
Data Visualization (CSCI 627/490)

Data Manipulation & SciVis Intro

Dr. David Koop

D. Koop, CSCI 627/490, Fall 2022

Reduce

Filter

Aggregate

Embed

Reducing Items and Attributes

Filter
Items

Attributes

Aggregate

Items

Attributes

Overview: Reducing Items & Attributes

2

Reduce

Filter

Aggregate

Reducing Items and Attributes

Filter
Items

Attributes

Aggregate

Items

Attributes

[Munzner (ill. Maguire), 2014]
D. Koop, CSCI 627/490, Fall 2022

Task 1

In
HD data

Out
2D data

ProduceIn High-
dimensional data

Why?What?

Derive

In
2D data

Task 2

Out 2D data

How?Why?What?

Encode
Navigate
Select

Discover
Explore
Identify

In 2D data
Out Scatterplot
Out Clusters &
points

Out
Scatterplot
Clusters & points

Task 3

In
Scatterplot
Clusters & points

Out
Labels for
clusters

Why?What?

Produce
Annotate

In Scatterplot
In Clusters & points
Out Labels for
clusters

wombat

Tasks in Understanding High-Dim. Data

3

[Munzner (ill. Maguire), 2014]
D. Koop, CSCI 627/490, Fall 2022

Gene 1

 original data space

Gene 2

G
en

e
3

 component space

PC 1

PC
 2

PCA
PC 1

PC 2

Principle Component Analysis (PCA)

4

[M. Scholz, CC-BY-SA 2.0]
D. Koop, CSCI 627/490, Fall 2022

http://phdthesis-bioinformatics-maxplanckinstitute-molecularplantphys.matthias-scholz.de/

Probing Projections: Interaction Techniques for Interpreting
Arrangements and Errors of Dimensionality Reductions

Julian Stahnke, Marian Dörk, Boris Müller, and Andreas Thom

Abstract—We introduce a set of integrated interaction techniques to interpret and interrogate dimensionality-reduced data. Projection
techniques generally aim to make a high-dimensional information space visible in form of a planar layout. However, the meaning of
the resulting data projections can be hard to grasp. It is seldom clear why elements are placed far apart or close together and
the inevitable approximation errors of any projection technique are not exposed to the viewer. Previous research on dimensionality
reduction focuses on the efficient generation of data projections, interactive customisation of the model, and comparison of different
projection techniques. There has been only little research on how the visualization resulting from data projection is interacted with.
We contribute the concept of probing as an integrated approach to interpreting the meaning and quality of visualizations and propose
a set of interactive methods to examine dimensionality-reduced data as well as the projection itself. The methods let viewers
see approximation errors, question the positioning of elements, compare them to each other, and visualize the influence of data
dimensions on the projection space. We created a web-based system implementing these methods, and report on findings from an
evaluation with data analysts using the prototype to examine multidimensional datasets.

Index Terms—Information visualization, interactivity, dimensionality reduction, multidimensional scaling.

1 INTRODUCTION

A primary goal of information visualization is to find patterns and
relationships in multivariate datasets. Many visualization techniques
have been developed towards this goal such as multiple coordinated
views [2], parallel coordinates [14], scatterplot matrices [28], and
dimensionality reductions such as multidimensional scaling (MDS)
and principal component analysis (PCA) [5]. Dimensionality re-

• Julian Stahnke, Marian Dörk, Boris Müller and Andreas Thom are with
Potsdam University of Applied Sciences, e-mail: hello@julianstahnke.com
and {doerk, boris.mueller, andreas.thom}@fh-potsdam.de

Manuscript received 31 Mar. 2015; accepted 1 Aug. 2015; date of publication
xx Aug. 2015; date of current version 25 Oct. 2015.
For information on obtaining reprints of this article, please send
e-mail to: tvcg@computer.org.

ductions are a particular class of techniques that synthesise high-
dimensional data spaces onto projection spaces with much fewer
dimensions, typically the two dimensions of the plane. While most
visualization techniques juxtapose the different data dimensions as
matrices or columns, dimensionality reductions integrate them into a
planar canvas. The projection results in a so-called spatialisation (i.e.,
embedding) of data elements that approximately represents similarity
as proximity and in turn dissimilarity as distance. Considering that
the human perceptional system comprises a well-developed capacity
for spatial reasoning, the assumption is that spatialisation would
be a more natural way [31] to analyse high-dimensional datasets
since groupings, separations, and other patterns among data elements
become immediately discernible.

