
Data Visualization (CSCI 627/490)

Filtering & Aggregation 

Dr. David Koop

D. Koop, CSCI 627/490, Fall 2020



Composite Visualization Techniques
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Technique Visualization A Visualization B Spatial Relation Data Relation

ComVis [24] (Figure 2) any any juxtapose none
Improvise [39] (Figure 3) any any juxtapose none
Jigsaw [36] any any juxtapose none
Snap-Together [30] any any juxtapose none
semantic substrates [34] (Figure 4) node-link node-link juxtapose item-item
VisLink [11] (Figure 5) radial graph node-link juxtapose item-item
Napoleon’s March on Moscow [37] time line view area visualization juxtapose item-item
Mapgets [38] (Figure 6) map text superimpose item-item
GeoSpace [22] (Figure 7) map bar graph superimpose item-item
3D GIS [8] map glyphs superimpose item-item
Scatter Plots in Parallel Coordinates [45] (Figure 8) parallel coordinate scatterplot overload item-dimension
Graph links on treemaps [14] (Figure 9) treemap node-link overload item-item
SparkClouds [21] tag cloud line graph overload item-item
ZAME [13] (Figure 10) matrix glyphs nested item-group
NodeTrix [17] (Figure 11) node-link matrix nested item-group
TimeMatrix [44] matrix glyphs nested item-group
GPUVis [25] Scatterplot glyphs nested item-group

Table 1: Classification of common composite visualization techniques using our design space.

(a) Juxtaposed views. (b) Integrated views. (c) Superimposed views. (d) Overloaded views. (e) Nested views.

Figure 12: Example of composing a scatterplot and bar graph using different methods.

datasets in the same space and using different visualizations, but
also highlights the relational linking between the two datasets.

Nested views provide an efficient approach to link each of the
data values, visualized through the host visualization, to its related
dataset, visualized through client visualizations. This is achieved
by nesting clients inside the visual marks in the host.

• Benefits: Very compact representation, easy correlation.
• Drawbacks: Limited space for the client visualizations, clut-

ter is high, and visual design dependencies are high.
• Applications: Again, situations that call for augmenting a

particular visual representation with additional mapping.

Figure 12(e) shows an example composition of scatterplot and
bar graph visualizations based on this design patter. In the figure,
the scatterplot visualization is acting as a host and bar graph visu-
alizations are nested inside its visual marks.

There is probably not a clear winner among different design pat-
terns while designing an information visualization tool. The correct
choice of design pattern to use for a particular implementation de-
pends on different conditions, such as the available view space, user
knowledge, and the complexity of the underlying dataset. Ideally
speaking, designers should be able to combine any existing visual-
izations to generate a composite visualization view.

8.2 Delimitations

While our above CVV design patterns are general in nature, they
are based solely on the spatial layout of component visualizations.
However, it is possible to envision other ways to combine two or
more visualizations, for example using interaction or animation.
One such example is the use of interactive hyperlinking [6, 43] (or
wormholing) to navigate between different visualization views.

8.3 Discussion

There are several direct benefits to structuring the design space of
composite visualization views in this manner. Classifying existing
techniques into patterns not only helps in understanding these tech-
niques, but also in evaluating their strengths and weaknesses.

However, the design patterns presented in this paper are all based
on evidence from the literature of how existing visualization tools
and techniques use composite views. Therefore, our framework
is inherently limited to current designs, and more descriptive than
generative in nature. Furthermore, this list of patterns is not neces-
sarily exhaustive, and we certainly foresee additional design pat-
terns for composite views to emerge with progress in informa-
tion visualization. It is also not always straightforward to sepa-
rate what is a composite visualization and what is an “atomic” (or
component) visualization, particularly when the compositions on
the visual structures—which is the case for overloaded and nested
views—as opposed to merely on the views. Our approach in the
above text has been to treat as components any technique has been
presented in the literature as a standalone technique.

9 CONCLUSION

We have proposed a novel framework for specifying, designing, and
evaluating compositions of multiple visualizations in the same vi-
sual space that we call composite visualization views. The benefit
of the framework is not only to provide a way to unify a large col-
lection of existing work where visual representations are combined
in various ways, but also to suggest new combinations of visual
representations that may significantly advance the state of the art.
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3.1 ComVis

ComVis [24] is a multidimensional visualization system support-
ing multiple coordinated views for exploring complex datasets (Fig-
ure 2). The dataset is shown in the form a table view at the bottom
of the main window. Beyond basic interactions, ComVis also sup-
port interactive brushing using both single and composite brushes.

Figure 2 shows a visual exploration of meteorology data using
ComVis. The user has created eight different views, each with a
different visualization. The analyst has then used a single brush to
select three bins in the histogram view, causing all the other views
to highlight the corresponding data items.

3.2 Improvise

Improvise [39, 40] is a visualization framework based on the jux-
taposed views design pattern. The framework allows users to build
and browse multiple visualizations while coordinating relational
linking among them. The system is highly extensible and modular-
ized, allowing it to be adapted for virtually any type of data and vi-
sual representation. To explore relational data in an interactive man-
ner, Improvise provides support for coordinated queries, a visual
abstraction language designed for relational databases. More re-
cent work on cross-filtered views [41] adds to the expressive power
of the framework for relation linking between different views.

Figure 3 shows a visual exploration of a simulated ion trajec-
tory in a cubic ion trap using Improvise. The tool allows user to
visualize different portions of the data set, selected using dynamic
queries [1]. All the visualizations are coordinated and data selection
in one view is projected in all others.

Figure 4: Semantic Substrates [34] (Integrated Views). Network

visualization of a dataset of court cases using semantic substrates.

4 INTEGRATION ! INTEGRATED VIEWS

The integrated views design pattern is also based on juxtaposing (or
tiling) the component visualizations (Figures 4, 5). For this reason,
the visual composition for integrated views is identical to that of
juxtaposed views. However, contrary to the implicit linking used in
juxtaposed views, integrated views use explicit linking, normally
in the form of graphical lines that relate data items in different
views another [11]. One prominent example of integrated views
is Charles Minard’s famous visualization of Napoleon’s march on
Moscow [37], where explicit linking shows the relations between
temperature and the number of surviving soldiers during the retreat.

Figure 5: VisLink [11] (Integrated Views). Radial and force-directed

graphs on separate visualization planes linked with visual edges.

The use of explicit linking in integrated views, compared to im-
plicit linking in juxtaposed views, allows for better relational cogni-
tion, but at the cost of added visual clutter. However, as the number
of data points increases in the visualizations, the visual clutter aris-
ing from the explicit links may become a major hindrance. Com-
monly used strategies to avoid this problem are to aggregate the
links, or to show relational links only for selected data values [11].

