Data Visualization (CSCI 627/490)

Data

Dr. David Koop
Scalable Vector Graphics (SVG)

• Vector graphics vs. Raster graphics
• Drawing commands versus a grid of pixels
• Why vector graphics?
JavaScript in one slide

• Interpreted and Dynamically-typed Programming Language
• Statements end with semi-colons, normal blocking with brackets
• Variables: `var a = 0; let b = 2; const c = 4;`
• Operators: `+, -, *, /, []`
• Control Statements: `if (<expr>) {...} else {...}, switch`
• Loops: `for, while, do-while`
• Arrays: `var a = [1,2,3]; a[99] = 100; console.log(a.length);`
• Functions: `function myFunction(a,b) { return a + b; }`
• Objects: `var obj; obj.x = 3; obj.y = 5;`
 - Prototypes for instance functions
• Comments are `/* Comment */` or `// Single-line Comment`
Including JavaScript in HTML

• Use the script tag
• Can either inline JavaScript or load it from an external file

- `<script type="text/javascript">
 a = 5, b = 8;
 c = a * b + b - a;
</script>`
 `<script type="text/javascript" src="script.js"/>

• Script tag can reference local or **remote** external javascript files
• The order the javascript is in is the order it is executed
• Example: in the above, `script.js` can access the variables `a`, `b`, and `c`
JavaScript Objects

- var student = {name: "John Smith", id: "000012345", class: "Senior", hometown: "Peoria, IL, USA"};

- Objects contain multiple values: key-value pairs called **properties**

- Accessing properties via dot-notation: `student.name`

- Always works via bracket-notation: `student["name"]`

- May also contain functions:
 - var student = {firstName: "John",
 lastName: "Smith",
 fullName: function() { return this.firstName + " " + this.lastName; }};

 - student.fullName()
Function Chaining in JavaScript

• When programming functionally, it is useful to chain functions
• No intermediate variables!
• Often more readable code
• jQuery Example:
 - $("#myElt").css("color", "blue").height(200).width(320)
• Used a lot in Web programming, especially D3
• Can return the same object or a new object
• Lazy chaining keeps track of functions to be applied but will apply them later (e.g. when the page loads)
Closures in JavaScript

- Functions can return functions with some values set
- Allows assignment of some of the values
- Closures are functions that "remember their environments" [MDN]

```javascript
function makeAdder(x) {
    return function(y) {
        return x + y;
    };
}
var add5 = makeAdder(5);
var add10 = makeAdder(10);

console.log(add5(2));  // 7
console.log(add10(2)); // 12
```

- **Notebook**
Functional Programming in JavaScript

• Functions are first-class objects in JavaScript
• You can pass a function to a method just like you can pass an integer, string, or object
• Instead of writing loops to process data, we can instead use a map/filter/reduce/forEach function on the data that runs our logic for each data item
 • map: transform each element of an array
 • filter: check each element of an array and keep only ones that pass
 • forEach: run the function for each element of the array
 • reduce: collapse an array to a single object
Quiz

• Using map, filter, reduce, and forEach, and given this data:
 - var a = [6, 2, 6, 10, 7, 18, 0, 17, 20, 6];

• Questions:
 - How would I return a new array with values one less than in a?
 - How would I find only the values >= 10?
 - How would I sum the array?
 - How would I create a reversed version of the array?
Quiz Answers: Notebook

• Data: var a = [6, 2, 6, 10, 7, 18, 0, 17, 20, 6];

• How would I subtract one from each item?
 - a.map(function(d) { return d-1; })

• How would I find only the values >= 10?
 - a.filter(function(d) { return d >= 10; })

• How would I sum the array?
 - a.reduce(function(s,d) { return s + d; })

• How would I create a reversed version of the array?
 - b = []; a.forEach(function(d) { b.unshift(d); });
 - ...Or a.reverse() // modifies in place

• Arrow functions shorten such calls: a.map(d => d-1);
 a.filter(d => d >= 10); a.reduce((s,d) => s+d);
Assignment 1

- Write HTML, CSS, and SVG
- Text markup and styling (information)
- Drawing markup and styling (camera phone)
- Draw Bar chart using Plot library
- Due Today (Wed., Sept. 13)
Assignment 1

• Write HTML, CSS, and SVG
• Text markup and styling (information)
• Drawing markup and styling (camera phone)
• Draw Bar chart using Plot library
• Due Today (Wed., Sept. 13)
This Week

- I am traveling for a research meeting (Monday—Friday)
- No in-person office hours
 - Please ask any questions via email
- Assignment 2 should be released this week
- We are back in person on Monday (Sept. 18)
Example: JavaScript and the DOM

- Start with no real content, just divs:

  ```html
  <div id="firstSection"></div>
  <div id="secondSection"></div>
  <div id="finalSection"></div>
  ```

- Get existing elements:
 - `document.querySelector/querySelectorAll`
 - `document.getElementById`

- Programmatically add elements:
 - `document.createElement`
 - `document.createTextNode`
 - `Element.appendChild`
 - `Element.setAttribute`
Observable's HTML Templating

- Allows JavaScript expressions to be **inline**d in HTML (or SVG content)
- Use `$ {...}$`
- Example:
 - [JavaScript] name = "Prof. Koop"
 - [HTML] `<p>Hello, my name is ${name}</p>`
Using Observable's HTML Templating

```html
<div id="firstSection">
  <h1>Bears</h1><p>Chicago, IL</p>
</div>
<div id="secondSection">
  <h2>2018-2019 NFC North Champions</h2>
</div>
<div id="finalSection">
  ${scores.map((game) => html`<p>${game.date}: ${game.win ? "Win" : "Loss"} (${game.score})</p>`)}
  <img src="...Justin_Fields....jpg" width="240">
  <p>What will happen this year?</p>
</div>
```
SVG Manipulation Example

- Draw a horizontal bar chart
 - var a = [6, 2, 6, 10, 7, 18, 0, 17, 20, 6];
- Steps?
SVG Manipulation Example

- Draw a horizontal bar chart
 - `var a = [6, 2, 6, 10, 7, 18, 0, 17, 20, 6];`
- Steps:
 - Programmatically create SVG
 - Create individual rectangle for each item
- Notebook
...or Use Templating

• Same with SVG as with HTML
• Notebook
“Computer-based visualization systems provide visual representations of **datasets** designed to help people carry out tasks more effectively.”

