Data Visualization (CSCI 627/490)

Definition & Web Programming

Dr. David Koop
The purpose of visualization is about insight, not pictures

- Card, Mackinlay, Shneiderman
Exploration <-> Communication Spectrum

Consecutive Starts by a Quarterback for a Single Team

Questions

Confirmation

Answers/Persuasion

[K. Quealy, 2013]
Static Visualization
Interactive Visualization

An Extremely Detailed Map of the 2020 Election

BY ALICE PARK, CHARLIE SMART, NURSEY TAYLOR AND MILES WATKINS

This map has detailed data from 2,520 of 3,143 counties in 47 states, representing 80% of all votes cast. It was last updated on March 30.

2020 results
Change from 2016

Dane County, Wis.
CANDIDATE

VOTES PCT. 2020 MARGIN

Joseph R. Biden 260,121 75% +53
Donald J. Trump 78,794 23%

© Mapbox © OpenStreetMap licenses this map

[NYTimes]
Administrivia

- Course Web Site
- Syllabus
 - Plagiarism
 - Accommodations
- Textbook:
 - Required: Munzner (VAD)
- Assignments
- Exams: Midterm (Oct. 13) and Final (Dec. 8)
- Registration
Administrivia

• Undergraduate (CSCI 490) and Graduate (CSCI 627)
 - Graduate: Extra reading, exam questions, project emphasis
• Research Topics:
 - Also investigate some topics in depth
 - Research papers as assigned reading (CSCI 627)
• Project: Create an interactive visualization (or vis research)
 - Design
 - Data analysis
 - Insight
 - **Presentations**: Last week of class
Office Hours & Email

• Office hours will be held in person
• Scheduled office hours are open to all students
 - Tu: 1:45-3pm, Th: 10:45am-12pm, or by appointment
• You do not need an appointment to stop in during scheduled office hours
• If you need an appointment outside of those times, please email me with details about what you wish to discuss
• Many questions can be answered via email. Please consider writing an email before scheduling a meeting.
Do not cheat!
Do not plagiarize

- It is **Academic Misconduct**
- Do your own work, do not copy anyone else's work, text, sentences, …
 - Anyone = another student, an internet source, book, blog, …
- Never quote text unless there is a specific need.
 - Usually, only famous quotes or very specific definitions
 - "I think there is a world market for maybe five computers."
 — Thomas Watson (1874-1956), Chairman of IBM, 1943
- **Cite** sources that back up your claims or reflect the origin of an idea
 - Vertex cover is an NP-Complete problem [1]. …
Do not cheat

• Cheating on assignments, projects, and exams is not allowed
• You will receive a zero on the assignment/project/exam
• It will be reported to the department and university
• If it repeats, you will fail the course
• You can be kicked out of the university
Do ask questions!
Do ask questions

• If you are stuck on a specific issue with an assignment:
 - Do email me with **specific** questions
 - Do consult books, online documentation, tutorials
 - Do discuss that specific issue with a classmate

• If you are asked about a question:
 - Do not share your code
 - If the questioner is trying to cheat, walk away
 - If you see an obvious mistake, kindly point it out
 - Suggest a specific function or library that may be useful
Do not cheat!
Questions?
Assignment 1

• To be released soon…
• Write HTML, CSS, and SVG
• Text markup and styling
• Drawing markup and styling
• Data Visualizaton using Observable Plot
Definition of Visualization

“Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.”

— T. Munzner
Definition

“Computer-based visualization systems provide visual representations of **datasets** designed to help people carry out **tasks** more effectively.”
Definition

“Computer-based visualization systems provide visual representations of **datasets** designed to help people carry out **tasks** more effectively.”
Definition

“Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.”
Definition

“Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.”
Why People?

• Certain tasks can be totally **automated**
 - Statistical computations
 - Machine learning algorithms
 - We don’t need visualization for these tasks (although perhaps for debugging them…)

• Analysis problems are often **ill-specified**
 - What is the correct question?
 - Exploit human visual system, pattern detection capabilities
 - Goal may be an automated solution or a visual analysis system

• Presentation
Why Computers?