4.1 Semantic Substrates

Shneiderman and Aris [34] proposed a network visualization layout
based on a user-defined semantic substrate with node-links diagram
as an underlying visualization (Figure 4). Semantic substrates are
spatially non-overlapping regions that are built to hold nodes based
on some category present in the dataset. The individual regions
are sized proportionally to the number of data entries for the cate-
gory they visualize. This scheme allows users to get a quick idea
about the cardinality of different categories present in the under-
lying dataset. Their approach is in line with the integrated view
design pattern because the techniques add visual links to connect
the nodes in different substrates. To reduce clutter arising from the
links, the tool allows for toggling their visibility.

Figure 4 shows semantic substrates used for the exploration of
a subset of federal judicial cases on the legal issue of regulatory
takings from 1978 to 2005. The nodes in different views are placed
based on their chronological order along the horizontal axis and
links among the nodes highlight citation between different cases.

4.2 VisLink

VisLink [11] (Figure 5) creates multiple 2D planes, one for each
visualization, and shows relational linking between the different vi-
sualization planes. Visualization planes generated in VisLink are
interactive and users can re-position them in the view to explore
data relations. In contrast with semantic substrates, VisLink allows
the use of different visualizations while exploring the dataset.

As with semantic substrates, the VisLink relational linking is
done using visual lines that connect visual marks in one plane with
the corresponding mark in the other plane. To reduce the inher-
ent occlusion due to the explicit relational links between visualiza-
tions, the tool supports two kinds of edges: straight edges are used
to show one-to-one linking, while bundled curved edges are used
to highlight one to many linking. To reduce visual clutter the tool
shows relational links only between adjacent planes, and the planes
must be reordered for the user to see relations between other planes.
Figure 5 shows VisLink being used for exploring a dataset of En-
glish words based on the IS-A relation over synonym sets.

What is this technique?
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6 OVERLOADING ! OVERLOADED VIEWS

This design pattern characterizes compositions where one visual-
ization, called the client visualization, is rendered inside another
visualization, called the host, using the same spatial mapping as the
host [26]. Overloaded views (Figures 8 and 9) are similar to super-
imposed views, but with some important differences. Like super-
imposition, the client visualization in this design pattern is overlaid
on the host. However, unlike Superimposed Views, there exists no
one-to-one spatial linking between the two visualizations [12].

While previous design patterns have all operated on specific
views of component visualizations, overloaded views (and also the
next pattern, Nested Views) operate on the visual structure them-
selves. In other words, it is no longer possible to merely use vi-
sual layout operations to organize the views together, but the vi-
sual structures themselves must be modified to combine the com-
ponents. We will see examples of this below.

Figure 10: ZAME [13] (Nested Views). Visual exploration of a

protein-protein interaction dataset in ZAME.

6.1 Scatter Plots in Parallel Coordinates (SPPC)

Yuan et al. [45] presented a system that allows overloading of 2D
scatterplots on a parallel coordinates visualization [18] (Figure 8).
The technique is based on converting the space between pairs of
selected coordinate dimensions in a parallel coordinate plot into
scatterplots through multidimensional scaling [42]. The technique
takes advantage of the fact that parallel coordinate plots do not re-
ally use the space between the parallel dimensional axes, which
means that this space is open for being overloaded.

SPPC is also an example of combining two techniques to com-
pensate for their individual shortcomings. Parallel coordinates are
efficient for visualizing multiple dimensions in a compact 2D vi-
sual representation. However, they make it hard to correlate trends
across multiple dimensions due to their inherent visual clutter. Scat-
terplots, on the other hand, provide an effective way of correlating
trends in any dimension of a dataset [10]. Combining both tech-
niques allows for sharing their advantages.

6.2 Graph Links on Treemaps

Fekete et al. [14] proposed a technique for rendering graphs using a
treemap [20] with overloaded graph links. The idea is based on the
fact that it is possible to decompose a graph into a tree structure and
a set of remaining graph edges that are not included in the tree. This
graph decomposition allows for using a treemap to visualize the tree
structure, and then overload links corresponding to the remaining
graph edges on the treemap visualization. Even though Fekete et al.

call this “overlaying”, the technique is an example of overloading
in our terminology because the graph links are not just a separate
layer on top of the treemap, but they are embedded into the visual
structure of the treemap and use the node positions as anchors.

Figure 9 shows the technique being used to visualize a website.
Here, the directory structure, inherent in any website, is visualized
through an underlying treemap and external links are visualized
through overlaid edges. The overlaid edges are not straight lines,
but are curved to highlight source and target locations. The edges
are curved more near the source, hence making it easy to visually
recognize the direction of the link. The tool also supports con-
trolling the visibility of various edges to reduce visual clutter, and
coloring edges based on their attributes.

Figure 11: NodeTrix [17] (Nested Views). This example shows a

visualization of the InfoVis co-authorship network.

7 NESTING ! NESTED VIEWS

Nested views, like overloaded views, are also based on the notion of
host and client visualizations. However, in this design pattern, one
or more client visualizations are nested inside the visual marks of
the host visualizations, based on the relational linking between the
points. Most often, the nesting is performed simply by replacing
the visual marks in the host visualization by nested instances of the
client visualization (Figures 10 and 11). An example of this would
be a scatterplot where the individual marks are barchart glyphs [25].

The nested views pattern provides an effective way of relating
data points in the host visualization to the data visualized through
the client visualizations. Again the users need not divide their atten-
tion between multiple views, and the host visualization is allowed
to use the full available space. However, since the design pattern
embeds one or more visualizations inside a visual mark, the client
visualizations are allocated only a small portion of the host visual-
ization’s visual space, and zooming and panning may be required to
see details. Furthermore, just like overloading, nested views com-
pose the actual visual structures of the components, which typically
requires a more careful design.

One issue to discuss here is the difference between overloading
and nesting. These are different design patterns because nesting
simply replaces the visual marks of the host with the visual structure
of the client, whereas overloading requires a much more integrated
composition of the visual structures of the host and the client.

7.1 ZAME

Nested views are becoming increasingly prominent for visualizing
large-scale datasets using glyph-based methods. ZAME [13], a vi-
sualization system designed to explore large-scale adjacency matrix
graph visualization, uses this approach. The base matrix represen-
tation used in ZAME is a hierarchical aggregation of the underly-
ing dataset. The tool allows the user to zoom in data space, which
amounts to drilling-down and rolling-up in the aggregation hierar-
chy to see more or less details. Abstract glyphs representing aggre-
gated data for each cell in the matrix are nested inside the visual
marks of the matrix to convey information about the aggregation.

What is this technique?
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Brushing
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Fig. 2: The Cerebral display of the TLR4 graph (V=91, E=124) with associated LPS and LPS+LL-37 time series. The small multiples show an
overview of all 8 experimental conditions. The most noticeable differences between the LPS and the LPS+LL-37 condition occur at hour 4. By
selecting the hour 4 conditions, the main window shows the computed difference between the two conditions.

