Data Visualization (CSCI 627/490)

Filtering & Aggregation

Dr. David Koop

Composite Visualization Techniques

(d) Overloaded views.

(b) Integrated views.

(c) Superimposed views.

What is this technique?

D. Koop, CSCI 627/490, Fall 2020

[VisLink, Collins and Carpendale, 2007]

What is this technique?

Multiple Views

D. Koop, CSCI 627/490, Fall 2020

[Munzner (ill. Maguire), 2014]

Brushing

Multiform & Small Multiples

Partitioned Views

- Split dataset into groups and visualize each group
- Extremes: one item per group, one group for all items
- Can be a hierarchy
 - Order: which splits are more "related"?
 - Which attributes are used to split? usually categorical

Partitioned Views: Trellis Matrix Alignment

D. Koop, CSCI 627/490, Fall 2020

Barley Yield (bushels/acre)

Recursive Subdivision: HiVE System

Project Design

- Feedback:
 - Data Manipulation?
 - Questions lead, not technique!
 - Be creative! (interaction too) <u>https://xeno.graphics</u>
- Work on turning your visualization ideas into designs
- Turn in:
 - Two Design Sketches (like sheets 2-4 from 5 Sheet Design)
 - One Bad Design Sketch (like sheets 2-4: here, justify why bad)
 - Progress on Implementation
- Due Friday, Nov. 13

D. Koop, CSCI 627/490, Fall 2020

://xeno.graphics deas into designs

2-4 from 5 Sheet Design) ts 2-4: here, justify why bad)

Assignment 5

- To be released soon
- Citi Bike NYC Data
 - Trips between neighborhoods
- Covers
 - Multiple Views
 - Filtering
 - Aggregation
 - Brushing

Overview: Reducing Items & Attributes

D. Koop, CSCI 627/490, Fall 2020

→ Aggregate

→ Items

[Munzner (ill. Maguire), 2014]

Northern Illinois University

Filtering

- Just don't show certain elements
- Item filtering: most common, eliminate marks for filtered items
- Attribute filtering:
 - attributes often mapped to different channels
 - if mapped to same channel, allows many attributes (e.g. parallel coordinates, star plots), can filter
- How to specify which elements?
 - Pre-defined rules
 - User selection

Filter vs. Query

- Queries start with an empty set of items and **add** items
- Filters start with all items and **remove** items

D. Koop, CSCI 627/490, Fall 2020

tems and **add** items **ve** items

Example: NYC Health Dept. Restaurant Ratings

D. Koop, CSCI 627/490, Fall 2020

FACEBOOK 🗾 TWITTER 🎇 GOOGLE+ 🖂 EMAIL ⊡ SHARE

Northern Illinois University

Dynamic Filters

- Interaction need not be with the visualization itself
- Users interact with widgets that control which items are shown
 Sliders, Combo boxes, Text Fields
- Often tied to attribute values
- Examples:
 - All restaurants with an "A" Grade
 - All pizza places
 - All pizza places with an "A" Grade

D. Koop, CSCI 627/490, Fall 2020

ualization itself Introl which items are shown

Scented Widgets

D. Koop, CSCI 627/490, Fall 2020

18

Scented Widgets

D. Koop, CSCI 627/490, Fall 2020

on A	Name	Description	Example		
on <u>B</u> on <u>C</u>	Hue	Varies the hue of the widget (or of a visualization embedded in it)	Option A		
on <u>D</u> I rank	Saturation	Varies the saturation of the widget (or of a visualization embedded in it)	Option <u>A</u> Option <u>B</u>		
	Opacity	Varies the saturation of the widget (or of a visualization embedded in it)	Option <u>A</u> Option <u>B</u>		
	Text	Inserts one or more small text figures into the widget	(2) Option <u>A</u> (10) Option <u>B</u>		
	lcon	Inserts one or more small icons into the widget.	 Option<u>A</u> Option<u>B</u> 		
or	Bar Chart	Inserts one or more small bar chart visualizations into the widget	Option <u>A</u> Option <u>B</u>		
	Line Chart	Inserts one or more small line chart visualizations into the widget	Option <u>A</u> Option <u>B</u>		

