
Data Visualization (CSCI 627/490)

Review

Dr. David Koop

D. Koop, CSCI 627/490, Fall 2020

Streamlines & Variants
• Steady vs. Unsteady flows
- In unsteady flows, the vector field changes over time

• Variants: Pathlines and Streaklines

© Weiskopf/Machiraju/Möller 16

Characteristic Lines

• Comparison of pathlines, streaklines, and
streamlines

• Pathlines, streaklines, and streamlines are
identical for steady flows

t0 t1 t2 t3

pathline streakline streamline for t3

2D. Koop, CSCI 627/490, Fall 2020

[T. Möller]

Streamlines & Variants
• Steady vs. Unsteady flows
- In unsteady flows, the vector field changes over time

• Variants: Pathlines and Streaklines

© Weiskopf/Machiraju/Möller 16

Characteristic Lines

• Comparison of pathlines, streaklines, and
streamlines

• Pathlines, streaklines, and streamlines are
identical for steady flows

t0 t1 t2 t3

pathline streakline streamline for t3

2D. Koop, CSCI 627/490, Fall 2020

All are identical in steady flows!
[T. Möller]

Streamline Variants

3D. Koop, CSCI 627/490, Fall 2020

© Weiskopf/Machiraju/Möller 30

Mapping Methods Based on
Particle Tracing

• Stream ribbons
– Trace two close-by particles
– Keep distance constant

© Weiskopf/Machiraju/Möller 31

Mapping Methods Based on
Particle Tracing

• Stream tubes
– Specify contour, e.g. triangle

or circle, and trace it through
the flow

Stream Ribbons [Weiskopf/Machiraju/Möller] Stream Tubes [Weiskopf/Machiraju/Möller]

Streaklines [NASA]

Fig. 7. A streak surface in the Ellipsoid dataset as depicted in our interactive visualization tool. The surfaces is seeded upstream of the ellipsoid
in the initial timestep and shows a prominent bubble that precedes the vortex formation. Top: Overview; a time line texture provides temporal
orientation. Bottom left: Surface textured with streak ribbons. Bottom right: Without texturing, spatial and temporal orientation on the surface is
lost.

Fig. 8. Evolution of a time surface in the Ellipsoid dataset. The surface is seeded on rectangle located immediately downstream from the ellipsoid
near the temporal beginning of the dataset and illustrates parts of the flow that remain close to the ellipsoid and twist to envelop the nascent vortex
system as it forms. A two-dimensional color map helps identify distinct parts of the surface despite heavy overlap.

Fig. 9. Left images: Evolution of a time surface in the delta wing dataset, seeded parallel to the wing tip. The texture provides radial distance stripes
to the wing tip for spatial orientation. Right image: Despite numerical difficulties, the surface mesh remains well-conditioned.

Streak Surfaces [Krishnan et al., 2009]

Figure 14: LIC image of the ground surface at time
step 200. The bottom 2 images show increasingly
close-up views of the field.

sualization. We will therefore also investigate the use of a

graphics-enhanced PC cluster as a dedicated visualization

server. The question then is whether our I/O strategies can

keep up with hardware accelerated rendering.

Acknowledgments
This work has been sponsored in part by the U.S. National

Science Foundation under contracts ACI 9983641 (PECASE

award), ACI 0325934 (ITR), ACI 0222991, and CMS-9980063;

and Department of Energy under Memorandum Agreements

No. DE-FC02-01ER41202 (SciDAC) and No. B523578 (ASCI

VIEWS). Pittsburgh Supercomputing Center (PSC) pro-

vided time on their parallel computers through AAB grant

BCS020001P. The authors are grateful to Rajeev Thakur

for his technical advice on using MPI-IO, Jacobo Bielak and

Omar Chattas for providing the earthquake simulation data,

and especially Paul Krystosek for his assistance on setting

up the needed system support at PSC.

8. REFERENCES
[1] J. Ahrens and J. Painter. E�cient sort-last rendering

using compression-based image compositing. In

Proceedings of the 2nd Eurographics Workshop on
Parallel Graphics and Visualization, pages 145–151,

1998.

[2] H. Bao, J. Bielak, O. Ghattas, L. F. Kallivokas, D. R.

O’Hallaron, J. R. Shewchuk, and J. Xu. Large-scale

simulation of elastic wave propagation in

heterogeneous media on parallel computers. Computer
Methods in Applied Mechanics and Engineering,
152(1–2):85–102, Jan. 1998.

[3] H. Bao, J. Bielak, O. Ghattas, D. R. O’Hallaron, L. F.

Kallivokas, J. R. Shewchuk, and J. Xu. Earthquake

ground motion modeling on parallel computers. In

Supercomputing ’96, Pittsburgh, Pennsylvania, Nov.

1996.

[4] W. Bethel, B. Tierney, J. Lee, D. Gunter, and S. Lau.

Using high-speed WANs and network data caches to

enable remote and distributed visualization. In

Proceedings of Supercomputing 2C00, November 2000.

[5] B. Cabral and L. Leedom. Imaging vector fields using

line integral convolution. In SIGGRAPH ’93
Conference Proceedings, pages 263–270, August 1993.

[6] L. Chen, I. Fujishiro, and K. Nakajima. Parallel

performance optimization of large-scale unstructured

data visualization for the earth simulator. In

Proceedings of the Fourth Eurographics Workshop on
Parallel Graphics and Visualization, pages 133–140,

2002.

[7] W. Daniel, E. Gordon, and E. Thomas. A

texture-based framework for spacetime-coherent

visualization of time-dependent vector fields. In

Proceedings of IEEE Visualization 2003 Conference,
pages 107–114, 2003.

[8] W. Gropp, E. Lusk, and R. Thakur. Using
MPI-2–Advanced Features of the Message Passing
Interface. MIT Press, 1999.

Line Integral Convolution
• Goal: provide a global view of a steady

vector field while avoiding issues with clutter,
seeds, etc.