Furthermore, the biologists’ assessment of what constitutes a good
layout varies depending on the nature of the biomolecules involved. In
the undirected portion of the graph, which comprises protein-protein
interactions that propagate a signal from membrane to nucleus, they
wish to see the network structure so that they can follow the signaling
cascade. Thus for this section of the graph, it is important to minimize
edge crossings, even if it places interacting nodes somewhat far apart.
In contrast, for the directed portion of the graph, representing the genes
whose expression was altered in response to the signaling cascade, the
biologists want to see the nodes grouped tightly by function, even at
the expense of not being able to clearly see the interactions between
them. Translating these desires into automated graph layout requires
an algorithm that uses metadata associated with the nodes, in addition
to the direct graph structure, for node placement. Positioning nodes
according to biological meta-data defines a semantic substrate [34]
so that node position reveals biological function. We wrote a sim-
ple simulated annealing-based graph layout algorithm that uses node
metadata to guide node placement.

3.2 Small multiple views for multiple conditions

Cerebral uses small multiples [38] to simultaneously display multiple
experimental datasets. Each small multiple contains a complete copy
of the interaction graph with the same spatial layout, but with differ-
ent coloring according to the experimental data it is displaying. Our
design target was to handle from two to a few dozen gene expression
conditions, and from 50 to 3000 nodes in the interaction graph.

One obvious alternative to multiple small views would be a sin-
gle changeable or animated view, where the color coding changes
over time rather than being distributed over space [33, 32]. Com-

paring something visible with memories of what was seen before is
more difficult than comparing things simultaneously visible side by
side [31]. Thus, the limitations of human memory make comparing
the few dozen conditions of our design goal through animation quite
difficult [40]. Although small multiples would not scale to hundreds
of conditions, they handle the current usage of 8-10 easily and will
certainly accommodate the projected usage of few dozen conditions.

A second alternative is to embed a glyph, such as a line graph or
heat map, near or within the node itself [24, 32, 41]. While embedded
glyphs provide good detail when zoomed in for a local view, they be-
come indistinguishable when zoomed out for a global view of graphs
larger than a few dozen nodes. The biologists often need to see such
a view, as it more readily allows for the identification of interacting
genes/proteins whose expression behaves similarly across several con-
ditions. Thus, glyphs would not be appropriate in this domain.

Saraiya et al. [32] evaluated four approaches to integrating graph
and time series data, comparing one versus two views and slider-
controlled animation versus embedded glyphs. While they used 10
time series data points, in a good match for our problem domain, their
graph contained only 50 nodes. They found many tradeoffs between
task type, speed, and accuracy. Our design can be considered an at-
tempt to combine the strengths of the four different interfaces they
studied into a single interface for a problem where the tasks are com-
plex, accuracy outweighs raw speed, and the graph is large.

3.3 Parallel coordinates and clustering for data-driven ex-

ploration

Cerebral’s main views focus on the interaction graph model of the
biological system or process of interest. We also provide a data-

Multiform & Small Multiples
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Partitioned Views
• Split dataset into groups and visualize each group 
• Extremes: one item per group, one group for all items 
• Can be a hierarchy 
- Order: which splits are more "related"? 
- Which attributes are used to split? usually categorical
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Partitioned Views: Trellis Matrix Alignment

9

[Becker et al., 1996]
D. Koop, CSCI 627/490, Fall 2020

VISUAL DESIGN AND CONTROL OF TRELLIS DISPLAY 125

I page. In Figure 2 there are 6 panels, I column, 6 rows, and 1 page. Later, we will
show a Trellis display with more than one page. We refer to the rectangular array as the
trellis because it is reminiscent of a garden trelliswork .•

Each panel of a trellis display shows a subset of the values of panel variables;
these values are formed by conditioning on the valqes of conditioning variables. In Fig-
ure I the panel variables are variety and yield, and the conditioning variables are site and
year. On each panel, values of yield and variety are displayed for one combination of year
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Figure 2. A Dotplot of the Barley Data Showing Yield Against Site and Year Given Variety.

D
ow

nl
oa

de
d 

by
 [5

0.
14

8.
12

.3
6]

 a
t 2

1:
36

 0
8 

Ja
nu

ar
y 

20
13

 



A B

Fig. 6. The data are spatially reaggregated into 4km2 grid squares. Absolute geographical positioning is employed because node size is fixed
and the correct aspect ratio is used (borough boundaries shown for reference). A: Coloured by number of sales: sHier(/,$gd,$yr,$mn);
sLayout(/,SP,VT,HZ); sSize(/,FIX); sColor(/,Ø,Ø,$sal). B: Coloured by average price: oColor(/,3,$prc).
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Fig. 7. Space is at level 2 of the hierarchy. Coloured by coefficient of variation of price (grey is no sales). A: sHier(/,$ty,$br,$yr,$mn);
sLayout(/,OS,SP,VR,HZ); sSize(/,$sal); sColor(/,Ø,Ø,Ø,$vpr). B: Fix rectangle size: oSize(/,4,FIX); oSize(/,3,FIX);
oSize(/, 2,FIX); oSize(/,1,FIX). C: Choropleth maps: oCut(/,4); oCut(/,3); oLayout(/,2,PG); oSize(/,2,$abr).

1. Reconfigure conditioning hierarchies to explore the data space.
Use oCut, oInsert and oSwap to reconfigure the hierarchy to
explore variation in terms of different conditioning variables. For
example, placing $br above $ty in Fig. 7 allows geographical
variation by property type to be explored.

2. Use appropriate layouts to reveal structure in data. Experiment
with alternative layouts to explore the design space. HZ,VT
with fixed rectangle size (see 4) can produce mosaic plots, useful
where combinations of categorical variables are important. OS is
appropriate where there is a large number of values and VT/HZ
where there are fewer values and where the dimensions of the
available space allow good aspect ratios.

3. Preserve salient 1D or 2D ordering. Choose appropriate order-
ing for ordinal, temporal and spatial variables for each hierar-
chical level in response to research questions and order nominal
variable values consistently.

4. Fix rectangle size at appropriate hierarchical levels to produce
consistent layouts with small-multiple-like properties. The re-
sulting juxtaposed graphical elements with shared layout char-
acteristics can facilitate the side-by-side comparison of graphics,
minimising the work required of the eye and brain.

5. Scale colour to data-ranges to different parts of the hierarchy
to explore local and global patterns. Scaling to data-ranges in
localised parts of the hierarchy (e.g. by year in Fig. 4) addresses
research questions based on localised variation, whereas scaling
to the entire data-ranges draws attention to more global patterns.

6. Condition datasets by attributes of different granularities at ad-

jacent levels of the hierarchy. In the case of time, this allows
us to consider the effects of cyclical temporal patterns (e.g.
$yr,$mn). In the case of space this draws attention to the ef-
fects of spatial resolution and scale.

7. Condition by different aggregations of time and space. This helps
explore the effects of modifiable units on patterns in the data.

8. Reaggregate spatial data to equally-sized grid cells and fix rect-
angle size. This can produce consistent small-multiple-like ar-
rangements (see 4) that retain the properties of the original ge-
ographical coordinate space (e.g. Fig. 6) and can be used to ad-
dress research questions that relate to geographic variation in ab-
solute geographical space.