[Cerebral, Barsky et al., 2007]
Why Computers?

[Cerebral, Barsky et al., 2007]
Resource Limitations

- Memory and space constraints
- How many pixels do I have?
- Information Density

[McGuffin & Robert, 2010]
Definition

“Computer-based visualization systems provide **visual** representations of datasets designed to help people carry out tasks more effectively”
Why do we visualize data?

Figures are richer; provide more information with less clutter and in less space.

Figures provide the gestalt effect: they give an overview; make structure more visible.

Figures are more accessible, easier to understand, faster to grasp, more comprehensible, more memorable, more fun, and less formal.

List adapted from: [Stasko et al. 1998]
Why Visual?

<table>
<thead>
<tr>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
<td>x</td>
<td>y</td>
</tr>
<tr>
<td>10.0</td>
<td>8.04</td>
<td>10.0</td>
<td>9.14</td>
</tr>
<tr>
<td>8.0</td>
<td>6.95</td>
<td>8.0</td>
<td>8.14</td>
</tr>
<tr>
<td>13.0</td>
<td>7.58</td>
<td>13.0</td>
<td>8.74</td>
</tr>
<tr>
<td>9.0</td>
<td>8.81</td>
<td>9.0</td>
<td>8.77</td>
</tr>
<tr>
<td>11.0</td>
<td>8.33</td>
<td>11.0</td>
<td>9.26</td>
</tr>
<tr>
<td>14.0</td>
<td>9.96</td>
<td>14.0</td>
<td>8.10</td>
</tr>
<tr>
<td>6.0</td>
<td>7.24</td>
<td>6.0</td>
<td>6.13</td>
</tr>
<tr>
<td>4.0</td>
<td>4.26</td>
<td>4.0</td>
<td>3.10</td>
</tr>
<tr>
<td>12.0</td>
<td>10.84</td>
<td>12.0</td>
<td>9.13</td>
</tr>
<tr>
<td>7.0</td>
<td>4.82</td>
<td>7.0</td>
<td>7.26</td>
</tr>
<tr>
<td>5.0</td>
<td>5.68</td>
<td>5.0</td>
<td>4.74</td>
</tr>
</tbody>
</table>

[F. J. Anscombe]
Why Visual?

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>y</td>
<td>8.04</td>
<td>9.14</td>
<td>7.46</td>
<td>6.58</td>
</tr>
<tr>
<td>x</td>
<td>8.0</td>
<td>8.14</td>
<td>8.0</td>
<td>8.0</td>
</tr>
<tr>
<td>y</td>
<td>6.95</td>
<td>6.77</td>
<td>8.0</td>
<td>5.76</td>
</tr>
<tr>
<td>x</td>
<td>13.0</td>
<td>13.0</td>
<td>13.0</td>
<td>13.0</td>
</tr>
<tr>
<td>y</td>
<td>7.58</td>
<td>8.74</td>
<td>12.74</td>
<td>7.71</td>
</tr>
<tr>
<td>x</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>y</td>
<td>8.81</td>
<td>8.77</td>
<td>7.11</td>
<td>8.0</td>
</tr>
<tr>
<td>x</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
</tr>
<tr>
<td>y</td>
<td>8.33</td>
<td>9.26</td>
<td>7.81</td>
<td>8.0</td>
</tr>
<tr>
<td>x</td>
<td>14.0</td>
<td>14.0</td>
<td>14.0</td>
<td>14.0</td>
</tr>
<tr>
<td>y</td>
<td>9.96</td>
<td>8.10</td>
<td>8.84</td>
<td>8.0</td>
</tr>
<tr>
<td>x</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>y</td>
<td>7.24</td>
<td>6.13</td>
<td>6.08</td>
<td>8.0</td>
</tr>
<tr>
<td>x</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>y</td>
<td>4.26</td>
<td>3.10</td>
<td>5.39</td>
<td>19.0</td>
</tr>
<tr>
<td>x</td>
<td>12.0</td>
<td>12.0</td>
<td>12.0</td>
<td>12.0</td>
</tr>
<tr>
<td>y</td>
<td>10.84</td>
<td>9.13</td>
<td>8.15</td>
<td>8.0</td>
</tr>
<tr>
<td>x</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td>y</td>
<td>4.82</td>
<td>7.26</td>
<td>6.42</td>
<td>8.0</td>
</tr>
<tr>
<td>x</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>y</td>
<td>5.68</td>
<td>4.74</td>
<td>5.73</td>
<td>8.0</td>
</tr>
</tbody>
</table>