— T. Munzner
Data

• What? the data
• Why? the tasks
• How? the techniques

• Data visualization begins with data

[Munzner (ill. Maguire), 2014]
Data

• What is this data?

<table>
<thead>
<tr>
<th></th>
<th>42ND STREET & 8TH AVENUE</th>
<th>00228985</th>
<th>00008471</th>
<th>00000441</th>
<th>00001455</th>
<th>00000134</th>
<th>00033341</th>
<th>00071255</th>
</tr>
</thead>
<tbody>
<tr>
<td>R011</td>
<td>42ND STREET & 8TH AVENUE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R170</td>
<td>14TH STREET-UNION SQUARE</td>
<td>00224603</td>
<td>00011051</td>
<td>00000827</td>
<td>00003026</td>
<td>00000660</td>
<td>00089367</td>
<td>00199841</td>
</tr>
<tr>
<td>R046</td>
<td>42ND STREET & GRAND CENTRAL</td>
<td>00207758</td>
<td>00007908</td>
<td>00000323</td>
<td>00001183</td>
<td>00003001</td>
<td>00040759</td>
<td>00096613</td>
</tr>
</tbody>
</table>

• **Semantics**: real-world meaning of the data
• **Type**: structural or mathematical interpretation
• Both often require **metadata**
 - Sometimes we can infer some of this information
 - Line between data and metadata isn’t always clear
Semantics

• The meaning of the data
• Example: 94023, 90210, 02747, 60115
Semantics

• The meaning of the data
• Example: 94023, 90210, 02747, 60115
 - Attendance at college football games?
Semantics

• The meaning of the data
• Example: 94023, 90210, 02747, 60115
 - Attendance at college football games?
 - Salaries?
Semantics

• The meaning of the data

• Example: 94023, 90210, 02747, 60115
 - Attendance at college football games?
 - Salaries?
 - Zip codes?

• Cannot always infer based on what the data looks like

• Often require semantics to better understand data

• Column names help with semantics

• May also include rules about data: a zip code is part of an address that uniquely identifies a residence

• Useful for asking good questions about the data
Data

<table>
<thead>
<tr>
<th>REMOTE</th>
<th>STATION</th>
<th>FF</th>
<th>SEN/DIS</th>
<th>7-D AFAS UNL</th>
<th>D AFAS/RFM</th>
<th>JOINT RR TKT</th>
<th>7-D UNL</th>
<th>30-D UNL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R011 42ND STREET & 8TH AVENUE</td>
<td>00228985</td>
<td>00008471</td>
<td>00000441</td>
<td>00001455</td>
<td>00000134</td>
<td>00033341</td>
<td>00071255</td>
</tr>
<tr>
<td>2</td>
<td>R170 14TH STREET-UNION SQUARE</td>
<td>00224603</td>
<td>00011051</td>
<td>00000827</td>
<td>00003026</td>
<td>00000660</td>
<td>00089367</td>
<td>00199841</td>
</tr>
<tr>
<td>3</td>
<td>R046 42ND STREET & GRAND CENTRAL</td>
<td>00207758</td>
<td>00007908</td>
<td>00000323</td>
<td>00001183</td>
<td>00003001</td>
<td>00040759</td>
<td>00096613</td>
</tr>
<tr>
<td>4</td>
<td>R012 34TH STREET & 8TH AVENUE</td>
<td>00188311</td>
<td>00006490</td>
<td>00000498</td>
<td>00001279</td>
<td>00003622</td>
<td>00035527</td>
<td>00067483</td>
</tr>
<tr>
<td>5</td>
<td>R293 34TH STREET - PENN STATION</td>
<td>00168768</td>
<td>00006155</td>
<td>00000523</td>
<td>00001065</td>
<td>00005031</td>
<td>00030645</td>
<td>00054376</td>
</tr>
<tr>
<td>6</td>
<td>R033 42ND STREET/TIMES SQUARE</td>
<td>00159382</td>
<td>00005945</td>
<td>00000378</td>
<td>00001205</td>
<td>00000690</td>
<td>00058931</td>
<td>00078644</td>
</tr>
<tr>
<td>7</td>
<td>R022 34TH STREET & 6TH AVENUE</td>
<td>00156008</td>
<td>00006276</td>
<td>00000487</td>
<td>00001543</td>
<td>00000712</td>
<td>00058910</td>
<td>00110466</td>
</tr>
<tr>
<td>8</td>
<td>R084 59TH STREET/COLUMBUS CIRCLE</td>
<td>00155262</td>
<td>00009484</td>
<td>00000589</td>
<td>00002071</td>
<td>00000542</td>
<td>00053397</td>
<td>00113966</td>
</tr>
<tr>
<td>9</td>
<td>R020 47-50 STREETS/ROCKEFELLER</td>
<td>00143500</td>
<td>00006402</td>
<td>00000384</td>
<td>00001159</td>
<td>00000723</td>
<td>00037978</td>
<td>00090745</td>
</tr>
<tr>
<td>10</td>
<td>R179 86TH STREET-LEXINGTON AVE</td>
<td>00142169</td>
<td>00010367</td>
<td>00000470</td>
<td>00001839</td>
<td>00000271</td>
<td>00050328</td>
<td>00125250</td>
</tr>
<tr>
<td>11</td>
<td>R023 34TH STREET & 6TH AVENUE</td>
<td>00134052</td>
<td>00005005</td>
<td>00000348</td>
<td>00001112</td>
<td>00000649</td>
<td>00031531</td>
<td>00075040</td>
</tr>
<tr>
<td>12</td>
<td>R029 PARK PLACE</td>
<td>00121614</td>
<td>00004311</td>
<td>00000287</td>
<td>00000931</td>
<td>00000792</td>
<td>00025404</td>
<td>00065362</td>
</tr>
<tr>
<td>13</td>
<td>R047 42ND STREET & GRAND CENTRAL</td>
<td>00100742</td>
<td>00004273</td>
<td>00000185</td>
<td>00000704</td>
<td>00001241</td>
<td>00022808</td>
<td>00068216</td>
</tr>
</tbody>
</table>
Data Terminology