However, there are two major caveats linked with dimensionality
reduction: first, it can be challenging to interpret the positions of
projected elements, and second, the errors that occur with any pro-

Probing Projections

5

[J. Stahnke et al., 2015]
D. Koop, CSCI 627/490, Fall 2022

http://julianstahnke.com/probing-projections/

Embed

Elide Data

Superimpose Layer

Distort Geometry

Reduce

Filter

Aggregate

Embed

Focus+Context Overview

6

[Munzner (ill. Maguire), 2014]
D. Koop, CSCI 627/490, Fall 2022

Elision & Degree of Interest Function
• DOI = I(x) - D(x,y)
- I: interest function
- D: distance (semantic or spatial)
- x: location of item
- y: current focus point
- Interactive: y changes

7

[Heer and Card, 2004]
D. Koop, CSCI 627/490, Fall 2022

C. Tominski et al. / A Survey on Interactive Lenses in Visualization

(a) Alteration (b) Suppression (c) Enrichment

Figure 5: Basic lens functions. (a) ChronoLenses [ZCPB11] alter existing content; (b) the Sampling Lens [ED06b] suppresses
content; (c) the extended excentric labeling lens [BRL09] enriches with new content.

needs to be inversely projected from the screen space (V) to
the model space (VA), in which the geometry and graphical
properties of the visualization are defined. Further inverse
projection to the data space (DT or DS) enables selection at
the level of data entities or data values. For example, with
the ChronoLenses [ZCPB11] from Figure 5(a), the user ba-
sically selects an interval on a time scale. The Local Edge
Lens [TAvHS06] from Figure 7(a) (see two pages ahead) se-
lects a subset of graph edges that pass through the lens and
actually do connect to a graph node within the lens.

So, by appropriate inverse projection of the lens, the selec-
tion s can be made at any stage of the visualization pipeline,
be it a region of pixels at V , a group of 2D or 3D geometric
primitives at VA, a set of data entities at DT , or a range of
values at DS. However, what sounds simple in theory is not
as straight-forward in real visualization applications. Inverse
projection can lead to ambiguities that need to be resolved
to properly identify the selected entities. Assigning unique
identifiers to data items and maintaining them throughout
the visualization process as well as employing the concept
of half-spaces can help in this regard [TFS08].

The Lens Function The lens function creates the intended
lens effect. Just as any function, so is the lens function char-
acterized by the input it operates on and the output it gener-
ates. Clearly, the selection s is input to the lens function. The
lens function further depends on parameters that control the
lens effect. Possible parameters are as diverse as there are
lens functions. A magnification lens, for example, may ex-
pose the magnification factor as a parameter. A filtering lens
may be parameterized by thresholds to control the amount
of data to be filtered out. Parameters such as these are essen-
tial to the effect generated with a lens. Additional parame-
ters may be available to further fine-tune the lens function.
For example, the alpha value used for dimming filtered data
could be such an additional parameter.

Given selection and parameters, the processing of the lens
function typically involves only a subset of the stages of the

visualization transformation. For example, when the selec-
tion is defined on pixels, the lens function usually manip-
ulates these pixels exclusively at the view stage V . On the
other hand, selecting values directly from the data source
DS opens up the possibility to process the selected values
differently throughout all stages of the pipeline.