- **Mean of x**: 9
- **Variance of x**: 11
- **Mean of y**: 7.50
- **Variance of y**: 4.122
- **Correlation**: 0.816

[F. J. Anscombe]
Why Visual?

[D. Koop, CSCI 627/490, Fall 2022]
Why Visual?

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y_3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y_4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Statistics</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean of x</td>
<td>9</td>
<td>7.50</td>
</tr>
<tr>
<td>Variance of x</td>
<td>11</td>
<td>4.122</td>
</tr>
<tr>
<td>Mean of y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variance of y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correlation</td>
<td></td>
<td>0.816</td>
</tr>
</tbody>
</table>

[F. J. Anscombe]
Visual Pop-out
Visual Pop-out
Visual Pop-out
Visual Perception Limitations

[C. G. Healey]
Visual Perception Limitations
Animation Can Help
Animation Can Help
But…
But…
Change & Inattentional Blindness Not Uncommon
Change & Inattentional Blindness Not Uncommon
Other Human Limitations

- Visual working memory is **small**
- **Change blindness:** A failure to notice a change in our view
- **Inattentional blindness:** A failure to notice something else going on in our view while focusing on a particular task
- "The goal of vision is not to build a complete photograph or model of the world in your mind. The goal of vision is to make sense of the meaning of the world around you." - D. Simons
“Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively”
Design Process: Iteration

[K. Quealy, 2013]
Design Process: Iteration

<table>
<thead>
<tr>
<th>Team</th>
<th>Players</th>
<th>Quarterbacks</th>
</tr>
</thead>
<tbody>
<tr>
<td>New York Giants</td>
<td>Eli Manning</td>
<td>Andrew Luck</td>
</tr>
<tr>
<td>Indianapolis Colts</td>
<td>Peyton Manning</td>
<td></td>
</tr>
<tr>
<td>San Diego Chargers</td>
<td>Drew Brees</td>
<td>Tom Brady</td>
</tr>
<tr>
<td>Baltimore Ravens</td>
<td>Kyle Boller</td>
<td>Matt Cassel</td>
</tr>
<tr>
<td>New England Patriots</td>
<td>Tom Brady</td>
<td>Aaron Rodgers</td>
</tr>
<tr>
<td>Green Bay Packers</td>
<td>Brett Favre</td>
<td>Aaron Rodgers</td>
</tr>
<tr>
<td>New Orleans Saints</td>
<td>Aaron Brooks</td>
<td>Aaron Rodgers</td>
</tr>
<tr>
<td>Atlanta Falcons</td>
<td>Michael Vick</td>
<td>Matt Ryan</td>
</tr>
<tr>
<td>New York Jets</td>
<td>Michael Vick</td>
<td>Matt Ryan</td>
</tr>
<tr>
<td>Cincinnati Bengals</td>
<td>Carson Palmer</td>
<td>Andy Dalton</td>
</tr>
<tr>
<td>Houston Texans</td>
<td>David Carr</td>
<td>Matt Schaub</td>
</tr>
<tr>
<td>Carolina Panthers</td>
<td>Jake Delhomme</td>
<td>Cam Newton</td>
</tr>
<tr>
<td>Denver Broncos</td>
<td>Jake Plummer</td>
<td>Tim Tebow</td>
</tr>
<tr>
<td>Arizona Cardinals</td>
<td>Jake Plummer</td>
<td>Peyton Manning</td>
</tr>
<tr>
<td>Jacksonville Jaguars</td>
<td>Byron Leftwich</td>
<td></td>
</tr>
<tr>
<td>Detroit Lions</td>
<td>Joey Harrington</td>
<td>Matthew Stafford</td>
</tr>
<tr>
<td>Tampa Bay Buccaneers</td>
<td>Chris Simms</td>
<td></td>
</tr>
<tr>
<td>Dallas Cowboys</td>
<td>Drew Bledsoe</td>
<td></td>
</tr>
</tbody>
</table>
Design Process: Iteration