• Items
 - An **item** is an individual discrete entity
 - e.g. row in a table, node in a network

• Attributes
 - An **attribute** is some specific property that can be measured, observed, or logged
 - a.k.a. variable, (data) dimension
 - e.g. a column in a table
Items & Attributes

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>S</th>
<th>T</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order ID</td>
<td>Order Date</td>
<td>Order Priority</td>
<td>Product Container</td>
<td>Product Base Margin</td>
<td>Ship Date</td>
</tr>
<tr>
<td>3</td>
<td>10/14/06</td>
<td>Low</td>
<td>Large Box</td>
<td>0.8</td>
<td>10/21/06</td>
</tr>
<tr>
<td>6</td>
<td>2/21/08</td>
<td>Not Specified</td>
<td>Small Box</td>
<td>0.55</td>
<td>2/22/08</td>
</tr>
<tr>
<td>32</td>
<td>7/16/07</td>
<td>High</td>
<td>Small Pack</td>
<td>0.79</td>
<td>7/17/07</td>
</tr>
<tr>
<td>32</td>
<td>7/16/07</td>
<td>High</td>
<td>Jumbo Box</td>
<td>0.77</td>
<td>7/17/07</td>
</tr>
<tr>
<td>32</td>
<td>7/16/07</td>
<td>High</td>
<td>Medium Box</td>
<td>0.65</td>
<td>7/18/07</td>
</tr>
<tr>
<td>32</td>
<td>7/16/07</td>
<td>High</td>
<td>Medium Box</td>
<td>0.65</td>
<td>7/18/07</td>
</tr>
<tr>
<td>35</td>
<td>10/23/07</td>
<td>Not Specified</td>
<td>Wrap Bag</td>
<td>0.52</td>
<td>10/24/07</td>
</tr>
<tr>
<td>36</td>
<td>11/3/07</td>
<td>Urgent</td>
<td>Small Box</td>
<td>0.55</td>
<td>11/3/07</td>
</tr>
<tr>
<td>65</td>
<td>3/18/07</td>
<td>Urgent</td>
<td>Small Pack</td>
<td>0.49</td>
<td>3/19/07</td>
</tr>
<tr>
<td>66</td>
<td>3/20/05</td>
<td>Low</td>
<td>Wrap Bag</td>
<td>0.56</td>
<td>1/20/05</td>
</tr>
<tr>
<td>69</td>
<td>12/18/06</td>
<td>Not Specified</td>
<td>Small Box</td>
<td>0.59</td>
<td>12/23/06</td>
</tr>
<tr>
<td>69</td>
<td>12/18/06</td>
<td>Not Specified</td>
<td>Wrap Bag</td>
<td>0.82</td>
<td>12/23/06</td>
</tr>
<tr>
<td>96</td>
<td>4/17/05</td>
<td>High</td>
<td>Small Box</td>
<td>0.55</td>
<td>4/19/05</td>
</tr>
<tr>
<td>97</td>
<td>1/29/06</td>
<td>Medium</td>
<td>Small Box</td>
<td>0.38</td>
<td>1/30/06</td>
</tr>
<tr>
<td>129</td>
<td>11/19/08</td>
<td>Low</td>
<td>Small Box</td>
<td>0.37</td>
<td>11/28/08</td>
</tr>
<tr>
<td>130</td>
<td>5/8/08</td>
<td>High</td>
<td>Small Box</td>
<td>0.37</td>
<td>5/9/08</td>
</tr>
<tr>
<td>130</td>
<td>5/8/08</td>
<td>High</td>
<td>Medium Box</td>
<td>0.38</td>
<td>5/10/08</td>
</tr>
<tr>
<td>130</td>
<td>5/8/08</td>
<td>High</td>
<td>Small Box</td>
<td>0.6</td>
<td>5/11/08</td>
</tr>
<tr>
<td>132</td>
<td>6/11/06</td>
<td>Medium</td>
<td>Medium Box</td>
<td>0.6</td>
<td>6/12/06</td>
</tr>
<tr>
<td>132</td>
<td>6/11/06</td>
<td>Medium</td>
<td>Jumbo Box</td>
<td>0.69</td>
<td>6/14/06</td>
</tr>
<tr>
<td>134</td>
<td>5/1/08</td>
<td>Not Specified</td>
<td>Large Box</td>
<td>0.82</td>
<td>5/3/08</td>
</tr>
<tr>
<td>135</td>
<td>10/21/07</td>
<td>Not Specified</td>
<td>Small Pack</td>
<td>0.64</td>
<td>10/23/07</td>
</tr>
<tr>
<td>166</td>
<td>9/12/07</td>
<td>High</td>
<td>Small Box</td>
<td>0.55</td>
<td>9/14/07</td>
</tr>
<tr>
<td>193</td>
<td>8/8/06</td>
<td>Urgent</td>
<td>Medium Box</td>
<td>0.57</td>
<td>8/10/06</td>
</tr>
<tr>
<td>194</td>
<td>4/5/08</td>
<td>Medium</td>
<td>Wrap Bag</td>
<td>0.42</td>
<td>4/7/08</td>
</tr>
</tbody>
</table>
Data Types