The output generated by the lens function will typically be
an alternative visual representation. From a conceptual point
of view, a lens function can alter existing content, suppress
irrelevant content, or enrich with new content, or perform
combinations thereof. Figure 5 illustrates the different op-
tions. For example, ChronoLenses [ZCPB11] transform time
series data on-the-fly, that is, they alter existing content. The
Sampling Lens [ED06b] suppresses data items to de-clutter
the visualization underneath the lens. The extended excen-
tric labeling [BRL09] is an example for a lens that enriches
a visualization, in this case with textual labels.

The Join ./ Finally, the result obtained via the lens func-
tion has to be joined with the base visualization to create the
necessary visual feedback. A primary goal is to realize the
join so that it is easy for the user to understand how the view
seen through the lens relates to the base visualization. In a
narrow sense of a lens, the result generated by the lens func-
tion will replace the content in the lens interior as shown for
ChronoLenses [ZCPB11] and the SamplingLens [ED06b] in
Figures 5(a) and 5(b). For many other lenses the visual effect
manifests exclusively in the lens interior.

When the join is realized at earlier stages of the visu-
alization pipeline, the visual effect is often less confined.
For example, the Layout Lens [TAS09] adjusts the position
of a subset of graph nodes to create a local neighborhood
overview as shown in Figure 6(a). Yet, relocating nodes im-
plies that their incident edges take different routes, which in
turn introduces some (limited) visual change into the base
visualization as well. In a most relaxed sense of a lens, the
result of the lens function can even be shown separately. The
time lens [TSAA12] depicted in Figure 6(b) is an example

c� The Eurographics Association 2014.

Superimposition with Interactive Lenses

8

[ChronoLenses and Sampling Lens in Tominski et al., 2014]
D. Koop, CSCI 627/490, Fall 2022

June 21, 2012 / Mike Bostock

Fisheye Distortion

It can be difficult to observe micro and macro features simultaneously with complex graphs. If you
zoom in for detail, the graph is too big to view in its entirety. If you zoom out to see the overall
structure, small details are lost. Focus + context techniques allow interactive exploration of an area

Mouseover to distort the nodes.

Distortion

9

[M. Bostock]
D. Koop, CSCI 627/490, Fall 2022

http://bost.ocks.org/mike/fisheye/

(a) (b)

Figure 3. LiveRAC shows a full day of system management time-series data using a reorderable matrix of area-aware

charts. Over 4000 devices are shown in rows, with 11 columns representing groups of monitored parameters. (a): The

user has sorted by the maximum value in the CPU column. The first several dozen rows have been stretched to show

sparklines for the devices, with the top 13 enlarged enough to display text labels. The time period of business hours

has been selected, showing the increase in the In pkts parameter for many devices. (b): The top three rows have been

further enlarged to show fully detailed charts in the CPU column and partially detailed ones in Swap and two other

columns. The time marker (vertical black line on each chart) indicates the start of anomalous activity in several of

spire’s parameters. Below the labeled rows, we see many blocks at the lowest semantic zoom level, and further below

we see a compressed region of highly saturated blocks that aggregate information from many charts.

as the minimum, maximum, or average of the time-series.
Rows can be sorted by device names or metadata such as lo-
cation, customer, or other groupings. Columns can also be
reordered by the user.

Principle: multiple views are most effective when coor-

dinated through explicit linking. The principle of linked
views [15] is that explicit coordination between views en-
hances their value. In LiveRAC, as the user moves the cur-
sor within a chart, the same point in time is marked in all
charts with a vertical line. Similarly, selecting a time seg-
ment in one chart shows a mark in all of them. This tech-
nique allows direct comparison between parameter values
at the same time on different charts. In addition, people can
easily correlate times between large charts with detailed axis
labels, and smaller, more concise charts.