Each streak shows consecutive starts by a quarterback for a single team. Streaks include playoffs.

Only two players have longer streaks: Brett Favre (275) and Eli’s brother, Peyton (227).

Among active players, Philip Rivers (122) and Joe Flacco (96) are closest behind Eli.

Find a quarterback

Eli Manning (149)

K. Quealy, 2013
Design Example

Each solid circle represents a bee species active in Carlinville, III., in both the late 1800s and 2010. Hatching represents a bee species active in the 1800s but now locally extinct. The spot where each block rests on the circle indicates one of 26 plant species frequented by these bees.

In the 1880s scientists observed the following about the bee-plant encounters:

- Present
- Frequently
- Abundant

Studies in 2009 and 2010 showed many bee-plant interactions had changed:

- Lost
- Persisted
- New

[M. Stefaner, 2013]
Impact of Design Choices: y-axis scale

Average Annual Global Temperature in Fahrenheit
1880-2015

[S. Hayward, 2015]
Impact of Design Choices: y-axis scale

Average Annual Global Temperature in Fahrenheit
1880-2015

[S. Hayward, 2015]
Impact of Design Choices: color

[A. Kitaoka]
Impact of Design Choices: color

Red, yellow, blue

Purple, orange do not exist!

[A. Kitaoka]
Analyzing Visualizations

Why?

How?

What?

Why?

How?

Why?

How?

What?

Why?

How?

Dependency

[Munzner (ill. Maguire), 2014]
Data Exploration through Visualization
Transportation Data - NYC MTA
MTA Fare Data Exploration