• Remember convolution?
• Start with random noise texture
• Smear according to the vector field
• Need structured data

4D. Koop, CSCI 627/490, Fall 2020

© Weiskopf/Machiraju/Möller 42

Line Integral Convolution

Input noise T

Final image

Vector field

Convolution

L-L

kernel
k(s)

Particle tracing

© Weiskopf/Machiraju/Möller 42

Line Integral Convolution

Input noise T

Final image

Vector field

Convolution

L-L

kernel
k(s)

Particle tracing

© Weiskopf/Machiraju/Möller 42

Line Integral Convolution

Input noise T

Final image

Vector field

Convolution

L-L

kernel
k(s)

Particle tracing

* =

[Weiskopf/Machiraju/Möller]

Topology: Find Critical Points

5

[Wikipedia]
D. Koop, CSCI 627/490, Fall 2020

http://commons.wikimedia.org/wiki/File:Topographic_map_example.png
http://commons.wikimedia.org/wiki/File:Topographic_map_example.png

Topology: Find Critical Points

5

[Wikipedia]
D. Koop, CSCI 627/490, Fall 2020

http://commons.wikimedia.org/wiki/File:Topographic_map_example.png
http://commons.wikimedia.org/wiki/File:Topographic_map_example.png

Key development in topological data analysis (TDA)

1. Abstraction of the data: topological structures and their combinatorial
representations
2. Seperate features from noise: persistent homology

2D Scalar function

Reeb Graph/Contour Tree/Merge Tree

Morse-Smale Complex

Two Types of Topological StructuresScalar Field Topology

6

[via Levine]
D. Koop, CSCI 627/490, Fall 2020

Vector Field Topology
• Instead of “guessing” correct seed points for streamlines to understand the

field, try to identify structure (topology) of the field

7

[M. Henle]
D. Koop, CSCI 627/490, Fall 2020

Text Visualization: Tag Cloud
• Derived data: number of occurrences of words
• Channel: Font size
• Potential problem: Amount of ink may not be proportional to occurrences…

8

[Scray, CC-BY-SA-3.0]
D. Koop, CSCI 627/490, Fall 2020

Many Eyes word tree provides a choice among three options. The
branches can be arranged alphabetically (making it easy to scan for
particular words), by frequency (so the largest branches are first), or
by order of first occurrence in the text (the default option, since it
often produces a tree that best reflects the underlying text.) As with
clicking, when the user switches between two of these options the
word tree animates smoothly to help make clear what is changing.

As the user interacts with the tree—she may click on a branch,
recenter the tree, choose a different search term, etc.—the word tree
tracks of the sequence of actions just as a web browser does. This
allows the user to click on browser-like “back” and “forward”
buttons to review her previous steps in the visualization. This feature
helps users quickly switch between desired states for comparisons
and easily retreat from navigational dead ends.

As with all visualizations on Many Eyes, users can set particular
states and make comments. In doing so, they may wish to point to
particular items on the visualizations. To support this, users can set
the visualization to a “highlighter mode,” where clicking on words
will not cause a recentering of the tree, but instead highlight words
with translucent brown circles. Thus a user can leave a comment
like, “Note the position of God in this context,” and highlight “God”
so that other readers do not need to search for where it occurs.

Finally, the word tree does not provide any sort of “overview” of
the text nor does it present an initial search term for viewers to start
from. In this way, the visualization resembles an information
retrieval interface, driven by a search term rather than starting with
an overview. The reason for this design choice is that without a
search term, there is no obvious entry point—several alternatives
with suffix-tree-like beginnings were attempted, but seemed busy
and uninformative. A future version might try to automatically find a
good starting point: perhaps a tree centered on the most frequent
terms, a tree that shows the highest number of separate branches, or a
tree with the deepest branches. Having a default start point might
solve certain problems. For instance in the current system, unless the
creator of the word tree actively sets an initial search term, the
visualization will look blank to subsequent viewers on the site.
Another limitation of not having an overview is that users need to
know a bit about the underlying data to make sure that they look for
words that appear in the text. Many other interactive features are

possible. We discuss these in the sections on user feedback and
future work.

4 IMPLEMENTATION CONSIDERATIONS
The current implementation of the Word Tree on Many Eyes is a

Java applet, written using JDK 1.4. It is engineered to handle texts
with up to 1,000,000 tokens. (In addition to being a pleasingly round
figure, this is the approximate number of tokens in the King James
Bible, probably one of the most-visualized text on Many Eyes.) In
this section we discuss some of the implementation details and
decisions that allow the applet to scale—both visually and in
performance—to a million tokens.

The data structure behind the word tree—that is, the hierarchical
structure of the context words—is well-known to computer scientists
as a “suffix tree.” In our context the practical bound on performance
is memory rather than CPU cycles: constructing the tree is fast (at
least for a million-token text) as long as there is sufficient memory.
Java applets often have limited heap space, as low as 64MB.
Although this may seem more than adequate for holding a million-
node tree, it is actually a serious constraint due to the memory-
intensive nature of Java objects. To get around the problem, we do
not create a suffix tree for the entire text, but rather create the suffix
tree on the fly, a new one for each phrase typed in. In practice this
saves a significant amount of memory; for instance, in the King
James Bible (about 1,000,000 tokens), the word tree for “the” has
only about 64,000 leaves. This complicates effects such as animated
transitions, but permits the feeling of instant feedback we desire.

In addition to the data-level scaling, two issues arise in scaling
the tree visually. The first is that the total number of branches is huge
compared to the screen size. When there are tens of thousands of
leaves to a tree, there is no sensible way of displaying all of these on
a screen that is a few hundred pixels high. We resolve this issue by a
standard “level of detail” method. As the geometry of the tree is
defined, when it is determined that a subtree takes up less than 3
pixels of vertical space, we do not draw the entire subtree. Instead,
we find the deepest branch, and draw that. By doing so, we show the
overall shape of the tree, but do not draw more than necessary. This
simplifies the display and also keeps the number of rendered objects
low enough that smooth animated transitions are possible.

Fig 3. Sequence showing some of the interaction options in the word tree. In figure A, the user has typed the word “if” in Romeo and Juliet. In B,
the user has clicked on “blind,” which appears in one of the branches under “if.” This causes the visualization to recenter to the longer phrase “if
love be blind.” In C, the user Control-clicks on “blind,” which causes the visualization to recenter to blind by itself, revealing that there are
additional phrases after this term.

Word Tree

9

[Wattenberg & Viegas, 2007]
D. Koop, CSCI 627/490, Fall 2020

To appear in IEEE Transactions on Visualization and Computer Graphics.

siderable design challenges and open questions remained. Close read-
ing covers a broad range of tasks, encompasses varying styles of anal-
ysis, allows many different points of entry, and accepts an extensive
range of sometimes radically divergent interpretations. In addition,
our collaborators admitted resistance to integrating technology into
their close reading. Thus, we also had to cultivate their trust, com-
mitment, and enthusiasm.