Assertion: showing several levels of detail simultane-

ously provides useful high information density in con-

text. Several technique choices are based on this assertion.
First, LiveRAC uses stretch and squish navigation, where
expanding one or many regions compresses the rest of the
view [11, 17]. The accompanying video shows the look and
feel of this navigation technique. The stretching and squish-
ing operates on rectangular regions, so expanding a single
chart also magnifies the entire row for the device it repre-
sents, and the entire column for the parameters that it shows.
The edges of the display are fixed so that all cells remain
within the visible area, as opposed to conventional zoom-
ing where some regions are pushed off-screen. There are
rapid navigation shortcuts to zoom a single cell, a column,

an aggregated group of devices, the results of a search, or to
zoom out to an overview. Users can also directly drag grid
lines or resize freely drawn on-screen rectangles. Naviga-
tion shortcuts can also be created for any arbitrary grouping,
whose cells do not need to be contiguous. This interaction
mechanism affords multiple focus regions, supporting mul-
tiple levels of detail.

Second, charts in LiveRAC dynamically adapt to show vi-
sual representations adapted in each cell to the available
screen space. This technique, called semantic zooming [13],
allows a hierarchy of representations for a group of device-
parameter time-series. In Figure 3, the largest charts have
multiple overlaid curves and detailed axis and legend labels.
Smaller charts show fewer curves and less labeling, and at
smaller sizes only one curve is shown as a sparkline [24].
On each curve, the maximum value over the displayed time
period is indicated with a red dot, the minimum with a blue
dot, and the current value with a green one. All representa-
tion levels color code the background rectangle according to
dynamically changeable thresholds of the minimum, maxi-
mum, or average values of the parameters within the current
time window. The smallest view is a simple block, where
this color coding is the only information shown.

Third, aggregation techniques achieve visual scalability by
ensuring dense regions show meaningful visual representa-
tions. Given our target scale of dozens of parameters and
thousands of devices, the size of the matrix could easily sur-
pass 100,000 cells. Stretch and squish navigation allows
users to quickly create a mosaic with cells of many differ-

Distortion: Stretch and Squish Navigation

10

[McLachlan et al., 2008]
D. Koop, CSCI 627/490, Fall 2022

H3 Layout

11

[T. Munzner, 1998]
D. Koop, CSCI 627/490, Fall 2022

https://www.youtube.com/watch?v=fhbQy_NCwWI

H3 Layout

11

[T. Munzner, 1998]
D. Koop, CSCI 627/490, Fall 2022

https://www.youtube.com/watch?v=fhbQy_NCwWI

(a) Bring (step 1) – Selecting a node fades out
all graph elements but the node neighborhood.

(b) Bring (step 2) – Neighbor nodes are pulled
close to the selected node.

(c) Go – After selecting a neighbor (the green
node in Fig. 4(b)), a short animation brings the
focus towards a new neighborhood.

Figure 4: Illustration of the Bring & Go interaction.

on the screen. For instance, a Bézier curve corresponds to
a polynomial whose degree is one less than the number of
control points determining it (other families of polynomi-
als can also be used, such as Hermite’s polynomials). Let
(P0, . . . ,Pn) be control points. The polynomial defined from
these control points is:

Qn(t) =
n

∑
i=0

Bi,n(t)Pi, (1)

where the sum is performed component wise and

Bi,n(t) =

(

n

i

)

(1− t)n−it i, 0≤ t ≤ 1 (2)

are Bernstein polynomials and
(

n
i

)

= n!
i!(n−i)! denotes the

usual binomial coefficient.
In order to be able to easily interact with the edge bun-

dled graphs, even for basic interactions like panning and
zooming, we have to optimize the curves rendering by re-
ducing the computational load on the CPU as much as
possible. One solution could be to pre-compute all curve
points and store them in memory; this obviously is not effi-
cient in terms of memory usage, considering that we want
to draw a large amount of fine-grained rendered curves.
For example, drawing 105 curves (edges) with 100 points
per curves – one point being stored as 3 floats (4 bytes
each), the total amount of memory use would be ∼ 108

bytes (more than 110 Mbytes).
Another solution will be to use the built-in components

of high level graphics API for rendering curves. For in-
stance, in OpenGL, that task can be achieved by using a
standard feature called evaluators. Evaluators can be used
to construct curves and surfaces based on the Bernstein ba-
sis polynomials. This includes Bézier curves and patches,
and B-splines. An evaluator is set up from an array of con-
trol points and allows to compute curve points on the GPU

by sending the parameter t to the rendering pipeline. How-
ever, most of the OpenGL implementations have restrained
the maximum authorized number of control points to eight.
So to draw a Bézier curve or a cubic B-spline with more
than eight control points using evaluators, it has to be done
piecewise by subdividing the curve to render into curves
with fewer control points. Consequently, the performance
to draw high order curves with this technique decreases as
the number of control points grows. So even if evaluators
work well to render curves with a small number of control
points, they are not suitable to resolve our issue of drawing
curves with several dozens of control points efficiently.

