129	11/19/08	5-Low	Small Box	0.37	11/28/08
130	5/8/08	2-High	Small Box	0.37	5/9/08
130	5/8/08	2-High	Medium Box	0.38	5/10/08
130	5/8/08	2-High	Small Box	0.6	5/11/08
132	6/11/06	3-Medium	Medium Box	0.6	6/12/06
132	6/11/06	3-Medium	Jumbo Box	0.69	6/14/06
134	5/1/08	4-Not Specified	Large Box	0.82	5/3/08
135	10/21/07	4-Not Specified	Small Pack	0.64	10/23/07
166	9/12/07	2-High	Small Box	0.55	9/14/07
193	8/8/06	1-Urgent	Medium Box	0.57	8/10/06
194	4/5/08	3-Medium	Wrap Bag	0.42	4/7/08

Tables

D. Koop, CSCI 627/490, Fall 2023

- Data organized by rows & columns
 - row ~ item (usually)
 - column ~ attribute
 - label ~ attribute name
- Key: identifies each item (row)
 - Usually **unique**
 - Allows join of data from 2+ tables
- Compound key: key split among multiple columns, e.g. (state, year) for population • Multidimensional:
 - Split compound key: data cube with (state, year)

[Munzner (ill. Maguire), 2014]

Table Visualizations

Networks

- Why networks instead of graphs?
- Tables can represent networks
 - Many-many relationships
 - Also can be stored as specific graph databases or files

Networks

D. Koop, CSCI 627/490, Fall 2023

Northern Illinois University 35

Networks

Fields

Scalar Fields (Order-0 Tensor Fields)

Each point in space has an associated...

 s_0

Scalar

D. Koop, CSCI 627/490, Fall 2023

Vector Fields (Order-1 Tensor Fields)

σ_{00}	σ_{01}	σ_{02}				
σ_{10}	σ_{11}	σ_{12}				
σ_{20}	σ_{21}	σ_{22}				
Tensor						

Fields

- Difference between continuous and discrete values
- Examples: temperature, pressure, density
- Grids necessary to sample continuous data:

uniform rectilinear

do not mislead"

D. Koop, CSCI 627/490, Fall 2023

structured

unstructured [Weiskopf, Machiraju, Möller]

• Interpolation: "how to show values between the sampled points in ways that

Spatial Data Example: MRI

Scivis and Infovis

- Two subfields of visualization
- Scivis deals with data where the spatial position is given with data
 - Usually continuous data
 - Often displaying physical phenonema
 - Techniques like isosurfacing, volume rendering, vector field vis
- In **Infovis**, the data has no set spatial representation, designer chooses how to visually represent data

SciVis

InfoVis

Sets & Lists

Raw Lyrics Data via John W. Miller

D. Koop, CSCI 627/490, Fall 2023

of Unique Words Used in 500 Random Samples of 35,000 Lyrics from Country, Rock, Hip Hop