• Nodes
 - Synonym for item but in the context of networks (graphs)

• Links
 - A link is a relation between two items
 - e.g. social network friends, computer network links
Items & Links

[Bostock, 2011]
Data Types

• Positions:
 - A **position** is a location in space (usually 2D or 3D)
 - May be subject to projections
 - e.g. cities on a map, a sampled region in an CT scan

• Grids:
 - A **grid** specifies how data is sampled both geometrically and topologically
 - e.g. how CT scan data is stored
Positions and Grids
Dataset Types

- **Tables**
 - Items (rows) → Attributes (columns) → Cell containing value

- **Networks**
 - Link → Node (item)

- **Fields (Continuous)**
 - Grid of positions → Cell → Attributes (columns) → Value in cell

- **Geometry (Spatial)**
 - Position

- **Multidimensional Table**
 - Key 1, Key 2

- **Trees**
 - Value in cell

[Munzner (ill. Maguire), 2014]
Tables

- **Field**
- **attribute**
- **item**
- **cell**

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order ID</td>
<td>Order Date</td>
<td>Order Priority</td>
<td>Product Container</td>
<td>Product Base Margin</td>
<td>Ship Date</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>3</td>
<td>10/14/06</td>
<td>5-Low</td>
<td>Large Box</td>
<td>0.8</td>
<td>10/21/06</td>
</tr>
<tr>
<td>6</td>
<td>2/21/08</td>
<td>4-Not Specified</td>
<td>Small Box</td>
<td>0.55</td>
<td>2/22/08</td>
</tr>
<tr>
<td>32</td>
<td>7/16/07</td>
<td>2-High</td>
<td>Small Pack</td>
<td>0.79</td>
<td>7/17/07</td>
</tr>
<tr>
<td>32</td>
<td>7/16/07</td>
<td>2-High</td>
<td>Large Container</td>
<td>0.65</td>
<td>7/17/07</td>
</tr>
<tr>
<td>32</td>
<td>7/16/07</td>
<td>2-High</td>
<td>Medium Box</td>
<td>0.59</td>
<td>7/18/07</td>
</tr>
<tr>
<td>32</td>
<td>7/16/07</td>
<td>2-High</td>
<td>Medium Box</td>
<td>0.65</td>
<td>7/18/07</td>
</tr>
<tr>
<td>35</td>
<td>10/23/07</td>
<td>4-Not Specified</td>
<td>Wrap Bag</td>
<td>0.52</td>
<td>10/24/07</td>
</tr>
<tr>
<td>35</td>
<td>10/23/07</td>
<td>4-Not Specified</td>
<td>Small Box</td>
<td>0.58</td>
<td>10/25/07</td>
</tr>
<tr>
<td>35</td>
<td>10/23/07</td>
<td>4-Not Specified</td>
<td>Small Box</td>
<td>0.55</td>
<td>10/25/07</td>
</tr>
<tr>
<td>65</td>
<td>11/3/07</td>
<td>1-Urgent</td>
<td>Small Pack</td>
<td>0.49</td>
<td>3/19/07</td>
</tr>
<tr>
<td>66</td>
<td>11/3/07</td>
<td>1-Urgent</td>
<td>Small Pack</td>
<td>0.49</td>
<td>3/19/07</td>
</tr>
<tr>
<td>66</td>
<td>11/3/07</td>
<td>1-Urgent</td>
<td>Wrap Bag</td>
<td>0.56</td>
<td>1/20/07</td>
</tr>
<tr>
<td>69</td>
<td>12/18/06</td>
<td>5-Low</td>
<td>Small Box</td>
<td>0.59</td>
<td>12/23/06</td>
</tr>
<tr>
<td>69</td>
<td>12/18/06</td>
<td>5-Low</td>
<td>Wrap Bag</td>
<td>0.59</td>
<td>12/23/06</td>
</tr>
<tr>
<td>96</td>
<td>4/15/05</td>
<td>2-High</td>
<td>Small Box</td>
<td>0.55</td>
<td>4/19/05</td>
</tr>
<tr>
<td>97</td>
<td>1/29/06</td>
<td>3-Medium</td>
<td>Small Box</td>
<td>0.38</td>
<td>1/30/06</td>
</tr>
<tr>
<td>129</td>
<td>11/19/08</td>
<td>5-Low</td>
<td>Small Box</td>
<td>0.37</td>
<td>11/28/08</td>
</tr>
<tr>
<td>130</td>
<td>5/8/08</td>
<td>2-High</td>
<td>Small Box</td>
<td>0.37</td>
<td>5/9/08</td>
</tr>
<tr>
<td>130</td>
<td>5/8/08</td>
<td>2-High</td>
<td>Medium Box</td>
<td>0.38</td>
<td>5/10/08</td>
</tr>
<tr>
<td>130</td>
<td>5/8/08</td>
<td>2-High</td>
<td>Small Box</td>
<td>0.38</td>
<td>5/10/08</td>
</tr>
<tr>
<td>132</td>
<td>6/11/06</td>
<td>3-Medium</td>
<td>Medium Box</td>
<td>0.6</td>
<td>6/12/06</td>
</tr>
<tr>
<td>132</td>
<td>6/11/06</td>
<td>3-Medium</td>
<td>Medium Box</td>
<td>0.6</td>
<td>6/12/06</td>
</tr>
<tr>
<td>134</td>
<td>5/1/08</td>
<td>4-Not Specified</td>
<td>Large Box</td>
<td>0.82</td>
<td>5/3/08</td>
</tr>
<tr>
<td>135</td>
<td>10/21/07</td>
<td>4-Not Specified</td>
<td>Small Pack</td>
<td>0.64</td>
<td>10/23/07</td>
</tr>
<tr>
<td>166</td>
<td>9/12/07</td>
<td>2-High</td>
<td>Small Box</td>
<td>0.55</td>
<td>9/14/07</td>
</tr>
<tr>
<td>193</td>
<td>8/8/06</td>
<td>1-Urgent</td>
<td>Medium Box</td>
<td>0.57</td>
<td>8/10/06</td>
</tr>
<tr>
<td>194</td>
<td>4/5/08</td>
<td>3-Medium</td>
<td>Wrap Bag</td>
<td>0.42</td>
<td>4/7/08</td>
</tr>
</tbody>
</table>
Tables