[Willett et al., 2007]

19

Star Plots (aka Radar Charts)

Aberlour

Auchentoshan

Auchroisk

Star Plot / Radar Chart

- Compare variables
- Similarities/differences of items
- Locate outliers
- Considerations:
 - Order of axes
 - Too many axes cause problems

Attribute Filtering on Star Plots

(C)

D. Koop, CSCI 627/490, Fall 2020

(d)

Attribute Filtering

- How to choose which attributes should be filtered?
 - User selection?
 - Statistics: similarity measures, attributes with low variance are not as interesting when comparing items
- Can be combined with item filtering

D. Koop, CSCI 627/490, Fall 2020

Aggregation

Aggregation

- Usually involves **derived** attributes
- Examples: mean, median, mode, min, max, count, sum
- Remember expressiveness principle: still want to avoid implying trends or similarities based on aggregation

						IV	
Х	У	Х	У	Х	У	Х	У
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.70
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.7
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.8
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.4
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.2
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.5
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.50
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.9
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.8

ggregation

- Usually involves **derived** attributes
- Examples: mean, median, mode, min, max, count, sum
- Remember expressiveness principle: still want to avoid implying trends or similarities based on aggregation

Mean o	fx
Variance	e of x
Mean o	fy
Variance	e of y
Correlat	tion

9	
11	
7.50	
4.122	
0.816	

l		II				IV	
Х	У	Х	У	Х	У	Х	У
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.5
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89

Anscombe's Quartet

D. Koop, CSCI 627/490, Fall 2020

Northern Illinois University

Aggregation: Histograms

- Very similar to bar charts

- Often shown without space between (continuity)
- Choice of number of bins
 - Important!
 - Viewers may infer different trends based on the layout

Aggregation: Histograms

Common Distributions

Binning Scatterplots

- At some point, cannot see density
- Blobs on top of blobs
- 2D Histogram is a histogram in 2D encoded using color instead of height
- Each region is aggregated

Northern Illinois University

Binning

- Hexagonal bins are more circular
- Distance to the edge is not as variable
- More efficient aggregation around the center of the bin

Spatial Aggregation

[Penn State, GEOG 486]

32

Modifiable Areal Unit Problem

- of aggregation you get
- Similar to bins in histograms
- Gerrymandering

D. Koop, CSCI 627/490, Fall 2020

[Wonkblog, Washington Post, Adapted from S. Nass]

Northern Illinois University

Drawing Different Maps: Compactness

borders

specifically the 2018 midterms – based on historical patterns since 2006

Drawing Different Maps

Boxplots

- Show **distribution**
- Single value (e.g. mean, max, min, quartiles) doesn't convey everything
- Created by John Tukey
- Show spread and skew of data
- Best for **unimodal** data
- Variations like vase plot for multimodal data
- Aggregation here involves many different marks

Aggregation: Boxplots

D. Koop, CSCI 627/490, Fall 2020

Northern Illinois University

Four Distributions, Same Boxplot...

D. Koop, CSCI 627/490, Fall 2020

Northern Illinois University

Hierarchical Parallel Coordinates

K-Means

D. Koop, CSCI 627/490, Fall 2020

<u>Run</u>

K-Means Issues

D. Koop, CSCI 627/490, Fall 2020

Number of Clusters

Northern Illinois University 41

Dimensionality Reduction

- individual attribute
- Example: Understanding the language in a collection of books
 - Count the occurrence of each non-common word in each book
 - (e.g. "western")
 - Don't want to have to manually determine such rules
- techniques

D. Koop, CSCI 627/490, Fall 2020

• Attribute Aggregation: Use fewer attributes (dimensions) to represent items • Combine attributes in a way that is more instructive than examining each

- Huge set of features (attributes), want to represent each with an aggregate feature (e.g. high use of "cowboy", lower use of "city") that allows clustering

Techniques: Principle Component Analysis, Multidimensional Scaling family of

Principle Component Analysis (PCA)

original data space

D. Koop, CSCI 627/490, Fall 2020

PC 1

PCA

[Principle Component Analysis Explained, Explained Visually, V. Powell & L. Lehe, 2015]