A highly collaborative and exploratory design process proved to
be critical in helping us navigate these challenges. We began by dis-
cussing the poets’ experience with, and the results of, their previous
visualization research. Next, we employed a number of different tech-
niques in an attempt to clarify our point of entry. The first technique
was an observation of a pair of close readings between our two primary
collaborators, starting with the poem “Prayer” by Jorie Graham, fol-
lowed by a close reading of “Night” by Louise Bogan. Close readings
can be performed internally by one poet or externally as a conversation
between two or more people. Throughout many of our future conver-
sations, our collaborators returned to “Night” and other poems and
picked up close readings in order to illustrate particular concepts —
such as how sonic patterns can reinforce or undercut semantic mean-
ing. Other techniques for clarifying our entry point included studying
an annotated poem from one of our collaborators, giving our collabora-
tors a list of potentially interesting sonic devices that could be detected
computationally and having them compile a list articulating the vari-
ous sonic features that they were interested in exploring, and attending
public poetry readings to better understand the nature and practices of
the poets and poetry scholars.

Based on these activities, we ideated on a range of design possi-
bilities to pursue, which we then developed into a set of technology
probes [32] — we discuss details of these probes in Section 4. The
probes were successful both in engaging our collaborators and also in
helping us better understand the problem space. We iteratively refined
the probes over the course of several months based on extensive user
feedback, both casual and via formal interviews, from our primary col-
laborators as well as our extended network of poets and poetry schol-
ars. The incremental steps and the adjustments we made in response
to their feedback and critiques helped the poets become familiar with
the technology and also resulted in an interface that reflected their in-
terests, aesthetics, and values. In addition, because our meetings were
highly conversational and interactive, the poets actually generated po-
etic insights in our meetings on the fly, simply in response to develop-
ing and imagining the tool. This gave them confidence that the work,
and eventually the visualization tool, would be useful to them.

Results from the technology probes formed our initial design ideas
for the tool Poemage. These ideas were implemented into an initial
prototype and presented to our primary collaborators. Based on casual
feedback, we refined and improved existing features and added new
features, the details of which are provided in Section 7.

4 TECHNOLOGY PROBES

The technology probes were implemented in Processing [27] and com-
bined into a single, multi-tabbed interface, shown in Figure 2. Users
would load a poem of their choosing into the interface, which dis-
played the text of the poem, along with information about selected sets
of sonic patterns. Following an initial development period in which
versions of the probes were presented for informal feedback to our
primary collaborators, the technology probes were deployed, along
with written documentation, to four of our collaborators. The collab-
orators were given approximately one month to experiment with the
probes, after which formal interviews were conducted. Interviews in-
cluded brief observations of our collaborators using the tool, followed
by questions surrounding approach, capabilities, and general usability.
Interviews were recorded and transcribed, and one observation period
was screen captured.

The initial goal of the technology probes was to explore the many
different aspects of sound within a poem, as well as the role that sonic
analysis plays in close reading. Using these probes, we experimented
broadly in order to better understand, and to help our collaborators bet-
ter understand, what kinds of sonic relationship they were interested

Fig. 2. Interface for the first set of technology probes.

in exploring in a poem. What we found led us to develop a broader
understanding of rhyme, which we discuss further in Section 5. Fur-
thermore, these initial probes indicated to us that our collaborators
were not interested in exploring individual sonic relationships, but in-
stead they sought to understand how different sonic patterns interact
and evolve across a poem. We thus developed a second set of tech-
nology probes to explore this notion of sonic topology. These investi-
gations were instrumental to the development of our data abstraction,
presented in Section 6.

The technology probes also allowed us to establish a common vo-
cabulary with our collaborators; to focus on understanding how to cap-
ture data from a poem, as opposed to how to visualize it; and to define
the space of what we could computationally detect in a poem. Over-
all, the probes helped us create an experimental and playful research
environment that we maintained for the duration of the collaboration.

5 POEMS AND SOUND

Poets and scholars see poems as living and relational, their literary
features interacting not only with each other but also with us as read-
ers. In close reading, a poetry scholar carefully attends directly to
specific texts, tracing the interactions among such literary features as
rhyme and meter, sound, figures, and syntax, while also considering
how a given poem explicitly or implicitly converses with other poems
in the literary canon. Although not viewed as an established technique
for writing poetry, the experience of close reading often leads to the
generation of new poems, and many poets do engage it as a prod to
composition.

As a broad, literary device, sound provides poets with a rich source
of play and can deeply influence the interpretation of the poem. Be-
cause of its emotional power and the way it works directly on the body
of the reader of the poem, sound is an important source of poetic po-
tency and can be used to reinforce or to undercut meaning conveyed
via other poetic devices. In addition, sonic ambiguities — for example,
in homographs like wind and bow as well as in words with multiple
pronunciations — also help generate multiple possible interpretations
of the same poem. Furthermore, unlike many devices which may or
may not be present at a particular moment or even at all in a given
poem, sound is arguably pervasive in every poem at all levels.

Our collaborators consider a broad range of sonic and sound-related
devices in their close readings of poems: from traditional types of
rhyme such as rhyme/sublime and picky/tricky; to patterns involving
the spellings of words, including eye rhymes (cough/bough) and ana-
grams (desserts/stressed), which may or may not relate sonically; to
patterns surrounding the physiological production of speech sounds,
such as the location of the tongue in relation to the lips. In this de-
sign study, we refer to all sonic and linguistic devices as rhyme [40], a
broad definition embraced by our collaborators.

Our collaborators are particularly interested in the conceptual
metaphor of a poem as a flow [36]. By approaching a poem, for the
purposes of visualization, as a fluid moving via its linguistic devices
and figures through a defined space, the flow metaphor captures three

3

Poetry Analysis

10

[N. McCurdy et al., 2015]
D. Koop, CSCI 627/490, Fall 2020

Figure 1: A PTC revealing the differences in drug prevalence amongst the circuits.

ally similar to the connected lists view of Jigsaw [28], however PTCs
use size-weighting of words in the display.