4.2 GPU-intensive spline rendering

Our solution delegates the computation of curve points
to the GPU which is perfectly well designed to perform
vectorial computation and floating points operations. By
using the OpenGL Graphics API, we can encapsulate those
tasks in a shader program. This type of program, written
in a C-like language called GLSL (OpenGL Shading Lan-

guage), allows to modify the default behavior of some pro-
cessing units in the rendering pipeline – the vertex process-
ing unit can be customized this way. The purpose of vertex
processing stage is to transform each vertex’s 3D position
in virtual space to the 2D coordinates at which it appears
on the screen. By designing a vertex shader we can ma-
nipulate properties such as node position or color, with all
computations executed on the GPU. Shaders offer tangible
benefits since they are well suited for parallel processing
as most modern GPUs have multiple shader pipelines.

The vertex shader we designed is activated each time
we render a curve on screen. Before sending vertex co-
ordinates to the GPU, the curve’s control points are trans-
ferred to the shader and stored in an array. The maximum
size of that array is hardware dependent and determined at
runtime. On recent GPU, more than one thousand control

Focus+Context in Network Exploration

12

[Lambert et al., 2010]
D. Koop, CSCI 627/490, Fall 2022

(a) Moderately large graph drawn with straight line edges. The graph nodes
correspond to the USA major cities; edges show migration flows. The graph
contains 1715 nodes and 9778 edges. Nodes are laid out according to ge-
ographical positions of cities, producing a drawing with poor readability,
where edges mix in a totally unordered way and where some nodes are close
to unnoticeable.

(b) The same graph as in Fig. 1(a) now drawn using edge bundling with edges
rendered as Bézier curves

Figure 1: Illustration of edge bundling.

(a) The fish-eye distorts a small region of the graph
for local inspection.

(b) The magnifying lens shows a zoom on a local
region.

Figure 2: Fisheye and magnifying lens

a zoom and pan effect under the wheel mouse makes this
operation relatively easy.

Magnifying Lens and Fish-eye – The magnifying lens
[3] and geometrical fish-eye [7] were also added to the sys-
tem as basic interactors. They allow to get local details
on an area of the graph without having to zoom in (see
Fig. 2(a) and Fig. 2(b)). These techniques allow to get
a rough estimation on the degree of nodes or number of
edges that have been bundled together, and an idea on the
spatial organization of neighborhoods.

Neighborhood highlighting – After edges have been
bundled, the graph gains in overall readability at the loss
of more local information. For instance, connections be-
tween any two particular nodes cannot be easily recovered
and isolated out of a bundle. When designing the system
and deciding on the interactions to implement and com-
bine, we focused on the recovery of these local informa-

tion. By hovering the mouse over any node in the graph
drawing, the user can highlight its neighborhood. This
is accomplished by showing a translucent circle over the
immediate where a node sits while clearly displaying the
neighborhood of the node (top of Fig. 3(a)). The circle
fades off nodes not belonging to the selected neighbor-
hood, temporarily providing a clear view of it. The size
of the translucent circle is fitted as to enclose all immedi-
ate neighbors of the node in the graph. Using the mouse
wheel, the user can select neighbors sitting at a bounded
distance from the node. The size of the translucent circle
adjusts accordingly (bottom of Fig. 3(b)).