- Data organized by rows & columns
 - row ~ item (usually)
 - column ~ attribute
 - label ~ attribute name
- Key: identifies each item (row)
 - Usually **unique**
 - Allows **join** of data from 2+ tables
 - Compound key: key split among multiple columns, e.g. (state, year) for population
- Multidimensional:
 - Split compound key: data cube with (state, year)

[Munzner (ill. Maguire), 2014]
Table Visualizations

[M. Bostock, 2011]
Networks

• Why networks instead of graphs?
• Tables can represent networks
 - Many-many relationships
 - Also can be stored as specific graph databases or files
Figure 7: US airlines graph (235 nodes, 2101 edges) (a) not bundled and bundled using (b) FDEB with inverse-linear model, (c) GBEB, and (d) FDEB with inverse-quadratic model.

Figure 8: US migration graph (1715 nodes, 9780 edges) (a) not bundled and bundled using (b) FDEB with inverse-linear model, (c) GBEB, and (d) FDEB with inverse-quadratic model. The same migration flow is highlighted in each graph.

Figure 9: A low amount of straightening provides an indication of the number of edges comprising a bundle by widening the bundle. (a) \(s = 0 \), (b) \(s = 10 \), and (c) \(s = 40 \). If \(s \) is 0, color more clearly indicates the number of edges comprising a bundle.

We generated these graphs using the rendering technique described in Section 4.1. To facilitate the comparison of migration flow in Figure 8, we use a similar rendering technique as the one Cui et al. \([CZQ]_08 \) used to generate Figure 8c.

The airlines graph is comprised of 235 nodes and 2101 edges. It took 19 seconds to calculate the bundled airlines graphs (Figures 7b and 7d) using the calculation scheme presented in Section 3.3. The migration graph is comprised of 1715 nodes and 9780 edges. It took 80 seconds to calculate the bundled migration graphs (Figures 8b and 8d) using the same calculation scheme. All measurements were performed on an Intel Core 2 Duo 2.66GHz PC running Windows XP with 2GB of RAM and a GeForce 8800GT graphics card.

Our prototype was implemented in Borland Delphi 7.

\(\text{© 2009 The Author(s)} \)

\(\text{Journal compilation © 2009 The Eurographics Association and Blackwell Publishing Ltd.} \)
Networks

[Holten & van Wijk, 2009]
Fields

Scalar Fields
(Order-0 Tensor Fields)

Vector Fields
(Order-1 Tensor Fields)

Tensor Fields
(Order-2+)

Each point in space has an associated...

Scalar

\[s_0 \]

Vector

\[
\begin{bmatrix}
 v_0 \\
 v_1 \\
 v_2
\end{bmatrix}
\]

Tensor

\[
\begin{bmatrix}
 \sigma_{00} & \sigma_{01} & \sigma_{02} \\
 \sigma_{10} & \sigma_{11} & \sigma_{12} \\
 \sigma_{20} & \sigma_{21} & \sigma_{22}
\end{bmatrix}
\]
Fields

• **Difference between** continuous and discrete values

• Examples: temperature, pressure, density

• **Grids** necessary to sample continuous data:

 ![Grid Types](image)

 - uniform
 - rectilinear
 - structured
 - unstructured

 [Weiskopf, Machiraju, Möller]

• **Interpolation**: “how to show values between the sampled points in ways that do not mislead”
Spatial Data Example: MRI

[via Levine, 2014]
Scivis and Infovis

- Two subfields of visualization

- **Scivis** deals with data where the spatial position is given with data
 - Usually continuous data
 - Often displaying physical phenomena
 - Techniques like isosurfacing, volume rendering, vector field vis

- In **Infovis**, the data has no set spatial representation, designer chooses how to visually represent data
SciVis

[Google Image Search for “scientific visualization”, 2017]
InfoVis

[Google Image Search for "information visualization", 2017]
Joe Carmanica recently wrote about this trend for the New York Times, arguing that it was led by Drake, who popularized the rapping-and-singing formula over the past decade. A better benchmark for Lil Uzi Vert's word count (2,556) might be those of pop artists, such as Beyonce (2,433 words), or even one of his major influences: Marilyn Manson (2,466 words). There are also genre-bending artists. If Childish Gambino's Awaken, My Love! is less hip hop in the traditional '90s boom-bap sense, is it fair to compare it to vocabulary-dense Wu-Tang albums? Genre matters in vocabulary calculations—check out the chart below, which takes 500 random samples of 35,000 words from rock, country, and hip hop.

of Unique Words Used in 500 Random Samples of 35,000 Lyrics from Country, Rock, Hip Hop

Sets & Lists

Raw Lyrics Data via John W. Miller

[M. Daniels, 2019]
35,000 words covers 3 to 5 studio albums and EPs. I included mixtapes if the artist was short of the 35,000 words. Quite a few rappers don’t have enough of official material to be included (for example, Biggie, Chance the Rapper, Queen Latifah, and El-P).

Since the original release, there’s now a notable trend of fewer unique words among newer artists. This is easier to see in the following chart, where I highlighted each artist’s primary decade, based on album release dates for their vocabulary calculation.