Shneiderman and Aris [26] have previously explored the contents
of a faceted legal document databases using matrix-based visualiza-
tions to reveal the number and type of data items matching each
facet value. Our work differs in that we seek to aggregate and vi-
sualize the contents of the data items, not only their presence or
absence. A matrix visualization approach would not be appropri-
ate as our word-selection method, described later, seeks to maximize
the differences between corpus subsets. Rather than the single ver-
tical column of words that a words ⇥ facets matrix would contain,
our approach allows the entire space to be filled with a wide vari-
ety of words. VisGets, or visualization widgets, have been used to
explore faceted collections of web-based streaming data [5]. Facets
are filtered using scented visual widgets [34] appropriate for the data
type, providing both an overview of the available data items and a
method to drill down along several facets simultaneously. A tag
cloud VisGet consists of a traditional tag cloud summarizing all avail-
able documents — text differentiation along a facet is only achieved
through interactive brushing. The goal of VisGets is to provide coor-
dinated overview and navigation tools in a faceted information space,
where our work is customized to providing meaningful differentiat-
ing overviews across facets within large amounts of textual data.

Finally, the Authorlines visualization [31] provides an overview of
individual messages using arrays of circles, sized according to mes-
sage length. We borrow this visual encoding and extend it to small
multiples of bar charts in the document browser coordinated view,
linked to the PTC.

2.2 U.S. Circuit Court Decisions

“Jargon serves lawyers as a bond of union: it serves them,
at every word, to remind them of that common interest,
by which they are made friends to one another, enemies to
the rest of mankind.” Jeremy Bentham [2, 292]

Figure 2: US Court Circuits are multi-state regions.

The words of the iconoclast Bentham were not the last written on
the topic of legal language. Law and language meet in many aca-
demic ways: forensic linguists help solve crimes, judges make se-
mantic rulings on unclear contract wording, and social scholars take
a high-level view, studying the language of lawyers and judges [29].
By analyzing the written decisions of the US Circuit Courts of Ap-
peal, we hope to shed light on thematic and potentially linguistic dif-
ferences between subsets of the data. Differences in word usage be-
tween courts has been previously studied using legal databases as a
source for historical lexicography [8]. However, in that work, text-
based searches provided information on particular words of interest.
Through text mining and visualization, we select words of interest
and provide a broad overview as an entry point to deeper analysis.

The US Circuit Courts of Appeal are made up of 12 regionally-
based court divisions (numbered First through Eleventh, plus the DC
Circuit) and the Federal Circuit, which hears cases of national rele-
vance, such as patent-related appeals (see Fig. 2). This data contains
of 628,000 court decisions, each labeled by circuit. The judgments
are faceted, because they can be organized along several dimensions,
such as the lead authoring judge, the decision length, the date of the
decision, or whether the lower court was upheld or overturned. For

Comparing Corpora: Parallel Tag Clouds

11

[Collins et al., 2009]
D. Koop, CSCI 627/490, Fall 2020

Project
• Presentations on Thursday:
- Turn in code for the visualization to Blackboard by Dec. 2 at 11:59pm
- 5 minutes per presenter/group
- Showcase the visualization (not slides)

• Brief introduction to your data and questions
• Discuss design decisions
• Demonstrate the interactive features of your project

- For groups, one person should drive but both can help present
• Have until Dec. 6 to turn in final code and report
• Note two assignments on Blackboard (one for presentation, one for report)

12D. Koop, CSCI 627/490, Fall 2020

Final Exam
• December 10, 2020, 10-11:50am
• Covers all topics but emphasizes second half of the course
• Similar format as Midterm (multiple choice, free response)
• 627 Students will have a extra questions related to the research papers
• Questions?

13D. Koop, CSCI 627/490, Fall 2020

http://faculty.cs.niu.edu/~dakoop/cs627-2020fa/final.html
http://faculty.cs.niu.edu/~dakoop/cs627-2020fa/final.html

14

“Computer-based visualization systems provide visual
representations of datasets designed to help people

carry out tasks more effectively.”

— T. Munzner

D. Koop, CSCI 627/490, Fall 2020

Tables

Attributes (columns)

Items
(rows)

Cell containing value

Networks

Link

Node
(item)

Trees

Fields (Continuous)

Attributes (columns)

Value in cell

Cell

Multidimensional Table

Value in cell

Grid of positions

Geometry (Spatial)

Position

Dataset Types
Dataset Types

15

[Munzner (ill. Maguire), 2014]
D. Koop, CSCI 627/490, Fall 2020

+ Sets
+ Text

Tasks

16

[Munzner (ill. Maguire), 2014]
D. Koop, CSCI 627/490, Fall 2020

Trends

Actions

Analyze

Search

Query

Why?

All Data

Outliers Features

Attributes

One Many
Distribution Dependency Correlation Similarity

Network Data

Spatial Data
Shape

Topology

Paths

Extremes

Consume
Present EnjoyDiscover

Produce
Annotate Record Derive

Identify Compare Summarize

tag

Target known Target unknown

Location
known
Location
unknown

Lookup

Locate

Browse

Explore

Targets

Why?

How?

What?

How do we do visualization?

17

[Munzner (ill. Maguire), 2014]
D. Koop, CSCI 627/490, Fall 2020

How?

Encode Manipulate Facet Reduce

Arrange

Map

Change

Select

Navigate

Express Separate

Order Align

Use

Juxtapose

Partition

Superimpose

Filter

Aggregate

Embed

Color

Motion

Size, Angle, Curvature, ...

Hue Saturation Luminance

Shape

Direction, Rate, Frequency, ...

from categorical and ordered
attributes

Why?

How?

What?

How?

Encode Manipulate Facet Reduce

Arrange

Map

Change

Select

Navigate

Express Separate

Order Align

Use

Juxtapose

Partition

Superimpose

Filter

Aggregate

Embed

Color

Motion

Size, Angle, Curvature, ...

Hue Saturation Luminance

Shape

Direction, Rate, Frequency, ...

from categorical and ordered
attributes

Why?

How?

What?

How?

Encode Manipulate Facet Reduce

Arrange

Map

Change

Select

Navigate

Express Separate

Order Align

Use

Juxtapose

Partition

Superimpose

Filter

Aggregate

Embed

Color

Motion

Size, Angle, Curvature, ...

Hue Saturation Luminance

Shape

Direction, Rate, Frequency, ...

from categorical and ordered
attributes

Why?

How?

What?