Bring & Go – Now, neighbor nodes in the graph do not
always sit close. As a consequence, the translucent circle
highlighting neighbors of a node can potentially be quite
large. That is, the distance between nodes in the graph does
not always match their Euclidean distance in the drawing –

Focus+Context in Network Exploration

13

[Lambert et al., 2010]
D. Koop, CSCI 627/490, Fall 2022

(a) Neighborhood highlighting – selecting a node
brings up its neighbors, fading away all other graph
elements.

(b) Using the mouse wheel, the neighborhood is ex-
tended to nodes sitting further away.

Figure 3: Illustration of the Neighborhood highlighting interaction

this indeed is the challenge posed to all layout algorithms.
The Bring & Go technique introduced by Tominski et al.
[18] solves this paradox. The Bring operation pulls neigh-
bors of a node to near proximity, temporarily resolving a
situation where the layout algorithm had failed. Fig. 4(a)
and Fig. 4(b) illustrates this situation – the passage from
step 1 to step 2 being smoothly animated. Once the neigh-
bors have been repositioned close to the node, the Go op-
eration lets the user decide of a new direction to move to
by selecting a neighbor. After clicking a neighbor node,
the visualization is panned until re-centered around the tar-
get neighbor. The transition is performed by smoothly an-
imating the pan (see Fig. 3). A recent user-study of this
interaction technique has been made by Moscovich et al

[15]. When bringing neighbors close to the selected node,
the edges abandon their curve shapes and are morphed to
straight lines. This is done by modifying the control points
coordinates of each curve so that they are all aligned.

Our system thus comprises a comprehensive palette of
interactions focusing on adjacency or accessibility tasks
(we borrow this terminology from Lee et al.’s [14] task
taxonomy, itself referring to the work of Amar et al. [1]).
That is, tasks such as exploring neighbor nodes, or count-
ing them, finding how many nodes can be accessed from
any given one, etc., can be easily done through direct ma-
nipulation of the graph using zoom, pan, neighborhood
highlight or Bring & Go, for instance. All these interac-
tions techniques have been implemented as interactor plu-
gins for the Tulip graph visualization software [2] and are
available through its plugin server.

4 Maintaining fluid interaction

The challenge we were faced with is that curves gen-
eration have a relatively high computational cost when it

comes to interacting with bundles. Indeed, although the
curves can be drawn in reasonable time for static drawings
using standard rendering techniques, the problem becomes
tedious when one wants to interact on bundles using any
of the techniques described in the previous section. The
curves’ shapes must be continually transformed as the user
moves the mouse and pilots interaction (geometrical fish-
eye or Bring & Go for instance).

Moreover, we did not want fluidity to impact on the
quality of the curves and impose an upper bound on the
number of control points used to compute the edge routes.
Instead, we aimed at producing a system capable of deal-
ing with an arbitrary number of control points. As a con-
sequence, the computation of the points interpolating the
curve itself puts a real burden on the system and calls for
an extremely efficient approach. The solution we designed
avoids performing computations on the CPU as far as pos-
sible, relying on the GPU for almost all curve related com-
putations. The only computations that are potentially per-
formed on the CPU are the original graph layout and the
bundling part.

4.1 Introduction to spline rendering

Now, there are two major issues when rendering a para-
metric spline. Control points define the curve analytically
described as a polynomial (see Eq. (1 for Bézier curves).
Second, once the polynomial has been determined, it must
be evaluated as many times as required in order to inter-
polate the curve itself. As a consequence, when interact-
ing with the graph asking for local deformation of edges,
bringing neighbors closer or following an edge, the curves
must be re-computed on the fly.