Sets & Lists Skip

ThePudding

D. Koop, CSCI 627/490, Fall 2023

of Unique Words Used Within Artist's First 35,000 Lyrics

Sets & Lists

<2,675 unique words	2,675-3,050 unique words	3,050-3,425 unique words	3,425-3,800 unique words	3,800-4,175 unique words	4,175-4,550 unique words	4,550-4,925 unique words	4,925-5,300 unique words	5,300-5,675 unique words	5,675-6,050 unique words	6,050-6,425 unique words	6,425+ unique words
Lil Uzi Vert NF <2,675	YoungBoy Nev		Trick Daddy Trina Young Jeezy Big Sean BoB Childish Gam G-Eazy J Cole Machine Gun Meek Mill Nicki Minaj Russ	MC Lyte Scarface Three 6 Mafia UGK Dizzee Rascal Jadakiss Kano Lil' Kim Nelly Rick Ross T.I. 2 Chainz A\$AP Ferg Big KRIT Brockhampton Cupcakke Hopsin Jay Rock Kendrick Lamar Mac Miller ScHoolboy Q Tyga Vince Staples	Brand Nubian Geto Boys Ice Cube Jay-Z Mobb Deep Outkast Public Enemy Cam'ron Eminem The Game Joe Budden Kevin Gates Royce da 5'9 Tech n9ne Twista Ab-Soul A\$AP Rocky Danny Brown Death Grips Denzel Curry \$uicideboy\$ Tyler the Cr	Beastie Boys Big Daddy Kane LL Cool J Busta Rhymes Cypress Hill De La Soul Fat Joe Gang Starr KRS-One Method Man A Tribe Call Atmosphere Ludacris Lupe Fiasco Mos Def Murs Talib Kweli Xzibit Flatbush Zom Joey BadA\$\$	Common Das EFX E-40 Goodie Mob Nas Redman Brother Ali Action Bronson KAAN	Watsky	1 Del the Funk The Roots Blackalicious Canibus Ghostface Ki Immortal Tec Jean Grae Killah Priest RZA	BY 980s 1990s GZA Wu-Tang Clan Jedi Mind Tr MF DOOM	Aesop Rock Busdriver
				Run-D.M.C. 2Pac Big L Insane Clown	Biz Markie Ice T Rakim						lue Word hin Artis

Attribute Types

Categorical

D. Koop, CSCI 627/490, Fall 2023

→ Ordered

→ Ordinal

→ Quantitative

[Munzner (ill. Maguire), 2014]

Categorial, Ordinal, and Quantitative

Α	В	С		S	Т	U
Order ID	Order Date	Order Priority		Product Container	Product Base Margin	Ship Date
3	10/14/06	5-Low		Large Box	0.8	10/21/06
6	2/21/08	4-Not Specified		Small Pack	0.55	2/22/08
32	7/16/07			Small Pack	0.79	7/17/07
32	7/16/07	•		Jumbo Box	0.72	7/17/07
32	7/16/07	2-High		Medium Box	0.6	7/18/07
32	7/16/07	2-High		Medium Box	0.65	7/18/07
35	10/23/07	4-Not Specified		Wrap Bag	0.52	10/24/07
35	10/23/07	4-Not Specified		Small Box	0.58	10/25/07
36	11/3/07	1-Urgent		Small Box	0.55	11/3/07
65	3/18/07	1-Urgent		Small Pack	0.49	3/19/07
66	1/20/05	•		Wrap Bag	0.56	1/20/05
69	6/4/05	4-Not Speci	fied	Small Dack	0.44	6/6/05
69	6/4/05	4-Not Spec	01191	ntitative	0.6	6/6/05
70	12/18/06	5-Low	yuai	IIIIalive	0.59	12/23/06
70	12/18/06	5-Low	ordinal		0.82	12/23/06
96	4/17/05	2-High	UIUI		0.55	4/19/05
97	1/29/06	3-Medium	cate	gorical	0.38	1/30/06
129	11/19/08	5-Low	cate	Sorrear	0.37	11/28/08
130	5/8/08	2-High		Small Box	0.37	5/9/08
130	5/8/08	2-High		Medium Box	0.38	5/10/08
130	5/8/08	2-High		Small Box	0.6	5/11/08
132	6/11/06	3-Medium		Medium Box	0.6	6/12/06
132	6/11/06	3-Medium		Jumbo Box	0.69	6/14/06
134	5/1/08	4-Not Specified		Large Box	0.82	5/3/08
135	10/21/07	4-Not Specified		Small Pack	0.64	10/23/07
166	9/12/07			Small Box	0.55	9/14/07
193	8/8/06	1-Urgent		Medium Box	0.57	8/10/06
194		3-Medium		Wrap Bag	0.42	4/7/08