How?

Encode Manipulate Facet Reduce

Arrange

Map

Change

Select

Navigate

Express Separate

Order Align

Use

Juxtapose

Partition

Superimpose

Filter

Aggregate

Embed

Color

Motion

Size, Angle, Curvature, ...

Hue Saturation Luminance

Shape

Direction, Rate, Frequency, ...

from categorical and ordered
attributes

Why?

How?

What?

Share ! " #Bubbles $ 

Color

Select

Size

Zoom
20152015

30

40

50

60

70

80

ye
ar

s

Li
fe

 e
xp

ec
ta

nc
y
▼

1800 1900 2000

World Regions

Search...

Afghanistan

Albania

Algeria

Andorra

Angola

Antigua and Barbuda

Argentina

Armenia

Australia

Austria

Azerbaijan

Bahamas

Bahrain

Bangladesh

Barbados

Belarus

Population, total

100100%%

OPTIONS EXPAND PRESENT

English ▼ FACTS TEACH ABOUT ►HOW TO USE

Visual Encoding

18

[Gapminder, Wealth & Health of Nations]
D. Koop, CSCI 627/490, Fall 2020

https://www.gapminder.org/tools/#_chart-type=bubbles
https://www.gapminder.org/tools/#_chart-type=bubbles

Visual Encoding
• How do we encode data visually?
- Marks are the basic graphical elements in a visualization
- Channels are ways to control the appearance of the marks

• Marks classified by dimensionality:

• Also can have surfaces, volumes
• Think of marks as a mathematical definition, or if familiar with tools like Adobe

19D. Koop, CSCI 627/490, Fall 2020

Points Lines Areas

Magnitude Channels: Ordered Attributes Identity Channels: Categorical Attributes

Spatial region

Color hue

Motion

Shape

Position on common scale

Position on unaligned scale

Length (1D size)

Tilt/angle

Area (2D size)

Depth (3D position)

Color luminance

Color saturation

Curvature

Volume (3D size)

Channels: Expressiveness Types and E!ectiveness Ranks

Channels by Effectiveness

20

[Munzner (ill. Maguire), 2014]
D. Koop, CSCI 627/490, Fall 2020

Domain situation
You misunderstood their needs

You’re showing them the wrong thing

Visual encoding/interaction idiom
The way you show it doesn’t work

Algorithm
Your code is too slow

Data/task abstraction

Design

21

[Munzner (ill. Maguire), 2014]
D. Koop, CSCI 627/490, Fall 2020

Design Guidelines
• Tufte:
- Show data variation, not design variation
- Clear, detailed, and thorough labeling and appropriate scales
- Size of the graphic effect should be directly proportional to the numerical

quantities ("lie factor")

22D. Koop, CSCI 627/490, Fall 2020

Design Analysis: What is Wrong Here?

23D. Koop, CSCI 627/490, Fall 2020

D3
• http://d3js.org/
• Supports data as a core piece of Web elements
- Correspondence between data and DOM elements
- Dealing with changing data (joins, enter/update/exit)
- Data drives the marks and channels

• Selections (similar to CSS) that allow greater manipulation
• Integrated layout algorithms, axes calculations, etc.
• Focus on interaction support
- Straightforward support for transitions
- Event handling support for user-initiated changes

24D. Koop, CSCI 627/490, Fall 2020

http://d3js.org/
http://d3js.org/

Arrange Tables

Express Values

Separate, Order, Align Regions

Axis Orientation

Layout Density

Dense Space-Filling

Separate Order Align

1 Key 2 Keys 3 Keys Many Keys
List Recursive SubdivisionVolumeMatrix

Rectilinear Parallel Radial

Arrange Tables

25

[Munzner (ill. Maguire), 2014]
D. Koop, CSCI 627/490, Fall 2020

Barbecue
Seafood

Mexican Food
Italian

Pub Food
Hawaiian

Donuts
Bakery
Diners

Breakfast/Brunch
Steakhouse

Chinese

Categorical Map

26D. Koop, CSCI 627/490, Fall 2020

By Population
Density

Areas with less
than three people
per square mile.

*

COUNTY
WON BY . . .

Urban

Suburban

Rural

Unpopulated*

BUSH
KERRY

6JKU�OCR�TGOQXGU�OQUVN[�WPKPJCDKVGF�
CTGCU��TGXGCNKPI�/T��$WUJ�U�UWDWTDCP�

CPF�TWTCN�UWRRQTV�KP�VJG�'CUV�CPF�5QWVJ��

Map with Two Variables

27

[M. Ericson, New York Times]
D. Koop, CSCI 627/490, Fall 2020

Rectangular Cartogram

28

[New York Times]
D. Koop, CSCI 627/490, Fall 2020

http://www.apple.com
http://www.apple.com

Arrange Networks and Trees

Node–Link Diagrams

Enclosure

Adjacency Matrix

TREESNETWORKS

Connection Marks

TREESNETWORKS

Derived Table

TREESNETWORKS

Containment Marks

Arrange Networks and Trees

29

[Munzner (ill. Maguire), 2014]
D. Koop, CSCI 627/490, Fall 2020

Quantifying the Space-Efficiency
of 2D Graphical Representations of Trees

Michael J. McGuffin and Jean-Marc Robert

Abstract— A mathematical evaluation and comparison of the space-efficiency of various 2D graphical representations of tree struc-
tures is presented. As part of the evaluation, a novel metric called the mean area exponent is introduced that quantifies the distribution
of area across nodes in a tree representation, and that can be applied to a broad range of different representations of trees. Several
representations are analyzed and compared by calculating their mean area exponent as well as the area they allocate to nodes and
labels. Our analysis inspires a set of design guidelines as well as a few novel tree representations that are also presented.

Index Terms—Tree visualization, graph drawing, efficiency metrics.

1 INTRODUCTION

A variety of graphical representations are available for depicting tree
structures (Figure 1), from “classical” node-link diagrams [23, 7], to
treemaps [14, 26, 6, 30], concentric circles [2, 27, 31], and many others
(see [13] for a survey). A major consideration when designing, eval-
uating, or comparing such representations is how efficiently they use
screen space to show information about the tree. To date, however, it is
unclear how to go about evaluating space-efficiency in a way that can
be applied to the large variety of tree representations and that enables a
fair comparison of them. Space-efficiency might be described in terms
of area, aspect ratio, label size, or other measures. However, there is no
accepted standard set of metrics for evaluating the space-efficiency of
tree representations, and it is unclear what approach would be general
enough to be applied to all the forms in Figure 1.