A classical approach when rendering a curve is to com-
pute the interpolation points on the CPU, then call appro-
priate graphics primitives and let the GPU render the curve

Focus+Context in Network Exploration

14

[Lambert et al., 2010]
D. Koop, CSCI 627/490, Fall 2022

15

Linked Highlighting Example

D. Koop, CSCI 627/490, Fall 2022

https://observablehq.com/d/236cfd534e5ca670

Assignment 5
• Best-Selling Musical Artists
- Multiple Views
- Adjacency Matrix + Line Plot
- Linked Highlighting
- Filtering

• Due Wendesday, Nov. 23

16D. Koop, CSCI 627/490, Fall 2022

http://faculty.cs.niu.edu/~dakoop/cs627-2022fa/assignment5.html

Data Wrangling
• Problem 1: Visualizations need data
• Solution: The Web!
• Problem 2: Data has extra information I don't need
• Solution: Filter it
• Problem 3: Data is dirty
• Solution: Clean it up
• Problem 4: Data isn't in the same place
• Solution: Combine data from different sources
• Problem 5: Data isn't structured correctly
• Solution: Reorder, map, and nest it

17D. Koop, CSCI 627/490, Fall 2022

Hosting data
• github.com
• gist.github.com
• figshare.com
• myjson.com
• observablehq.com
• Other services

18D. Koop, CSCI 627/490, Fall 2022

http://github.com
http://gist.github.com
http://figshare.com
http://myjson.com
http://observablehq.com

Cross-origin resource sharing (CORS)
• Restricts where data can be loaded from
• If developing locally, can
- Run a web server locally (python -m http.server or npm's http-server)
- Put the data on a website (like github), make sure to use raw URLs

• If loading JavaScript, this sometimes requires more help
- https://www.jsdelivr.com/?docs=gh

19D. Koop, CSCI 627/490, Fall 2022

https://www.jsdelivr.com/?docs=gh

Filtering Data
• Often useful to filter data before loading into D3

20D. Koop, CSCI 627/490, Fall 2022

Why JavaScript?
• Python and R have great support for this sort of processing
• Data comes from the Web, want to put visualizations on the Web
• Sometimes unnecessary to download, process, and upload!
• More tools are helping JavaScript become a better language

21D. Koop, CSCI 627/490, Fall 2022

JavaScript Data Wrangling Resources
• Latest version: https://observablehq.com/@berkeleyvis/learn-js-data
• My old version: https://observablehq.com/@dakoop/learn-js-data
• Based on http://learnjsdata.com/
• Good coverage of data wrangling using JavaScript

22D. Koop, CSCI 627/490, Fall 2022

https://observablehq.com/@berkeleyvis/learn-js-data
https://observablehq.com/@dakoop/learn-js-data
http://learnjsdata.com/

Comma Separated Values (CSV)
• File structure:

cities.csv:

city,state,population,land area
seattle,WA,652405,83.9
new york,NY,8405837,302.6
boston,MA,645966,48.3
kansas city,MO,467007,315.0

• Loading using D3:
d3.csv("/data/cities.csv").then(function(data) {
 console.log(data[0]);
});

• Result:
=> {city: "seattle", state: "WA", population: 652405, land area: 83.9}

• Values are strings! Convert to numbers via the unary + operator:
- d.population => "652405"

- +d.population => 652405

23

[http://learnjsdata.com]
D. Koop, CSCI 627/490, Fall 2022

http://learnjsdata.com

Tab Separated Values (TSV)
• File structure:

animals.tsv:

name type avg_weight
tiger mammal 260
hippo mammal 3400
komodo dragon reptile 150

• Loading using D3:
d3.tsv("/data/animals.tsv").then(function(data) {
 console.log(data[0]);
});

• Result:
=> {name: "tiger", type: "mammal", avg_weight: "260"}

• Can also have other delimiters (e.g. '|', ';')

24

[http://learnjsdata.com]
D. Koop, CSCI 627/490, Fall 2022

http://learnjsdata.com

JavaScript Object Notation (JSON)
• File Structure:

employees.json:
[
 {"name":"Andy Hunt",
 "title":"Big Boss",
 "age": 68,
 "bonus": true
 },
 {"name":"Charles Mack",
 "title":"Jr Dev",
 "age":24,
 "bonus": false
 }
]

• Loading using D3:
d3.json("/data/employees.json".then(function(data) {
 console.log(data[0]);
});