9. Use dynamic techniques to relate these various states. For exam-
ple, use highlighting to show items across hierarchy and brush-
ing for details-on-demand. Smooth transitions between layouts
can to help reduce cognitive load when relating these.

8 FURTHER AND ONGOING WORK

Although our examples and notation have focussed on space-filling
rectangular layouts, the concepts are applicable to other types of lay-
out as illustrated by our introductory example and our use of some
non-rectangular layouts. HiVE was developed so that we could be
systematic in describing configurations and reconfigurations in layouts
and so we could describe and build interfaces for collaborative visu-
alisation. We are extending this so that it can encode a broader set of
hierarchical layouts that use dimensional stacking by adding states and
operators to represent a wider range of visual variables. For example,

Recursive Subdivision: HiVE System
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Project Design
• Feedback: 
- Data Manipulation? 
- Questions lead, not technique! 
- Be creative! (interaction too) https://xeno.graphics 

• Work on turning your visualization ideas into designs 
• Turn in: 
- Two Design Sketches (like sheets 2-4 from 5 Sheet Design) 
- One Bad Design Sketch (like sheets 2-4: here, justify why bad) 
- Progress on Implementation 

• Due Friday, Nov. 13

11D. Koop, CSCI 627/490, Fall 2020
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Assignment 5
• To be released soon 
• Citi Bike NYC Data 
- Trips between neighborhoods 

• Covers 
- Multiple Views 
- Filtering 
- Aggregation 
- Brushing

12D. Koop, CSCI 627/490, Fall 2020



Reduce

Filter

Aggregate

Reducing Items and Attributes

Filter
Items

Attributes

Aggregate

Items

Attributes

Overview: Reducing Items & Attributes
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Reduce

Filter

Aggregate

Reducing Items and Attributes

Filter
Items

Attributes

Aggregate

Items

Attributes

[Munzner (ill. Maguire), 2014]
D. Koop, CSCI 627/490, Fall 2020



Filtering
• Just don't show certain elements 
• Item filtering: most common, eliminate marks for filtered items 
• Attribute filtering: 
- attributes often mapped to different channels 
- if mapped to same channel, allows many attributes (e.g. parallel coordinates, 

star plots), can filter 
• How to specify which elements? 
- Pre-defined rules 
- User selection

14D. Koop, CSCI 627/490, Fall 2020



Filter vs. Query
• Queries start with an empty set of items and add items 
• Filters start with all items and remove items

15D. Koop, CSCI 627/490, Fall 2020
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Dynamic Filters
• Interaction need not be with the visualization itself  
• Users interact with widgets that control which items are shown 
- Sliders, Combo boxes, Text Fields 

• Often tied to attribute values 
• Examples: 
- All restaurants with an "A" Grade 
- All pizza places 
- All pizza places with an "A" Grade

17D. Koop, CSCI 627/490, Fall 2020



 

unique discoveries using scented widgets, and would express a 
preference for scented widgets over traditional widgets. The study 
included twenty-eight participants (12 female, 16 male), all of whom 
were either graduate or undergraduate students, and were recruited 
through campus mailing lists. Participant ages ranged from 19 to 32 
(M = 25.3, SD = 3.8). 

6.1 Experiment Design 
We asked subjects to find evidence either for or against specific 
hypotheses in a collaborative visualization of the United States labor 
force. We gave them an introductory tutorial to the system, and then 
asked them to complete three tasks. For each task, we presented 
subjects with one of the three following task hypotheses:  

T1: Technology is costing jobs by making occupations obsolete. 
T2: In the last half-century, women have joined the work force, but 
stereotypically male jobs remain almost entirely male. 
T3: The number and variety of jobs directly related to the nation's 
food supply has diminished greatly since the 1800s. 

For each task, we gave subjects 15 minutes to explore the data set 
and collect evidence relevant to the task hypothesis. The task 
hypotheses were intended to be of similar depth and diversity. We 
instructed subjects to make at least seven observations that provided 
evidence either for or against the current task hypothesis. At least 
two of the observations had to be unique findings on views not yet 
commented upon. Subjects were asked to note their observations by 
leaving new comments on the corresponding views. 

For each task, we presented subjects with one of three scenting 
conditions. The conditions consisted of no scent, in which we used 
standard dynamic query widgets, comment scent, in which bar charts 
indicated the number of comments made on a view, and visit scent, 
in which bar charts indicated the number of prior visits to a view. To 
populate the interface with scent, we collected anonymized activity 
metrics from a study of the sense.us system [12] and supplemented 
them with a small amount of manual seeding to balance the metrics 
across conditions. Subjects in the previous sense.us study used a 

similar visualization to freely explore the data. Our seed data 
consisted of a total of 1096 visits and 172 comments distributed 
across 154 views. Both visits (R2 = 0.96) and comments (R2 = 0.90) 
exhibited a power law distribution, and so we scaled them 
logarithmically for display in the scented widgets. 

The study employed a 3 (Task) x 3 (Scent) between-subjects 
design. Task and scent pairings and presentation order were counter-
balanced using a Latin Square. All tests were carried out in a 
laboratory environment using standard desktop PCs connected to a 
web server hosting the visualization and usage data. After 
completing the tasks, subjects filled out a survey that asked them to 
rate the scenting conditions on perceived utility and user experience. 

6.2 Results: Revisitation 
Our first hypothesis was that social navigation cues would increase 
the likelihood that users would visit views that others had visited 
previously. To test this hypothesis, we created three vectors, each 
representing the number of visits to each view in each scenting 
condition. We removed the starting overview from consideration, 
because users saw this view regardless of scenting condition. We 
then compared these visitation vectors to the visitation vector for the 
underlying activity measure used to seed the scented widgets. Using 
PeaUVon¶V SUodXcW-moment statistic, we found correlations of r(493) 
= 0.200 for visit scent, r(493) = 0.217 for comment scent, and r(493) 
= 0.181 for no scent (p < 0.01 in all cases). These results suggest that 
users in the visit and comment scent conditions were more likely to 
visit the same views that were visited in the seed data than users in 
the no scent condition. However, we note that the correlations are not 
very strong. We believe that the semantics of the tasks also affect 
visitation patterns and likely had an effect on these correlations. 

6.3 Results: Unique Discoveries 
Next, we analyzed the data to check if scented widgets help users 
make unique discoveries. Our hypotheses were that scented 
conditions would have a higher occurrence of unique discoveries and 
that performance would improve over subsequent trials, regardless of 

  
 

Figure 7. Social data analysis application with social navigation scent cues. A stacked time-series visualization shows the U.S. labor force, 
broken down by gender, from 1850-2000. The current view shows the percentage of the labor force that worked as Bartenders, with a sharp drop 
during Prohibition. Scented Widgets are used in the dynamic query widgets to show visitation rates in all views reachable from the current view.  
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other data-driven variants [10] facilitate navigation to data regions of 
interest by summarizing the data distribution queried by the slider. 
On web pages, hyperlink text usually offers navigation cues about 
the content of the link target. This is the reason that human web 
surfers and modern web search indices rely on link text. Olston and 
Chi¶s ScentTrails system [16] facilitates search and browsing of web 
sites by scoring documents in response to a text query and then 
enlarging hyperlink text to indicate paths to highly ranked 
documents. ScentTrails outperforms both searching and browsing 
alone in information-seeking tasks.  