Notes/sources:
All lyrics are via Genius.
Some of the newer artists wield a smaller vocabulary comparatively, but this is not because hip hop has “dumbed down.” The genre has evolved; it has moved away from complex lyricism toward elements traditionally associated with pop music: repetitive

Notes/sources:

(1) Since this analysis uses an artist’s first 35,000 lyrics (prioritizing studio albums), an artist’s era is determined by the years the albums were released. Some artists may be identified with a certain era (for example, Jay-Z with the 1990s, with *Reasonable Doubt* in 1996, *In My Lifetime, Vol. 1* in 1997, etc.) yet continue to release music in the present day.

All lyrics are via Genius.

of Unique Words Used Within Artist’s First 35,000 lyrics

<table>
<thead>
<tr>
<th>Era</th>
<th>Artists</th>
<th>Word Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980s</td>
<td>DMX, 21 Savage, A Boogie wit da Hed, Lil Baby, NF, YG, YoungBoy Never Broke Again</td>
<td><2,675 unique words</td>
</tr>
<tr>
<td>1980s</td>
<td>50 Cent, Juicy J, Drake, Future, Kid Cudi, Kid Ink, Kodak Black, Lil Yachty, Logic, Migos, Meek Mill, Nicki Minaj, Russ, Run-D.M.C., 2Pac, Big L, Insane Clown Posse, MC Lyte, Scarface, Three 6 Mafia, UGK, Dizzee Rascal, Jadakiss, Kano, Lil Kim, Rick Ross, TI, 2 Chainz, A$AP Ferg, Big KRIT, Brockhampton, CupcakKe, Hopscotch, Jay Rock, Kendrick Lamar, Mac Miller, Schoolboy Q, Tyga, Vince Staples</td>
<td>2,675-3,050 unique words</td>
</tr>
<tr>
<td>1980s</td>
<td>DMX, 21 Savage, A Boogie wit da Hed, Lil Baby, NF, YG, YoungBoy Never Broke Again</td>
<td>3,425-3,800 unique words</td>
</tr>
<tr>
<td>1980s</td>
<td>DMX, 21 Savage, A Boogie wit da Hed, Lil Baby, NF, YG, YoungBoy Never Broke Again</td>
<td>3,800-4,175 unique words</td>
</tr>
<tr>
<td>1980s</td>
<td>DMX, 21 Savage, A Boogie wit da Hed, Lil Baby, NF, YG, YoungBoy Never Broke Again</td>
<td>4,175-4,550 unique words</td>
</tr>
<tr>
<td>1980s</td>
<td>DMX, 21 Savage, A Boogie wit da Hed, Lil Baby, NF, YG, YoungBoy Never Broke Again</td>
<td>4,550-4,925 unique words</td>
</tr>
<tr>
<td>1980s</td>
<td>DMX, 21 Savage, A Boogie wit da Hed, Lil Baby, NF, YG, YoungBoy Never Broke Again</td>
<td>4,925-5,300 unique words</td>
</tr>
<tr>
<td>1980s</td>
<td>DMX, 21 Savage, A Boogie wit da Hed, Lil Baby, NF, YG, YoungBoy Never Broke Again</td>
<td>5,300-5,675 unique words</td>
</tr>
<tr>
<td>1980s</td>
<td>DMX, 21 Savage, A Boogie wit da Hed, Lil Baby, NF, YG, YoungBoy Never Broke Again</td>
<td>5,675-6,050 unique words</td>
</tr>
<tr>
<td>1980s</td>
<td>DMX, 21 Savage, A Boogie wit da Hed, Lil Baby, NF, YG, YoungBoy Never Broke Again</td>
<td>6,050-6,425 unique words</td>
</tr>
<tr>
<td>1980s</td>
<td>DMX, 21 Savage, A Boogie wit da Hed, Lil Baby, NF, YG, YoungBoy Never Broke Again</td>
<td>6,425+ unique words</td>
</tr>
</tbody>
</table>

[M. Daniels, 2019]
Attribute Types

- **Categorical**
 - ![Icon]

- **Ordered**
 - **Ordinal**
 - ![Icon]

- **Quantitative**
 - ![Icon]