• Result:
=> {name: "Andy Hunt", title: "Big Boss", age: 68, bonus: true}

25

[http://learnjsdata.com]
D. Koop, CSCI 627/490, Fall 2022

http://learnjsdata.com

Loading Multiple Files
• Use Promise.all to load multiple files and then process them all

Promise.all([d3.csv("/data/cities.csv"),
 d3.tsv("/data/animals.tsv")])
 .then(analyze);

function analyze(data) {
 cities = data[0]; animals = data[1];

 console.log(cities[0]);
 console.log(animals[0]);
}
=> {city: "seattle", state: "WA", population: "652405", land area: "83.9"}
{name: "tiger", type: "mammal", avg_weight: "260"}

26

[http://learnjsdata.com]
D. Koop, CSCI 627/490, Fall 2022

http://learnjsdata.com

Combining Data
• Suppose given products and brands
• Brands have an id and products have a brand_id that matches a brand
• Want to join these two datasets together

- Product.brand_id => Brand.id
• Use a nested forEach/filter
• Use a native join command

27

[http://learnjsdata.com]
D. Koop, CSCI 627/490, Fall 2022

http://learnjsdata.com

Summarizing Data
• d3 has min, max, and extent functions of the form
- 1st argument: dataset
- 2nd argument: accessor function

• Example:
var landExtent = d3.extent(data, function(d) { return d.land_area; });
console.log(landExtent);
=> [48.3, 315]

• Summary statistics, e.g. mean, median, deviation → same format
• Median Example:

var landMed = d3.median(data, function(d) { return d.land_area; });
console.log(landMed);
=> 193.25

28

[http://learnjsdata.com]
D. Koop, CSCI 627/490, Fall 2022

http://learnjsdata.com

Grouping Data
• Take a flat structure and turn it into a (potentially nested) map
• Similar to a groupby in databases
• Data
var expenses = [{"name":"jim","amount":34,"date":"11/12/2015"},
 {"name":"carl","amount":120.11,"date":"11/12/2015"},
 {"name":"jim","amount":45,"date":"12/01/2015"},
 {"name":"stacy","amount":12.00,"date":"01/04/2016"},
 {"name":"stacy","amount":34.10,"date":"01/04/2016"},
 {"name":"stacy","amount":44.80,"date":"01/05/2016"}
];

• Grouping:
expensesByName = d3.group(expenses, d => d.name)

• Results:
 Map(3) { "jim" => Array(2) [Object, Object]
 "carl" => Array(1) [Object]
 "stacy" => Array(3) [Object, Object, Object] }

29D. Koop, CSCI 627/490, Fall 2022

Rollup Data
• Data
var expenses = [{"name":"jim","amount":34,"date":"11/12/2015"},
 {"name":"carl","amount":120.11,"date":"11/12/2015"},
 {"name":"jim","amount":45,"date":"12/01/2015"},
 {"name":"stacy","amount":12.00,"date":"01/04/2016"},
 {"name":"stacy","amount":34.10,"date":"01/04/2016"},
 {"name":"stacy","amount":44.80,"date":"01/05/2016"}
];

• Using d3.rollup:
expensesAvgAmount = d3.rollup(
 expenses,
 v => d3.mean(v, d => d.amount), // aggregate by the mean of amount
 d => d.name // group by name
)

• Result:
 Map(3) {
 "jim" => 39.5
 "carl" => 120.11
 "stacy" => 30.3
 }

30

[http://learnjsdata.com]
D. Koop, CSCI 627/490, Fall 2022

the aggregation function
(difference from group)

http://learnjsdata.com

groups and rollups
• Both group and rollup return Map objects
• groups and rollups are the same functions but return nested arrays
• More examples: https://observablehq.com/@d3/d3-group

31D. Koop, CSCI 627/490, Fall 2022

https://observablehq.com/@d3/d3-group

arquero
• New library for query processing and transformation of array-backed data

tables:
• https://observablehq.com/@uwdata/arquero?collection=@uwdata/arquero

32D. Koop, CSCI 627/490, Fall 2022

https://observablehq.com/@uwdata/arquero?collection=@uwdata/arquero