Another strategy is to provide information scent cues based on 
metadata. For example, social navigation is often based on 
displaying aggregated activity patterns. Blogs and discussion forums 
regularly include the number of posted comments in the link text of 
hyperlinks to discussions, while the del.icio.us social bookmarking 
service encodes the number of users who share a web bookmark in 
gradated red backgrounds for link text. Hill et al [14] explore the use 
of social navigation cues in a document editor, placing usage 
histograms within the scroll bar to indicate the prevalence of reading 
and editing activity throughout the document. Similarly, Björk and 
Redström [5] use color marks to indicate edits and search results 
along all edges of document frames.  In the domain of collaborative 
visualization, Wattenberg and Kriss [20] gray-out visited regions of a 
visualization to provide ³anti-social navigation´ cues to promote 
analysis of unexplored regions. 

Our work generalizes techniques such as histogram sliders and 
Hill¶s read and edit wear, providing design considerations and a 
toolkit-level framework for embedding navigation cues in a variety 
of interface widgets. We contribute a general framework providing 
both data- and metadata-driven visual cues for navigating semantic 
dimensions in an information space. 

Though not focused on navigation cues, a few additional projects 
share commonalities with scented widgets. Baudisch et al¶s 
Phosphor [3] design provides real-time collaboration cues by using 
afterglow effects to highlight widget usage. Hill and Gutwin¶s Multi-
User Awareness UI [13] provides toolkit-level widget support for 
synchronous collaboration, such that users can see in real-time which 
interface widgets collaborators are using. Our scented widgets 
framework also provides a toolkit-level augmented widget suite, but 
one targeted at visual navigation cues rather than synchronous 
activity awareness 

3 DESIGN CONSIDERATIONS 
In designing a framework for encoding scent within widgets we 
consider; (1) the types of information metrics that can serve as 
navigation cues in scented widgets, (2) the matching of these 
encodings with the navigation models of the set of standard widgets, 
(3) the kinds of visual encodings used to convey this data, and (4) the 
modification of the standard widgets to accommodate scenting. 

3.1 Information Scent Metrics 
The first step in providing navigation cues is selecting the data 
source from which the cues will be derived. While the appropriate 

data source usually depends on the specifics of the application, 
several kinds of data and metadata can be useful aids for navigation. 
One approach is to derive metrics directly from the information 
content. For example, a simple metric for interactive visualization is 
the number of visible data elements in each application state. This 
metric provides a sense of the density of data across the information 
space. More complicated metrics can be computed from the data 
itself, and may involve input from the user. Users might type in 
queries, as in ScentTrails [16], and be given scenting cues that 
indicate relevance scores. Alternatively, advanced users might use an 
expression language to enter in their own calculations over a 
visualized data set. 

Social activity metrics are another potential data source, providing 
cues for social navigation. Interactive visualization applications such 
as sense.us [12] capture a number of social activity metrics that are 
typically invisible to users, but which could serve as valuable 
navigation cues. For example, displaying the number of visits to a 
view, comments on a view, or edits of a view, could guide users 
towards the relevant or most interesting views. Similarly, indicating 
the author of a comment or an edit could help users navigate to 
useful views. Temporal data regarding changes in any of these 
measures (e.g. recency or frequency information) are also candidates 
for display, as is location-based metadata. Our approach is premised 
on the notion that surfacing these sorts of activity metrics facilitates 
navigation. 

3.2 Navigation and the Display of Visual Scent 
Scent cues are specifically designed to aid navigation. Therefore 
scent cues should only be applied to interface elements that provide a 
way to navigate (i.e. change views) within the application. Moreover, 
widgets that represent a single navigation choice, such as buttons, 
should display only one scent value, while widgets such as combo 
boxes and sliders that offer multiple navigation choices should 
include scent cues corresponding to each potential choice.   

3.3 Visual Encodings 
Scented widgets embed a visualization of information scent metrics 
within a standard interface widget such as a slider, button, or combo 
box. Standard widgets are usually designed to fit within a small 
screen-space and a goal of our scented widgets designs is to add 
information to these widgets without adversely impacting user 
interface design.  

We begin by considering a basic language of visual encodings for 
data. These include visual variables such as position, size, angle, 
color, and shape [4, 6, 15]. As noted by Cleveland [7] and Mackinlay 
[15], some encodings are more suitable than others for displaying 
different types of information. For example, position encodings are 
more accurate than length encodings for quantitative data, which in 
turn are more accurate than area encodings. For nominal data, color 
encodings are better than position.  

 
Figure 2. Examples of several scent encodings. From left to right: 1. A slider with visit totals encoded as a bar chart with recency encoded as 
opacity. 2. Checkboxes with star rankings encoded using icons and rank values displayed as text. 3. A list box with dataset sizes encoded using 
opacity and a visited/not visited value encoded using an icon. 4. A tree with author categories encoded using hue and edit totals encoded as text. 

 
 
 

 

 

other data-driven variants [10] facilitate navigation to data regions of 
interest by summarizing the data distribution queried by the slider. 
On web pages, hyperlink text usually offers navigation cues about 
the content of the link target. This is the reason that human web 
surfers and modern web search indices rely on link text. Olston and 
Chi¶s ScentTrails system [16] facilitates search and browsing of web 
sites by scoring documents in response to a text query and then 
enlarging hyperlink text to indicate paths to highly ranked 
documents. ScentTrails outperforms both searching and browsing 
alone in information-seeking tasks.  

Another strategy is to provide information scent cues based on 
metadata. For example, social navigation is often based on 
displaying aggregated activity patterns. Blogs and discussion forums 
regularly include the number of posted comments in the link text of 
hyperlinks to discussions, while the del.icio.us social bookmarking 
service encodes the number of users who share a web bookmark in 
gradated red backgrounds for link text. Hill et al [14] explore the use 
of social navigation cues in a document editor, placing usage 
histograms within the scroll bar to indicate the prevalence of reading 
and editing activity throughout the document. Similarly, Björk and 
Redström [5] use color marks to indicate edits and search results 
along all edges of document frames.  In the domain of collaborative 
visualization, Wattenberg and Kriss [20] gray-out visited regions of a 
visualization to provide ³anti-social navigation´ cues to promote 
analysis of unexplored regions. 

Our work generalizes techniques such as histogram sliders and 
Hill¶s read and edit wear, providing design considerations and a 
toolkit-level framework for embedding navigation cues in a variety 
of interface widgets. We contribute a general framework providing 
both data- and metadata-driven visual cues for navigating semantic 
dimensions in an information space. 