Fig. 1. Several basic kinds of tree representations, here each showing
a complete 3-ary tree of depth 3 as an example. All representations
are drawn to just fit within a 1×1 unit square. A: classical (layered)
node-link [23, 7]. B: a variation on A, where the shape of nodes better
accommodates long labels. C: icicle. D: radial [10, 9]. E: concentric
circles [2, 27, 31]. F: nested circles, similar to [5, 28]. G: treemap [14,
26]. H: indented outline, sometimes called a “tree list”, and common in
file browsers such as Microsoft Explorer.

• Michael J. McGuffin is with École de technologie supérieure, Montréal,
Canada, E-mail: michael.mcguffin@etsmtl.ca.

• Jean-Marc Robert is with École de technologie supérieure, Montréal,
Canada, E-mail: jean-marc.robert@etsmtl.ca.

One basic metric of space-efficiency is the total area of a representa-
tion. Assuming the representation is bound within a 1×1 square, both
icicle diagrams and treemaps (Figures 1C and 1G) have a total area of
1, and are equally efficient (and both optimal) according to this met-
ric. Likewise, concentric circles and nested circles (Figures 1E and 1F)
both have a total area of π/4 ≈ 0.785 (the area of a circle of diameter
1), and are also equally efficient according to the metric of total area.
However, experience suggests that the representations within each of
these pairs do not scale equally well with larger, deeper trees. This
article shows that there are finer ways of distinguishing efficiency, i.e.
that there is more to space-efficiency than total area.

Treemaps are often described as optimally space-efficient, not just
because they have a total area of 1, but also because they allow for
what we call a weighted partitioning of the area. Nodes can be allo-
cated more or less area, depending on some attribute such as file size,
population, or number of species, and furthermore this weighted par-
titioning can be done without reducing the total area used. These are
indeed desirable properties, however they are not unique to treemaps.
Figure 2 shows that icicle diagrams also allow for a weighted parti-
tioning of area, and incidentally have no need for margins between the
borders of nodes as treemaps often do.

Furthermore, although a weighted partitioning is useful for showing
the relative sizes of nodes in Figures 2A and 2C, an unfortunate side
effect is that labels on small nodes are very difficult to read. If users
are more interested in seeing the identity of all nodes rather than their
relative sizes, an alternative approach would be to give equal weight to
each leaf node (Figures 2B and 2D), improving the overall legibility
of nodes. (Although not shown in the figure, the labels could also be
augmented to numerically show the “size” attribute of each node.) In
terms of label size or legibility, Figures 2B and 2D are clearly prefer-
able, but even they still result in much whitespace around certain la-
bels, suggesting that a more space-efficient (in terms of label size)
representation might be possible.

Clearly, it would be useful to have some way to quantitatively dis-
tinguish the four possibilities in Figure 2, e.g. in terms of their respec-
tive scalability and the sizes of their labels. If total area is the only
metric of space-efficiency used, and “optimal” space-efficiency is de-
fined as a total area of 1 (possibly partitioned by weight), then we
have no way of distinguishing these four cases. If alternative metrics
of space-efficiency are used, such as those investigated in this article,
it is not clear initially if treemaps, or any other representation, will still
turn out to be optimal with respect to such alternative metrics.

This article identifies several metrics related to space-efficiency,
and performs the first rigorous analysis and comparison of the space-
efficiency of most of the basic tree representation styles in the infor-
mation visualization literature, including all those in Figure 1. Some
of the key ideas involved are (1) the use of a metric of the size of the
smallest nodes (i.e. the leaf nodes) in the representation, in addition to
a metric of total area; (2) analyzing the area of labels on the nodes,
which implicitly takes into account both the size and aspect ratio of
the nodes, measuring how much “useful” area they contain; and (3)
analyzing how these metrics behave asymptotically, as the tree grows