[Munzner (ill. Maguire), 2014]
Categorial, Ordinal, and Quantitative

<table>
<thead>
<tr>
<th>Order ID</th>
<th>Order Date</th>
<th>Order Priority</th>
<th>Product Container</th>
<th>Product Base Margin</th>
<th>Ship Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>10/14/06</td>
<td>5-Low</td>
<td>Large Box</td>
<td>0.8</td>
<td>10/21/06</td>
</tr>
<tr>
<td>6</td>
<td>2/21/08</td>
<td>4-Not Specified</td>
<td>Small Pack</td>
<td>0.55</td>
<td>2/22/08</td>
</tr>
<tr>
<td>32</td>
<td>7/16/07</td>
<td>2-High</td>
<td>Small Pack</td>
<td>0.79</td>
<td>7/17/07</td>
</tr>
<tr>
<td>32</td>
<td>7/16/07</td>
<td>2-High</td>
<td>Jumbo Box</td>
<td>0.72</td>
<td>7/17/07</td>
</tr>
<tr>
<td>32</td>
<td>7/16/07</td>
<td>2-High</td>
<td>Medium Box</td>
<td>0.6</td>
<td>7/18/07</td>
</tr>
<tr>
<td>32</td>
<td>7/16/07</td>
<td>2-High</td>
<td>Medium Box</td>
<td>0.65</td>
<td>7/18/07</td>
</tr>
<tr>
<td>35</td>
<td>10/23/07</td>
<td>4-Not Specified</td>
<td>Wrap Bag</td>
<td>0.52</td>
<td>10/24/07</td>
</tr>
<tr>
<td>35</td>
<td>10/23/07</td>
<td>4-Not Specified</td>
<td>Small Box</td>
<td>0.58</td>
<td>10/25/07</td>
</tr>
<tr>
<td>36</td>
<td>11/3/07</td>
<td>1-Urgent</td>
<td>Small Box</td>
<td>0.55</td>
<td>11/3/07</td>
</tr>
<tr>
<td>65</td>
<td>3/18/07</td>
<td>1-Urgent</td>
<td>Small Pack</td>
<td>0.49</td>
<td>3/19/07</td>
</tr>
<tr>
<td>66</td>
<td>1/20/05</td>
<td>5-Low</td>
<td>Wrap Bag</td>
<td>0.56</td>
<td>1/20/05</td>
</tr>
<tr>
<td>69</td>
<td>6/4/05</td>
<td>4-Not Specified</td>
<td>Small Box</td>
<td>0.44</td>
<td>6/6/05</td>
</tr>
<tr>
<td>69</td>
<td>6/4/05</td>
<td>4-Not Specified</td>
<td>Small Box</td>
<td>0.6</td>
<td>6/6/05</td>
</tr>
<tr>
<td>70</td>
<td>12/18/06</td>
<td>5-Low</td>
<td>Large Box</td>
<td>0.59</td>
<td>12/23/06</td>
</tr>
<tr>
<td>70</td>
<td>12/18/06</td>
<td>5-Low</td>
<td>Small Box</td>
<td>0.82</td>
<td>12/23/06</td>
</tr>
<tr>
<td>96</td>
<td>4/17/05</td>
<td>2-High</td>
<td>Large Box</td>
<td>0.55</td>
<td>4/19/05</td>
</tr>
<tr>
<td>97</td>
<td>1/29/06</td>
<td>3-Medium</td>
<td>Medium Box</td>
<td>0.38</td>
<td>1/30/06</td>
</tr>
<tr>
<td>129</td>
<td>11/19/08</td>
<td>5-Low</td>
<td>Medium Box</td>
<td>0.37</td>
<td>11/28/08</td>
</tr>
<tr>
<td>130</td>
<td>5/8/08</td>
<td>2-High</td>
<td>Small Box</td>
<td>0.37</td>
<td>5/9/08</td>
</tr>
<tr>
<td>130</td>
<td>5/8/08</td>
<td>2-High</td>
<td>Medium Box</td>
<td>0.38</td>
<td>5/10/08</td>
</tr>
<tr>
<td>130</td>
<td>5/8/08</td>
<td>2-High</td>
<td>Small Box</td>
<td>0.6</td>
<td>5/11/08</td>
</tr>
<tr>
<td>132</td>
<td>6/11/06</td>
<td>3-Medium</td>
<td>Medium Box</td>
<td>0.6</td>
<td>6/12/06</td>
</tr>
<tr>
<td>132</td>
<td>6/11/06</td>
<td>3-Medium</td>
<td>Medium Box</td>
<td>0.69</td>
<td>6/14/06</td>
</tr>
<tr>
<td>134</td>
<td>5/1/08</td>
<td>4-Not Specified</td>
<td>Large Box</td>
<td>0.82</td>
<td>5/3/08</td>
</tr>
<tr>
<td>135</td>
<td>10/21/07</td>
<td>4-Not Specified</td>
<td>Small Pack</td>
<td>0.84</td>
<td>10/23/07</td>
</tr>
<tr>
<td>166</td>
<td>9/12/07</td>
<td>2-High</td>
<td>Small Box</td>
<td>0.55</td>
<td>9/14/07</td>
</tr>
<tr>
<td>193</td>
<td>8/8/06</td>
<td>1-Urgent</td>
<td>Medium Box</td>
<td>0.57</td>
<td>8/10/06</td>
</tr>
<tr>
<td>194</td>
<td>4/5/08</td>
<td>3-Medium</td>
<td>Wrap Bag</td>
<td>0.42</td>
<td>4/7/08</td>
</tr>
</tbody>
</table>
Categorical, Ordinal, and Quantitative