<table>
<thead>
<tr>
<th>REMOTE</th>
<th>STATION</th>
<th>FF</th>
<th>SEN/DIS</th>
<th>7-D AFAS UNL</th>
<th>D AFAS/RMF</th>
<th>JOINT RR TKT</th>
<th>7-D UNL</th>
<th>30-D UNL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R011 42ND STREET & 8TH AVENUE</td>
<td>00228985</td>
<td>00008471</td>
<td>00000441</td>
<td>00001455</td>
<td>00000134</td>
<td>00033341</td>
<td>00071255</td>
</tr>
<tr>
<td>2</td>
<td>R170 14TH STREET-UNION SQUARE</td>
<td>00224603</td>
<td>0011051</td>
<td>00000827</td>
<td>00003026</td>
<td>00000660</td>
<td>00089367</td>
<td>00199841</td>
</tr>
<tr>
<td>3</td>
<td>R046 42ND STREET & GRAND CENTRAL</td>
<td>00207758</td>
<td>00007908</td>
<td>00000323</td>
<td>00001183</td>
<td>00003001</td>
<td>00040759</td>
<td>00096613</td>
</tr>
<tr>
<td>4</td>
<td>R012 34TH STREET & 8TH AVENUE</td>
<td>00188311</td>
<td>00006490</td>
<td>00000498</td>
<td>00001279</td>
<td>00003622</td>
<td>00035527</td>
<td>00067483</td>
</tr>
<tr>
<td>5</td>
<td>R293 34TH STREET - PENN STATION</td>
<td>00168768</td>
<td>00006155</td>
<td>00000523</td>
<td>00001065</td>
<td>00005031</td>
<td>00030645</td>
<td>00054376</td>
</tr>
<tr>
<td>6</td>
<td>R033 42ND STREET/TIMES SQUARE</td>
<td>00159382</td>
<td>00005945</td>
<td>00000378</td>
<td>00001205</td>
<td>00000690</td>
<td>00058931</td>
<td>00078644</td>
</tr>
<tr>
<td>7</td>
<td>R022 34TH STREET & 6TH AVENUE</td>
<td>00156008</td>
<td>00006276</td>
<td>00000487</td>
<td>00001543</td>
<td>00000712</td>
<td>00058910</td>
<td>00110466</td>
</tr>
<tr>
<td>8</td>
<td>R084 59TH STREET/COLUMBUS CIRCLE</td>
<td>00155262</td>
<td>00009484</td>
<td>00000589</td>
<td>00002071</td>
<td>00000542</td>
<td>00053397</td>
<td>00113966</td>
</tr>
<tr>
<td>9</td>
<td>R020 47-50 STREETS/ROCKEFELLER</td>
<td>00143500</td>
<td>00006402</td>
<td>00000384</td>
<td>00001159</td>
<td>00000723</td>
<td>00037978</td>
<td>00090745</td>
</tr>
<tr>
<td>10</td>
<td>R179 86TH STREET-LEXINGTON AVE</td>
<td>00142169</td>
<td>00010367</td>
<td>00000470</td>
<td>00001839</td>
<td>00000271</td>
<td>00050328</td>
<td>00125250</td>
</tr>
<tr>
<td>11</td>
<td>R023 34TH STREET & 6TH AVENUE</td>
<td>00134052</td>
<td>00005005</td>
<td>00000348</td>
<td>00001112</td>
<td>00000649</td>
<td>00031531</td>
<td>00075040</td>
</tr>
<tr>
<td>12</td>
<td>R029 PARK PLACE</td>
<td>00121614</td>
<td>00004311</td>
<td>00000287</td>
<td>00000931</td>
<td>00000792</td>
<td>00025404</td>
<td>00065362</td>
</tr>
<tr>
<td>13</td>
<td>R047 42ND STREET & GRAND CENTRAL</td>
<td>00100742</td>
<td>00004273</td>
<td>00000185</td>
<td>00000704</td>
<td>00001241</td>
<td>00022808</td>
<td>00068216</td>
</tr>
</tbody>
</table>
MTA Fare Data Exploration
MTA Fare Data Exploration
MTA Fare Data Exploration
MTA Fare Data Exploration
Tools

• Desktop Applications:
 - Excel (see excelcharts.com)
 - Tableau
 - ...

• Grammars:
 - Vega-Lite

• Programming Frameworks
 - d3.js
 - Observable Plot, plot.ly, deck.gl
 - ...

• Tradeoffs
 - Speed
 - Customization
 - Understanding
 - Dissemination
Programming

- "Programming is blindly manipulating symbols." - B. Victor
- "Code is often the best tool we have because it is the most general tool we have; code has almost unlimited expressiveness" - M. Bostock

- You will write code in this class
 - Your assignments will involve code
 - Your project will involve code

- JavaScript is the language of the Web
 - Somewhat forgiving, not always the easiest to debug
 - Lots of references out there
 - A quickly-changing environment of frameworks
What languages do we use on the Web?
Languages of the Web

• HTML
• CSS
• SVG
• JavaScript
 - Versions of Javascript: ES6, ES2015, ES2020…
 - Specific frameworks: react, jQuery, bootstrap, D3
Web Programming Tools

• Basic: Text editor and Modern Browser
• Developer Tools: Built in to browsers (e.g. Chrome Developer Tools)
• Web Environments: Observable, CodePen, JSFiddle, etc.
• IDEs: WebStorm, VSCode