Tree Visualizations

30

[McGuffin and Robert, 2010]
D. Koop, CSCI 627/490, Fall 2020

Node
Link
Tree
Layout
12,870

Radial
Tree
Layout
12,348

Circle
Packing
Layout
12,003

Circle
Layout
9,317

Tree
Map
Layout
9,191

Stacked
Area
Layout
9,121

Force
Directed
Layout
8,411

Layout
7,881

Axis
Layout
6,725

Icicle
Tree
Layout
4,864

Dendrogram
Layout
4,853

Bundled
Edge
Router
3,727

Indented
Tree
Layout
3,174Pie
Layout
2,728

Random
Layout
870

Labeler
9,956

Radial
Labeler
3,899

Stacked
Area
Labeler
3,202

Property
Encoder
4,138

Encoder
4,060

Color
Encoder
3,179

Size
Encoder
1,830

Shape
Encoder

Distortion
6,314

Bifocal
Distortion
4,461

Fisheye
Distortion
3,444

Fisheye
Tree
Filter
5,219

Visibility
Filter
3,509

Graph
Distance
Filter
3,165

Operator
List
5,248

Operator
Sequence
4,190

Operator
Switch
2,581

Operator
2,490

Sort
Operator
2,023

I
Operator
1,286

Data
20,544

Data
List
19,788

Node
Sprite
19,382

Scale
Binding
11,275

Data
Sprite
10,349

Tree
Builder
9,930

Edge
Renderer
5,569

Shape
Renderer
2,247

Arrow
Type
698
I
Renderer

Tree
7,147

Edge
Sprite
3,301

Tooltip
Control
8,435

Selection
Control
7,862

Pan
Zoom
Control
5,222

Hover
Control
4,896

Control
List
4,665

Click
Control
3,824

Expand
Control
2,832

Drag
Control
2,649

Anchor
Control
2,138

Control
1,353

I
Control
763

Legend
20,859

Legend
Range
10,530

Legend
Item
4,614

Axis
24,593

Cartesian
Axes
6,703

Axes
1,302

Axis
Grid
LineAxis
Label

Visualization
16,540

Data
Event
2,313
Selection
Event
1,880

Tooltip
Event
1,701
Visualization
Event
1,117Strings

22,026

Shapes
19,118

Maths
17,705

Displays
12,555

Color
Palette
6,367

Size
Palette
2,291

Shape
Palette
2,059

Palette
1,229

Geometry
10,993

Fibonacci
Heap
9,354

Heap
Node
1,233

Colors
10,001

Sparse
Matrix
3,366

Dense
Matrix
3,165

I
Matrix
2,815

Arrays
8,258

Dates
8,217

Sort
6,887

Stats
6,557

Property
5,559

Filter
2,324

Orientation
1,486

I
Value
Proxy
874I
Predicate
383

I
Evaluable
335

Interpolator
8,746

Matrix
Interpolator
2,202

Color
Interpolator
2,047

Rectangle
Interpolator
2,042

Array
Interpolator
1,983

Point
Interpolator
1,675

Object
Interpolator
1,629

Number
Interpolator
1,382

Date
Interpolator

Transitioner
19,975

Easing
17,010

Transition
9,201

Tween
6,006

Function
Sequence
5,842

Scheduler
5,593

Sequence
5,534

Parallel
5,176

Transition
Event
1,116

I
Schedulable
1,041

Pause
449

range
772

iff
748

gte
625

lte
619

gt
603

mul
603

sub
600

neq
599

lt
597

div
595

eq
594

add
593

mod
591

isa
461fn
460not
stddev

xor
354

variance
335

and
330

or
323

orderby
update
where
select

distinct
292
average
287
max
283

min
sum

count
277
_
264

Query
13,896

Expression
5,130

Comparison
5,103

Date
Util
4,141

String
Util
4,130

Arithmetic
3,891

Match
3,748

Composite
Expression
3,677

Expression
Iterator
3,617

Fn
3,240

Binary
Expression
2,893

If
2,732

IsA
2,039

Variance
1,876

Aggregate
Expression
1,616

Range
1,594

Not
1,554

Literal
1,214
Variable
1,124

Xor
1,101

And
1,027

Or
970

Distinct
933
Average
891
Maximum
843

Minimum
843

Sum
791

Count
781

Max
Flow
Min
Cut
7,840

Shortest
Paths
5,914

Link
Distance
5,731

Betweenness
Centrality
3,534

Spanning
Tree
3,416

Hierarchical
Cluster
6,714

Agglomerative
Cluster
3,938
Community
Structure
3,812

Merge
Edge
743

Aspect
Ratio
Banker
7,074

Time
Scale
5,833

Quantitative
Scale
4,839

Scale
4,268

Ordinal
Scale
3,770

Log
Scale
3,151

Quantile
Scale
2,435

I
Scale
Map
2,105

Scale
Type
1,821
Root
Scale
1,756

Linear
Scale
1,316

GraphML
Converter
9,800

Delimited
Text
Converter
4,294

JSON
Converter
2,220

I
Data
Converter
1,314Converters
721

Data
Source
3,331

Data
Util
3,322

Data
Schema
2,165
Data
Field

Data
Table
772
Data
Set

N
Body
Force
10,498

Simulation
9,983

Particle
2,822

Spring
2,213

Spring
Force
1,681
Gravity
Force

Drag
Force
1,082

I
Force

Text
Sprite
10,066

Dirty
Sprite
8,833

Rect
Sprite
3,623

Line
Sprite
1,732

Flare
Vis
4,116

Treemaps
• Containment marks instead of

connection marks
• Encodes some attribute of the items

as the size of the rectangles
• Not as easy to see the intermediate

rectangles
• Scalability: millions of leaf nodes and

links possible
• Need a layout algorithm!
- Slice-and-Dice vs. Squarify

- Viewing Hierarchy: Cushion Treemap

31

[Notebook]
D. Koop, CSCI 627/490, Fall 2020

https://observablehq.com/@dakoop/treemap
https://observablehq.com/@dakoop/treemap

Set Visualizations
• How to show the intersection of sets?

32

[Wikipedia]
D. Koop, CSCI 627/490, Fall 2020

Ireland
(island)

Ireland
(state)

object to path (ellipses and text); stroke to path (text only)

Untangling Euler Diagrams
Nathalie Henry Riche and Tim Dwyer

Fig. 1. Compact Rectangular Euler Diagram(left) and Euler Diagram with Duplications(right)

Abstract—In many common data analysis scenarios the data elements are logically grouped into sets. Venn and Euler style diagrams
are a common visual representation of such set membership where the data elements are represented by labels or glyphs and sets are
indicated by boundaries surrounding their members. Generating such diagrams automatically such that set regions do not intersect
unless the corresponding sets have a non-empty intersection is a difficult problem. Further, it may be impossible in some cases if
regions are required to be continuous and convex. Several approaches exist to draw such set regions using more complex shapes,
however, the resulting diagrams can be difficult to interpret. In this paper we present two novel approaches for simplifying a complex
collection of intersecting sets into a strict hierarchy that can be more easily automatically arranged and drawn (Figure 1). In the first
approach, we use compact rectangular shapes for drawing each set, attempting to improve the readability of the set intersections. In
the second approach, we avoid drawing intersecting set regions by duplicating elements belonging to multiple sets. We compared
both of our techniques to the traditional non-convex region technique using five readability tasks. Our results show that the compact
rectangular shapes technique was often preferred by experimental subjects even though the use of duplications dramatically improves
the accuracy and performance time for most of our tasks. In addition to general set representation our techniques are also applicable
to visualization of networks with intersecting clusters of nodes.

Index Terms—Information Visualization, Euler diagrams, Set Visualization, Graph Visualization

1 INTRODUCTION

Grouping data elements in sets (or clusters) is a common task in many
analysis scenarios. For example, when analyzing documents, lin-
guists often group words into semantic categories and topics. Simi-
larly, when analyzing social networks, sociologists group people into
communities and study their relationships. There is a wide range of
techniques to compute sets (or clusters) based on similarity data [22].
The topic of this paper is visual representations of data elements such
that their set membership is shown by region boundaries. When sets
intersect in complex ways, this type of representation becomes a chal-
lenging problem in information visualization.

The common visual representation of sets are Venn and Euler style
diagrams [14]. Venn diagrams represent all sets and their possible
intersections with overlapping elliptical shapes. Euler diagrams are a
relaxation of Venn diagrams in which the shapes corresponding to sets
are not required to overlap if their corresponding intersection is empty.
We identify two main challenges when drawing Euler diagrams:
1) Complexity of set regions. Gestalt theory [27] suggests that con-
vexity of regions plays a key role in perception [23] and in our ability

• Nathalie Riche is with Microsoft Research, E-mail: nath@microsoft.com.