<table>
<thead>
<tr>
<th>Order ID</th>
<th>Order Date</th>
<th>Order Priority</th>
<th>Product Container</th>
<th>Product Base Margin</th>
<th>Ship Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>10/14/06</td>
<td>5-Low</td>
<td>Large Box</td>
<td>0.8</td>
<td>10/21/06</td>
</tr>
<tr>
<td>6</td>
<td>2/21/08</td>
<td>4-Not Specified</td>
<td>Small Pack</td>
<td>0.55</td>
<td>2/22/08</td>
</tr>
<tr>
<td>32</td>
<td>7/16/07</td>
<td>2-High</td>
<td>Small Pack</td>
<td>0.79</td>
<td>7/17/07</td>
</tr>
<tr>
<td>32</td>
<td>7/16/07</td>
<td>2-High</td>
<td>Jumbo Box</td>
<td>0.72</td>
<td>7/17/07</td>
</tr>
<tr>
<td>32</td>
<td>7/16/07</td>
<td>2-High</td>
<td>Medium Box</td>
<td>0.6</td>
<td>7/18/07</td>
</tr>
<tr>
<td>32</td>
<td>7/16/07</td>
<td>2-High</td>
<td>Medium Box</td>
<td>0.65</td>
<td>7/18/07</td>
</tr>
<tr>
<td>35</td>
<td>10/23/07</td>
<td>4-Not Specified</td>
<td>Wrap Bag</td>
<td>0.52</td>
<td>10/24/07</td>
</tr>
<tr>
<td>35</td>
<td>10/23/07</td>
<td>4-Not Specified</td>
<td>Small Box</td>
<td>0.58</td>
<td>10/25/07</td>
</tr>
<tr>
<td>36</td>
<td>11/3/07</td>
<td>1-Urgent</td>
<td>Small Box</td>
<td>0.55</td>
<td>11/3/07</td>
</tr>
<tr>
<td>65</td>
<td>3/18/07</td>
<td>1-Urgent</td>
<td>Small Pack</td>
<td>0.49</td>
<td>3/19/07</td>
</tr>
<tr>
<td>66</td>
<td>1/20/05</td>
<td>5-Low</td>
<td>Wrap Bag</td>
<td>0.56</td>
<td>1/20/05</td>
</tr>
<tr>
<td>69</td>
<td>6/4/05</td>
<td>4-Not Specified</td>
<td>Small Pack</td>
<td>0.44</td>
<td>6/6/05</td>
</tr>
<tr>
<td>69</td>
<td>6/4/05</td>
<td>4-Not Specified</td>
<td>Small Pack</td>
<td>0.6</td>
<td>6/6/05</td>
</tr>
<tr>
<td>70</td>
<td>12/18/06</td>
<td>5-Low</td>
<td>0.59</td>
<td>12/23/06</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>12/18/06</td>
<td>5-Low</td>
<td>0.82</td>
<td>12/23/06</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>4/17/05</td>
<td>2-High</td>
<td>0.55</td>
<td>4/19/05</td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>1/29/06</td>
<td>3-Medium</td>
<td>0.38</td>
<td>1/30/06</td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>11/19/08</td>
<td>5-Low</td>
<td>0.37</td>
<td>11/28/08</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>5/8/08</td>
<td>2-High</td>
<td>0.37</td>
<td>5/9/08</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>5/8/08</td>
<td>2-High</td>
<td>0.38</td>
<td>5/10/08</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>5/8/08</td>
<td>2-High</td>
<td>0.6</td>
<td>5/11/08</td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>6/11/06</td>
<td>3-Medium</td>
<td>0.6</td>
<td>6/12/06</td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>6/11/06</td>
<td>3-Medium</td>
<td>0.69</td>
<td>6/14/06</td>
<td></td>
</tr>
<tr>
<td>134</td>
<td>5/1/06</td>
<td>4-Not Specified</td>
<td>Large Box</td>
<td>0.82</td>
<td>5/3/08</td>
</tr>
<tr>
<td>135</td>
<td>10/21/07</td>
<td>4-Not Specified</td>
<td>Small Pack</td>
<td>0.64</td>
<td>10/23/07</td>
</tr>
<tr>
<td>193</td>
<td>8/8/06</td>
<td>1-Urgent</td>
<td>Medium Box</td>
<td>0.57</td>
<td>8/10/06</td>
</tr>
<tr>
<td>194</td>
<td>4/5/08</td>
<td>3-Medium</td>
<td>Wrap Bag</td>
<td>0.42</td>
<td>4/7/08</td>
</tr>
</tbody>
</table>

quantitative
ordinal
categorical
Data Model vs. Conceptual Model

- **Data Model**: raw data that has a specific data type (e.g. floats):
 - Temperature Example: [32.5, 54.0, -17.3] (floats)

- **Conceptual Model**: how we think about the data
 - Includes semantics, reasoning
 - Temperature Example:
 - Quantitative: [32.50, 54.00, -17.30]

[via A. Lex, 2015]
Data Model vs. Conceptual Model

• Data Model: raw data that has a specific data type (e.g. floats):
 - Temperature Example: [32.5, 54.0, -17.3] (floats)

• Conceptual Model: how we think about the data
 - Includes semantics, reasoning
 - Temperature Example:
 • Quantitative: [32.50, 54.00, -17.30]
 • Ordered: [warm, hot, cold]
Data Model vs. Conceptual Model

• Data Model: raw data that has a specific data type (e.g. floats):
 - Temperature Example: [32.5, 54.0, -17.3] (floats)

• Conceptual Model: how we think about the data
 - Includes semantics, reasoning
 - Temperature Example:
 • Quantitative: [32.50, 54.00, -17.30]
 • Ordered: [warm, hot, cold]
 • Categorical: [not burned, burned, not burned]

[via A. Lex, 2015]
Ordering Direction

Attribute Types

- Categorical
 - + • □ △

- Ordered
 - Ordinal
 -
 - Quantitative
 -

Ordering Direction

- Sequential
- Diverging
- Cyclic

[Munzner (ill. Maguire), 2014]
Sequential and Diverging Data

- **Sequential**: homogenous range from a minimum to a maximum
 - Examples: Land elevations, ocean depths
- **Diverging**: can be deconstructed into two sequences pointing in opposite directions
 - Has a **zero point** (not necessary 0)
 - Example: Map of both land elevation and ocean depth

[Rogowitz & Treinish, 1998]
Cyclic Data

A spiral is easy to describe and understand in polar coordinates, i.e. in the form \((r, \theta)\). The distinctive feature of spirals is that a ray emanating from the origin crosses two consecutive arcs of the spiral in a constant distance. This is a special property that all arcs cut a ray emanating from the origin under the same angle.

Archimedean spirals are described by the equation \(r = a + b\theta\), where \(a\) and \(b\) are constants. More generally, spirals of the form \(r = f(\theta)\) are called inverse of Archimedes spirals. In this work, we assume a spiral is described by \(\phi(\theta)\), where \(\phi\) is a monotone function. In this work we assume a spiral is described by \(\phi(\theta)\), where \(\phi\) is a monotone function. In this work we assume a spiral is described by \(\phi(\theta)\), where \(\phi\) is a monotone function.

Several simple functions are always the same. Yet, we have found this way of visualizing to be ineffective. We conclude that the general shape of the spiral should be untouched and other attributes should be used, such as color, line thickness, and line length to encode additional information.

In general, markers, bars, and line elements can be used to visualize time-series data similar to standard point, bar, and line graphs on Spiral Graphs. For instance, quantitative, qualitative, and discrete data can be presented as bars on the spiral or by small absolute changes in the radius, i.e. \(r(\theta) = a + k\phi(\theta)\). One might consider to map data values to small absolute changes in the radius, i.e. \(r(\theta) = a + k\phi(\theta)\).

The logarithmic spiral has the form \(r = e^{\lambda \theta}\). It has the special property that \(\phi(\theta) = e^{\lambda \theta}\). With \(\phi(\theta) = e^{\lambda \theta}\), the continuity of the data is expressed by using a spiral in-