Though not focused on navigation cues, a few additional projects 
share commonalities with scented widgets. Baudisch et al¶s 
Phosphor [3] design provides real-time collaboration cues by using 
afterglow effects to highlight widget usage. Hill and Gutwin¶s Multi-
User Awareness UI [13] provides toolkit-level widget support for 
synchronous collaboration, such that users can see in real-time which 
interface widgets collaborators are using. Our scented widgets 
framework also provides a toolkit-level augmented widget suite, but 
one targeted at visual navigation cues rather than synchronous 
activity awareness 

3 DESIGN CONSIDERATIONS 
In designing a framework for encoding scent within widgets we 
consider; (1) the types of information metrics that can serve as 
navigation cues in scented widgets, (2) the matching of these 
encodings with the navigation models of the set of standard widgets, 
(3) the kinds of visual encodings used to convey this data, and (4) the 
modification of the standard widgets to accommodate scenting. 

3.1 Information Scent Metrics 
The first step in providing navigation cues is selecting the data 
source from which the cues will be derived. While the appropriate 

data source usually depends on the specifics of the application, 
several kinds of data and metadata can be useful aids for navigation. 
One approach is to derive metrics directly from the information 
content. For example, a simple metric for interactive visualization is 
the number of visible data elements in each application state. This 
metric provides a sense of the density of data across the information 
space. More complicated metrics can be computed from the data 
itself, and may involve input from the user. Users might type in 
queries, as in ScentTrails [16], and be given scenting cues that 
indicate relevance scores. Alternatively, advanced users might use an 
expression language to enter in their own calculations over a 
visualized data set. 

Social activity metrics are another potential data source, providing 
cues for social navigation. Interactive visualization applications such 
as sense.us [12] capture a number of social activity metrics that are 
typically invisible to users, but which could serve as valuable 
navigation cues. For example, displaying the number of visits to a 
view, comments on a view, or edits of a view, could guide users 
towards the relevant or most interesting views. Similarly, indicating 
the author of a comment or an edit could help users navigate to 
useful views. Temporal data regarding changes in any of these 
measures (e.g. recency or frequency information) are also candidates 
for display, as is location-based metadata. Our approach is premised 
on the notion that surfacing these sorts of activity metrics facilitates 
navigation. 

3.2 Navigation and the Display of Visual Scent 
Scent cues are specifically designed to aid navigation. Therefore 
scent cues should only be applied to interface elements that provide a 
way to navigate (i.e. change views) within the application. Moreover, 
widgets that represent a single navigation choice, such as buttons, 
should display only one scent value, while widgets such as combo 
boxes and sliders that offer multiple navigation choices should 
include scent cues corresponding to each potential choice.   

3.3 Visual Encodings 
Scented widgets embed a visualization of information scent metrics 
within a standard interface widget such as a slider, button, or combo 
box. Standard widgets are usually designed to fit within a small 
screen-space and a goal of our scented widgets designs is to add 
information to these widgets without adversely impacting user 
interface design.  

We begin by considering a basic language of visual encodings for 
data. These include visual variables such as position, size, angle, 
color, and shape [4, 6, 15]. As noted by Cleveland [7] and Mackinlay 
[15], some encodings are more suitable than others for displaying 
different types of information. For example, position encodings are 
more accurate than length encodings for quantitative data, which in 
turn are more accurate than area encodings. For nominal data, color 
encodings are better than position.  

 
Figure 2. Examples of several scent encodings. From left to right: 1. A slider with visit totals encoded as a bar chart with recency encoded as 
opacity. 2. Checkboxes with star rankings encoded using icons and rank values displayed as text. 3. A list box with dataset sizes encoded using 
opacity and a visited/not visited value encoded using an icon. 4. A tree with author categories encoded using hue and edit totals encoded as text. 

 
 
 

 

We can leverage these encodings in two distinct ways to convey 
information on or within a widget. One approach is to directly alter 
the attributes of the widgets that correspond to a given encoding. For 
e[amSle, a bXWWon¶V coloU could be based on the number of times the 
application state it leads to has been manipulated by users. Because 
widget sizes, shapes, and layouts are typically fixed, only a few of 
the visual variables (hue, saturation, lightness, and texture) can be 
applied directly to the widgets without disrupting the layout and 
impeding usability. However, visual variables such as position and 
length are typically more effective for displaying quantitative data. 
Therefore, as a second option, small visualizations that support these 
encodings can be embedded into the widgets. Examples include bar 
charts over a slider (e.g., Figure 1, [8]) and small, word-sized line 
charts (similar to TXfWe¶V sparklines [19]) integrated with widget text. 

3.4 Modifying Widgets 
Based on these observations, we have selected seven different scent 
encodings to support within our framework.  Direct encodings 
include the hue, saturation, and lightness properties of the widget. 
We also include four types of embedded visualizations: inset text, 
shape/icon, bar chart, and line chart. The examples in Figure 2 show 
several of these encodings applied to standard Swing widgets, while 
Table 1 describes each supported encoding type. We avoid encoding 
scent onto a widgeW¶V e[iVWing We[W labelV, as label formatting is often 
modified by the application to convey highlighting, selection, 
keyboard shortcut combinations and other information. 

3.5 Design Guidelines and Feature Requirements 
Through inspection of the design space of widgets and study of 
related work [15, 18], we have developed a set of guidelines for the 
design of scented widgets.  

Scent Encoding Guidelines 
Modes of scenting should be chosen that maximize comparability 
and consistency across the interface.  More specifically: 

All widgets visualizing the same scent data should use matching 
visual encodings. Rationale: Encoding the same data differently 
across widgets complicates visual comparison. 

Modes of encoding should reinforce semantic relationships between 
the widget scent and encodings in the application. Rationale: 
Conflict between the scent and the other parts of the application will 
lessen the effectiveness of both. For example, avoid encoding scent 
using color if the application already uses color to display unrelated 
information. 

Visualizations showing the same scent data should be scaled 
identically (e.g. linearly, logarithmically, etc.) across all widgets. 
Rationale: Scaling the same type of data differently across widgets 
undermines accurate visual comparison. 

Modes of encoding should respect existing interface conventions. 
Rationale: User interface conventions tend to be well established and 
accepted by users, so scenting cues should not conflict with them.  
For example, a scent encoding should not repurpose text or icons 
commonly used elsewhere in the interface to encode unrelated data. 

Encodings which make some elements markedly more salient than 
others, such as opacity, should be used with discretion. Rationale: If 
a widget is more salient than those around it, it is more likely to be 
used for navigation than its neighbors. Depending on the application, 
such enhancement may or may not be a desirable result. 

Layout Guidelines 
Interfaces should be laid out so that scented widgets are sufficiently 
proximal to allow comparisons between them. Rationale: Proximity 
aids judgments of position-based encodings and visual scent is most 
easily compared when graphic marks are adjacent. 

Scented widgets should be grouped, sized, aligned, and oriented 
similarly in order to provide common axes on which to compare 
scent. Rationale: Without common axes it is difficult to accurately 
compare marks across scented widgets, even if they show the same 
type of data. 