Categorial, Ordinal, and Quantitative

Α	В	С		S	Т	U
Order ID	Order Date	Order Priority		Product Container	Product Base Margin	Ship Date
3	10/14/06	5-Low		Large Box	0.8	10/21/06
6	2/21/08	4-Not Specified		Small Pack	0.55	2/22/08
32	7/16/07			Small Pack	0.79	7/17/07
32	7/16/07	2-High		Jumbo Box	0.72	7/17/07
32	7/16/07	2-High		Medium Box	0.6	7/18/07
32	7/16/07	2-High		Medium Box	0.65	7/18/07
35	10/23/07	4-Not Speci	fied	Wrap Bag	0.52	10/24/07
35	10/23/07	4-Not Speci	fied	Small Box	0.58	10/25/07
36	11/3/07	1-Urgent		Small Box	0.55	11/3/07
65	3/18/07	1-Urgent		Small Pack	0.49	3/19/07
66	1/20/05	5-Low		Wrap Bag	0.56	1/20/05
69	6/4/05	4-Not Spec	fied	Small Pack	0.44	6/6/05
69	6/4/05	4-Not Spec	ana	ntitative	0.6	6/6/05
70	12/18/06	5-Low	yuai	illative	0.59	12/23/06
70	12/18/06	5-Low	ordinal categorical		0.82	12/23/06
96	4/17/05	2-High			0.55	4/19/05
97	1/29/06	3-Medium			0.38	1/30/06
129	11/19/08	5-Low			0.37	11/28/08
130	5/8/08	2-High		Small Box	0.37	5/9/08
130	5/8/08	2-High		Medium Box	0.38	5/10/08
130	5/8/08	2-High		Small Box	0.6	5/11/08
132	6/11/06	3-Medium		Medium Box	0.6	6/12/06
132	6/11/06	3-Medium		Jumbo Box	0.69	6/14/06
134	5/1/08	4-Not Specified		Large Box	0.82	5/3/08
135	10/21/07	4-Not Specified		Small Pack	0.64	10/23/07
166	9/12/07			Small Box	0.55	9/14/07
193	8/8/06	1-Urgent		Medium Box	0.57	8/10/06
194	4/5/08	3-Medium		Wrap Bag	0.42	4/7/08
101		a				1 (= 10.0

Data Model vs. Conceptual Model

- Data Model: raw data that has a specific data type (e.g. floats): - Temperature Example: [32.5, 54.0, -17.3] (floats)
- Conceptual Model: how we think about the data
 - Includes semantics, reasoning
 - Temperature Example:
 - Quantitative: [32.50, 54.00, -17.30]

Data Model vs. Conceptual Model

- Data Model: raw data that has a specific data type (e.g. floats): - Temperature Example: [32.5, 54.0, -17.3] (floats)
- Conceptual Model: how we think about the data
 - Includes semantics, reasoning
 - Temperature Example:
 - Quantitative: [32.50, 54.00, -17.30]
 - Ordered: [warm, hot, cold]

Data Model vs. Conceptual Model

- Data Model: raw data that has a specific data type (e.g. floats): - Temperature Example: [32.5, 54.0, -17.3] (floats)
- Conceptual Model: how we think about the data
 - Includes semantics, reasoning
 - Temperature Example:
 - Quantitative: [32.50, 54.00, -17.30]
 - Ordered: [warm, hot, cold]
 - Categorical: [not burned, burned, not burned]

Ordering Direction

→ Attribute Types → Categorical

Ordering Direction → Sequential

D. Koop, CSCI 627/490, Fall 2023

→ Ordered \rightarrow Ordinal \rightarrow Quantitative

Sequential and Diverging Data

- Sequential: homogenous range from a minimum to a maximum
 - Examples: Land elevations, ocean depths
- Diverging: can be deconstructed into two sequences pointing in opposite directions
 - Has a **zero point** (not necessary 0)
 - Example: Map of both land elevation and ocean depth

Cyclic Data

D. Koop, CSCI 627/490, Fall 2023

[Sunlight intensity, Weber et al., 2001]