• Tim Dwyer is with Microsoft Corp., E-mail: timdwyer@microsoft.com.

Manuscript received 31 March 2010; accepted 1 August 2010; posted online

24 October 2010; mailed on 16 October 2010.

For information on obtaining reprints of this article, please send

email to: tvcg@computer.org.

to complete shapes when partially occluded [28]. In addition, a few
experimental results show that Euler Diagrams with convex shapes are
more effective [3]. However, it can be a difficult challenge to draw Eu-
ler diagrams using convex set regions such that there are no overlaps
between regions where the corresponding sets have an empty intersec-
tion [33].
2) Drawing data elements. Most work on drawing Euler diagrams
focuses on classifying the sets in a particular dataset as drawable un-
der constraints such as elliptical or convex regions [6]. Such work is
rarely concerned with the problem of ensuring that sufficient space is
provided inside the regions to show item labels or glyphs. Although
there are applications (for example in biology) where only the sets
themselves and their intersections need be shown [24], visually repre-
senting the data elements belonging to the sets is important in more
general information visualization applications. For example, when
analyzing communities in social networks or when studying articles
grouped by keywords, it is important to identify which elements are in
multiple sets.

Recent work in Information Visualization has attempted to address
the challenge of drawing both sets and data elements. Simonetto et

al. [31] describe how to automatically generate drawings with sets
represented as non-convex regions as well as placing labelled ele-
ments inside these regions automatically. They demonstrate how their
technique can draw previously undrawable Euler Diagrams. A sec-
ond article from Collins et al. [7] presents a technique to generate
set boundaries given a fixed layout of their elements. This technique
can recompute boundaries around items involved in the same set effi-

27

Human Color Perception

33

[via M. Meyer]
D. Koop, CSCI 627/490, Fall 2020

Metamerism: same three responses == same color

Avoid Rainbow Colormaps!

34

[Borland & Taylor, 2007]
D. Koop, CSCI 627/490, Fall 2020

Binary

Diverging

Categorical

Sequential

Categorical

Categorical

Colormaps

35

[Munzner (ill. Maguire), 2014]
D. Koop, CSCI 627/490, Fall 2020

Manipulate

Change over Time

Select

Navigate

Item Reduction

Zoom

Pan/Translate

Constrained

Geometric or Semantic

Attribute Reduction

Slice

Cut

Project

Interaction Overview

36

[Munzner (ill. Maguire), 2014]
D. Koop, CSCI 627/490, Fall 2020

Manipulate

Change over Time

Select

Navigate

Item Reduction

Zoom

Pan/Translate

Constrained

Geometric or Semantic

Attribute Reduction

Slice

Cut

Project

Staged Animated Transitions

37

[M. Bostock]
D. Koop, CSCI 627/490, Fall 2020

http://bl.ocks.org/mbostock/3943967
http://bl.ocks.org/mbostock/3943967

Staged Animated Transitions

37

[M. Bostock]
D. Koop, CSCI 627/490, Fall 2020

http://bl.ocks.org/mbostock/3943967
http://bl.ocks.org/mbostock/3943967

Facet

Partition into Side-by-Side Views

Superimpose Layers

Juxtapose and Coordinate Multiple Side-by-Side Views

Share Data: All/Subset/None

Share Navigation

All Subset

Same

Multiform

Multiform,
Overview/

Detail

None

Redundant

No Linkage

Small Multiples

Overview/
Detail

Linked Highlighting

Multiple Views

38

Facet

Partition into Side-by-Side Views

Superimpose Layers

Juxtapose and Coordinate Multiple Side-by-Side Views

Share Data: All/Subset/None

Share Navigation

All Subset

Same

Multiform

Multiform,
Overview/

Detail

None

Redundant

No Linkage

Small Multiples

Overview/
Detail

Linked Highlighting

[Munzner (ill. Maguire), 2014]
D. Koop, CSCI 627/490, Fall 2020

Reduce

Filter

Aggregate

Embed

Reducing Items and Attributes

Filter
Items

Attributes

Aggregate

Items

Attributes

Filtering and Aggregation

39

[Munzner (ill. Maguire), 2014]
D. Koop, CSCI 627/490, Fall 2020

Embed

Elide Data

Superimpose Layer

Distort Geometry

Reduce

Filter

Aggregate

Embed

Focus+Content

40

[Munzner (ill. Maguire), 2014]
D. Koop, CSCI 627/490, Fall 2020

Fields in Visualization

41D. Koop, CSCI 627/490, Fall 2020

Scalar Fields Vector Fields Tensor Fields

Each point in space has an associated...

Vector Fields

s0

2

4
�00 �01 �02

�10 �11 �12

�20 �21 �22

3

5

2

4
v0

v1

v2

3

5

Fields in Visualization

41D. Koop, CSCI 627/490, Fall 2020

Scalar Fields Vector Fields Tensor Fields
(Order-1 Tensor Fields)(Order-0 Tensor Fields) (Order-2+)

Each point in space has an associated...

Scalar

Vector Fields

Vector Tensor

Isosurfacing

42

[J. Kniss, 2002]
D. Koop, CSCI 627/490, Fall 2020

Volume Rendering

43

[J. Kniss, 2002]
D. Koop, CSCI 627/490, Fall 2020

Vector Fields

44D. Koop, CSCI 627/490, Fall 2020

Streaklines in real life

© Weiskopf/Machiraju/Möller 30

Mapping Methods Based on
Particle Tracing

• Stream ribbons
– Trace two close-by particles
– Keep distance constant

© Weiskopf/Machiraju/Möller 31

Mapping Methods Based on
Particle Tracing

• Stream tubes
– Specify contour, e.g. triangle

or circle, and trace it through
the flow Stream Ribbons [Weiskopf/Machiraju/Möller]

Stream Tubes [Weiskopf/Machiraju/Möller]Streaklines [NASA]

45

The purpose of computing is about insight, not numbers

– R. W. Hamming

D. Koop, CSCI 627/490, Fall 2020

46

The purpose of visualization is about insight, not pictures

– Card, Mackinlay, Schneiderman

D. Koop, CSCI 627/490, Fall 2020

47

Projects Thursday

D. Koop, CSCI 627/490, Fall 2020