Composition Guidelines 
The overall number and type of scented widgets in a given interface 
should be small enough to allow easy comparison and visual 
tracking of changes. Rationale: The inclusion of too many scented 
widgets (and thus too many scent indicators) is likely to pollute the 
view, increasing cognitive load and making use more difficult. 

Widgets should include identifiers (icons, tooltips, text, or a legend) 
that indicate what the scent cues correspond to. Rationale: It may be 
difficult for new users to discern what the cues indicate. 

Many of these guidelines are addressed by our implementation. We 
deal with concerns about cross-widget consistency by grouping 
similarly-scented widgets and encoding them according to a shared 
configuration. While the distribution and layout of widgets in a user 
interface is clearly within the purview of developers, sizing, 
alignment and scaling can be fixed consistently across these groups.  

4 IMPLEMENTATION 
Using the preceding design analysis as a guide, our scented widgets 
framework provides toolkit-level support with which developers can 
quickly add visual scent cues to existing applications without writing 
a substantial amount of new code. The framework is implemented 
using Java Swing and takes advantage of the SlaWfoUm¶V PlXggable 
Look and Feel functionality, which allows the appearance of a wide 
range of standard interface widgets to be changed at runtime. In this 
section we discuss the design decisions made in our implementation, 
with the goal of providing guidance for developers building their 
own scented widget systems.  

4.1 Rendering and Interaction 
When implementing scented widgets, rendering and interacting with 
individual widgets is a primary concern. Ideally, the components for 
rendering visual scent cues should be implemented in a modular 

Table 1. Scent encodings supported by scented widgets 

Name Description  Example 

Hue Varies the hue of the widget (or of a 
visualization embedded in it)  

 

Saturation Varies the saturation of the widget 
(or of a visualization embedded in it) 

 
 

Opacity Varies the saturation of the widget 
(or of a visualization embedded in it) 

 

Text Inserts one or more small text 
figures into the widget  

 

Icon Inserts one or more small icons into 
the widget. 

 

Bar Chart Inserts one or more small bar chart 
visualizations into the widget 

 

Line Chart Inserts one or more small line chart 
visualizations into the widget 
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Star Plots (aka Radar Charts)
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[K. Schaul]
D. Koop, CSCI 627/490, Fall 2020

http://bl.ocks.org/kevinschaul/8833989
http://bl.ocks.org/kevinschaul/8833989


Star Plot / Radar Chart
• Use: 
- Compare variables 
- Similarities/differences of items 
- Locate outliers 

• Considerations: 
- Order of axes 
- Too many axes cause problems

21

[S. Ribecca]
D. Koop, CSCI 627/490, Fall 2020

https://datavizcatalogue.com/methods/radar_chart.html
https://datavizcatalogue.com/methods/radar_chart.html


Attribute Filtering on Star Plots

22

[Yang et al., 2003]
D. Koop, CSCI 627/490, Fall 2020



Attribute Filtering
• How to choose which attributes should be filtered? 
- User selection? 
- Statistics: similarity measures, attributes with low variance are not as 

interesting when comparing items 

• Can be combined with item filtering

23D. Koop, CSCI 627/490, Fall 2020
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Aggregation
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Aggregation
• Usually involves derived attributes 
• Examples: mean, median, mode, min, max, 

count, sum 
• Remember expressiveness principle: still 

want to avoid implying trends or similarities 
based on aggregation

25D. Koop, CSCI 627/490, Fall 2020

I II III IV

x y x y x y x y

10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58

8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76

13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71

9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84

11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47

14.0 9.96 14.0 8.10 14.0 8.84 8.0 7.04

6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25

4.0 4.26 4.0 3.10 4.0 5.39 19.0 12.50

12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56

7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91

5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89
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I II III IV

x y x y x y x y

10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58

8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76

13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71

9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84

11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47

14.0 9.96 14.0 8.10 14.0 8.84 8.0 7.04

6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25

4.0 4.26 4.0 3.10 4.0 5.39 19.0 12.50

12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56

7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91

5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89

Mean of x 9

Variance of x 11

Mean of y 7.50

Variance of y 4.122

Correlation 0.816
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[F. J. Anscombe]
D. Koop, CSCI 627/490, Fall 2020
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Aggregation: Histograms
• Very similar to bar charts 
• Often shown without space between 

(continuity) 
• Choice of number of bins  
- Important! 
- Viewers may infer different trends based on 

the layout
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[Munzner (ill. Maguire), 2014]
D. Koop, CSCI 627/490, Fall 2020



Aggregation: Histograms
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["The reddit Front Page is Not a Meritocracy", T. W. Schneider]
D. Koop, CSCI 627/490, Fall 2020
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http://toddwschneider.com/posts/the-reddit-front-page-is-not-a-meritocracy/
http://toddwschneider.com/posts/the-reddit-front-page-is-not-a-meritocracy/


Common Distributions
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[Cloudera]
D. Koop, CSCI 627/490, Fall 2020

https://blog.cloudera.com/blog/2015/12/common-probability-distributions-the-data-scientists-crib-sheet/
https://blog.cloudera.com/blog/2015/12/common-probability-distributions-the-data-scientists-crib-sheet/


Binning Scatterplots
• At some point, cannot see density 
• Blobs on top of blobs 
• 2D Histogram is a histogram in 2D encoded 

using color instead of height 
• Each region is aggregated

30D. Koop, CSCI 627/490, Fall 2020



Binning
• Hexagonal bins are more circular 
• Distance to the edge is not as variable 
• More efficient aggregation around the center of the bin

31D. Koop, CSCI 627/490, Fall 2020



Spatial Aggregation

32

[Penn State, GEOG 486]
D. Koop, CSCI 627/490, Fall 2020

30

spatial aggregation

modifiable areal unit problem 
in cartography, changing the boundaries of the 
regions used to analyze data can yield dramatically 
different results

30
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spatial aggregation

modifiable areal unit problem 
in cartography, changing the boundaries of the 
regions used to analyze data can yield dramatically 
different results



Modifiable Areal Unit Problem
• How you draw boundaries impacts the type 

of aggregation you get 
• Similar to bins in histograms 
• Gerrymandering
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[Wonkblog, Washington Post, Adapted from S. Nass]
D. Koop, CSCI 627/490, Fall 2020

Pennsylvania-7

http://www.washingtonpost.com/blogs/wonkblog/wp/2015/03/01/this-is-the-best-explanation-of-gerrymandering-you-will-ever-see/
http://www.washingtonpost.com/blogs/wonkblog/wp/2015/03/01/this-is-the-best-explanation-of-gerrymandering-you-will-ever-see/


Congressional districts drawn to be compact while trying to respect county
borders

How often we'd expect a party to win each of the nation’s 435 seats over the long term — not
specifically the 2018 midterms — based on historical patterns since 2006

CHANCE OF BEING REPRESENTED BY
EITHER PARTY

100% D 100% R

Drawing Different Maps: Compactness
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[A. Bycoffe et al., 538]
D. Koop, CSCI 627/490, Fall 2020

https://projects.fivethirtyeight.com/redistricting-maps/
https://projects.fivethirtyeight.com/redistricting-maps/


EXPECTED SEAT SPLIT

MAP USUALLY DEM. DISTRICTS HIGHLY COMPETITIVE USUALLY REPUBLICAN DEM. GOP

Democratic
gerrymander 250.6 184.4

Proportionally
partisan 214.0 221.0

Majority
minority 209.8 225.2

Highly
competitive 209.4 225.6

Compact
(borders) 203.9 231.1

Compact
(algorithmic) 202.8 232.2

Current 200.6 234.4

Republican
gerrymander 171.3 263.7

263 27 145

174 82 179

169 82 184

94 242 99

155 99 181

151 104 180

168 72 195

139 21 275

Drawing Different Maps
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[A. Bycoffe et al., 538]
D. Koop, CSCI 627/490, Fall 2020

https://projects.fivethirtyeight.com/redistricting-maps/
https://projects.fivethirtyeight.com/redistricting-maps/


Boxplots
• Show distribution 
• Single value (e.g. mean, max, min, quartiles) 

doesn't convey everything 
• Created by John Tukey  
• Show spread and skew of data 
• Best for unimodal data 
• Variations like vase plot for multimodal data 
• Aggregation here involves many different 

marks

36

[Flowing Data]
D. Koop, CSCI 627/490, Fall 2020

http://flowingdata.com/2008/02/15/how-to-read-and-use-a-box-and-whisker-plot/
http://flowingdata.com/2008/02/15/how-to-read-and-use-a-box-and-whisker-plot/


Aggregation: Boxplots

37

[Washington Post, 2015]
D. Koop, CSCI 627/490, Fall 2020

https://www.washingtonpost.com/news/wonk/wp/2015/09/14/this-chart-shows-why-parents-push-their-kids-so-hard-to-get-into-ivy-league-schools/
https://www.washingtonpost.com/news/wonk/wp/2015/09/14/this-chart-shows-why-parents-push-their-kids-so-hard-to-get-into-ivy-league-schools/


! 2 

The first sample comprises the normal scores for a sample of this size, scaled to range 
from 1.0 to 19.0. Sample 2 is a mixture of two identical symmetric clusters of data 
each of size 49 and centered at 7.4 and 12.6, respectively, together with isolated 
values at the ends of the range. Sample 3 is a mixture of 70 values spaced evenly over 
the range, 15 values at 9.5, and 15 values at 10.5. Sample 4 comprises a value at 1.0, 
24 values at 7.4, 50 approximately evenly spaced values ranging from 7.4 to 12.6, and 
25 approximately evenly spaced values ranging from 12.6 to 19.0.  

 
Figure 1: Histograms and box plot: four samples each of size 100 

In an attempt to improve the box plot to show shape information, Benjamini (1988) 
suggested a “histplot”, obtained by varying the width of the box according to the 
density of the data at the median and quartiles, where these densities are estimated 
from a histogram with a small number of bins. Benjamini (1988) also suggested a 
variation called a “vase plot”, in which the linear segments in the histplot are replaced 
by smooth curves based on a kernel density estimate. Hintze and Nelson (1998) 
suggested a further modification called a “violin plot”, which is essentially the same 
as the vase plot, except that it extends to cover the whole range of the data. 

While these methods provide informative and useful displays, in essence they just 
replace the box plot by a kind of histogram, rather than modifying it. The problem 
remains to choose the extent of smoothing, which in turn should depend on the 
sample size.!The box plot has become popular largely because of its simplicity. This 
raises the question: Is there a simple modification of the box plot that provides better 
information about the shape of the distribution, especially bimodality? 

!

Four Distributions, Same Boxplot…
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[C. Choonpradub and D. McNeil, 2005]
D. Koop, CSCI 627/490, Fall 2020



Figure 4: This image sequence shows a Fatal Accident data set of 230,000 data elements at different level of details. The first image shows a
cut across the root node. The last image shows the cut chaining all the leaf nodes. The rest of the images show intermediate cuts at varying
levels-of-detail. (See Color Plates).

Figure 6: Left image shows Iris data set without proximity-based coloring. Right image shows Iris data set with proximity-based coloring
revealing three distinct clusters depicted by concentrations of blue, green and pink lines. (See Color Plates).

Hierarchical Parallel Coordinates
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[Fua et al., 1999]
D. Koop, CSCI 627/490, Fall 2020
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Gurupad Hegde • 3 years ago

Awesome! Please post more such stuff! :)
 1

 • Reply •

Chris Polis   • 3 years agoMod > Gurupad Hegde

Thank you - I'm definitely going to keep posting more so stay tuned! I try to build a new
post every week or two and my focus lately has been on ML and visualization.

 2
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Which visualization library did you use or is it custom!
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K-Means
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[C. Polis, 2014]
D. Koop, CSCI 627/490, Fall 2020

Run

http://www.bytemuse.com/post/k-means-clustering-visualization/
http://www.bytemuse.com/post/k-means-clustering-visualization/


K-Means Issues

41

[D. Robinson, 2015]
D. Koop, CSCI 627/490, Fall 2020

Shape Number of Clusters



Dimensionality Reduction
• Attribute Aggregation: Use fewer attributes (dimensions) to represent items 
• Combine attributes in a way that is more instructive than examining each 

individual attribute 
• Example: Understanding the language in a collection of books 
- Count the occurrence of each non-common word in each book 
- Huge set of features (attributes), want to represent each with an aggregate 

feature (e.g. high use of "cowboy", lower use of "city") that allows clustering 
(e.g. "western") 

- Don't want to have to manually determine such rules 
• Techniques: Principle Component Analysis, Multidimensional Scaling family of 

techniques

42D. Koop, CSCI 627/490, Fall 2020
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Principle Component Analysis (PCA)
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[M. Scholz, CC-BY-SA 2.0]
D. Koop, CSCI 627/490, Fall 2020

http://phdthesis-bioinformatics-maxplanckinstitute-molecularplantphys.matthias-scholz.de/
http://phdthesis-bioinformatics-maxplanckinstitute-molecularplantphys.matthias-scholz.de/
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Principal Component
Analysis
Explained Visually

Tweet  Like 1.3K Share

By Victor Powell

with text by Lewis Lehe

Principal component analysis (PCA) is a technique used to emphasize variation and bring out strong patterns in a dataset. It's often
used to make data easy to explore and visualize.

2D example2D example

First, consider a dataset in only two dimensions, like (height, weight). This dataset can be plotted as points in a plane. But if we want
to tease out variation, PCA finds a new coordinate system in which every point has a new (x,y) value. The axes don't actually mean
anything physical; they're combinations of height and weight called "principal components" that are chosen to give one axes lots of
variation.

Drag the points around in the following visualization to see PC coordinate system adjusts.
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[Principle Component Analysis Explained, Explained Visually, V. Powell & L. Lehe, 2015]
D. Koop, CSCI 627/490, Fall 2020

http://setosa.io/ev/principal-component-analysis/
http://setosa.io/ev/principal-component-analysis/

