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What is wrong with here and how can it be fixed?
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[WTF Visualizations, 2017]
D. Koop, CSCI 627/490, Fall 2020

http://viz.wtf/post/154254744863/weapon-illegibility
http://viz.wtf/post/154254744863/weapon-illegibility


Good: Data magnitude <=> Mark magnitude
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[Flowing Data, 2012]
D. Koop, CSCI 627/490, Fall 2020

https://flowingdata.com/2012/08/06/fox-news-continues-charting-excellence/
https://flowingdata.com/2012/08/06/fox-news-continues-charting-excellence/


Show when the baseline is not zero
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[W. C. Brinton via RJ Andrews]
D. Koop, CSCI 627/490, Fall 2020

See also: "Tear Up Your Baseline" [RJ Andrews]

https://medium.com/data-visualization-society/tear-up-your-baseline-b6b68a2a60f1
https://medium.com/data-visualization-society/tear-up-your-baseline-b6b68a2a60f1
https://medium.com/data-visualization-society/tear-up-your-baseline-b6b68a2a60f1
https://medium.com/data-visualization-society/tear-up-your-baseline-b6b68a2a60f1


Tufte's Lie Factor
• Size of effect = (2nd value - 1st value) / (1st value) 
• Lie factor = (size of effect in graphic) / (size of effect in data) 
• In the graphic:
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[InfoVis Wiki]
D. Koop, CSCI 627/490, Fall 2020

http://www.infovis-wiki.net/index.php?title=Lie_Factor
http://www.infovis-wiki.net/index.php?title=Lie_Factor


Avoid Chartjunk

ongoing, Tim Brey

Extraneous visual elements that distract from the 
message

Avoid Chartjunk

6

Avoid Chartjunk

ongoing, Tim Brey

[T. Brey via A. Lex]
D. Koop, CSCI 627/490, Fall 2020

http://dataviscourse.net
http://dataviscourse.net


No Unjustified 3D
• Occlusion hides information 
• Perspective distortion dangers 
• Tilted text isn't legible 

• Can help with shape perception

7D. Koop, CSCI 627/490, Fall 2020



Threat       Wrong problem

Threat   Wrong task/data abstraction

Threat       Ine!ective encoding/interaction idiom

Threat       Slow algorithm

Validate   Observe and interview target users

Validate   Analyze computational complexity

Validate   Measure system time/memory

Validate   Observe adoption rates

Validate   Test on target users, collect anecdotal evidence of utility
Validate   Field study, document human usage of deployed system

Validate   Qualitative/quantitative result image analysis

Validate   Lab study, measure human time/errors for task

Validate   Justify encoding/interaction design

Implement system

 Test on any users, informal usability study

Validation at each level

8

[Munzner, 2014]
D. Koop, CSCI 627/490, Fall 2020
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Fig. 2: Schematic that shows where the FdS design fits in with the
Genex model of Shneiderman [43] (collect, relate, donate and create)
and the design process of Sanders and Stappers’ [40].

These ideas would certainly adapt and be improved at later stages of
the design process. Nonetheless, the goal of the ‘early’ process is
exploratory. In fact, for the FdS we are not concerned with data col-
lection, but users do need to think about the data, and to consider,
synthesize and consolidate ideas in sheet 1. Users need to think over
the data and to consider the different parts of the data at this stage.
They explore different possible solutions (sheets 2,3 and 4) and finally
plan a prototype.

2.2 Sketching as a planning method for visualization
Many creative industries use sketching as a way to investigate, ex-
plore and plan different possible solutions. E.g., product, fashion and
graphic designers, architects and film-makers all sketch many differ-
ent possible solutions. Heller and Landers provide insights into about
fifty designers’ sketching practices based on excerpts of their sketch-
books [21]. The use of lo-fidelity sketching frees the user from worry-
ing about technical limitations or assumptions and encourages them
to explore different solutions. In fact architectural design was one
of the main inspirations for our work. Tovey writes “[designers use
sketches to] generate concepts, to externalize and visualize problems,
to facilitate problem solving and creative effort, revising and refining
ideas” [46]. In visualization, this has been less formally used. Users
often sketch and plan, but usually don’t follow a method, rather they
do it in an ad hoc way. Recent work by Keefe [26] and Jackson et al.
[23] demonstrate the power of sketching; they explore one designer
generating several solutions, and make comparison to other lo-fidelity
prototyping methods. Sketching is also used by Walny et al. [52],
where users directly sketch the data.

Another inspirational idea from architecture design was the idea of
the parti pris [17] (the big idea). The word comes from the French
prendre parti, a bias or a mind-made-up. In architectural-criticism the
parti is an assumption that informs the design; it is therefore the cen-
tral, most overarching concept that the design is portraying. In other
words, it is pivotal to making the design work. Let’s consider the ex-
ample of a parallel coordinate plot. In this case the parti is the fact
that axis are parallel and the data is plotted as polylines across the
axis. Each sheet of the FdS (apart from the first) have a focus/parti
segment.

Rettig [33] writes, “Lo-fi prototyping works because it effectively
educates developers to have a concern for usability and formative
evaluation, and because it maximizes the number of times you get to
refine your design before you must commit to code”. He encourages it-
eration and refinement at the prototype stage, saying that quality of the
final product comes through iterative refinement: “get the big things
right during lo-fi, and the little things will follow in future iterations”.
Rettig gave users a pragmatic set of instructions for programmers to
develop lo-fi prototypes on paper: assemble a kit (pens, paper, ruler,
scissors, etc.), set a deadline, draw models not illustrations. He also
suggests that one sheet of paper should be used per interface. Then
these paper interfaces could be tested with users. So, prepare the test,

Ideas
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Combine & Refine

Question

Sheet 1

(a)

Layout Information

Discussion
Focus / Parti

Operations

Sheet 2,3,4

(b)

Detail

Layout Information

Focus / Parti

Operations
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(c)

Fig. 3: The FdS sheets. (a) Sheet 1: Generate Ideas, filter, categorize,
combine & refine then question. (b) Sheets 2,3,4 with the five sections
in the 2-row 3-row format; (c) Sheet 5, the realization sheet where
Detail is included instead of Discussion.

Fig. 4: Five stages to the FdS: (S1) meet with client and consider
task; or contemplate task on own. (S2) Ideate and sketch small ideas.
(S3) Sketch and plan three alternative designs. (S4) Consider solutions
with client; or deliberate on own. (S5) Generate realization sheet, and
implement prototype. Discuss with client and re-iterate if necessary.

select users, prepare test scenarios, practice these scenarios, and allo-
cate roles (greeter, facilitator, computer, observers).

Our focus on sketching fits well with other work in the visualization
domain. For instance, Craft and Cairns [11] and Curtis and Vertel-
ney [13] encourage storyboarding and sketching prototypes for rapid
visualization interface development. Roam [34] presents a series of
visual sketching methods as a way to solve problems in business and
help developers crystallize ideas. Buxton et al. [7] encourage sketch-
ing for interface design.

Through sketching the design is recorded, and tells the story of the
fluid, ephemeral evolution of the idea [3]. Users often sketch multiple
designs on the same sheet of paper [18]. Even when the designer uses
a computer to create different 3D models, they often render the output
in a sketchy appearance. Similarly prototype visualization tools can
be rendered in a sketchy appearance (e.g., [28, 55]) while sketching
can also be an input device [42].

3 THE FDS METHODOLOGY

The FdS is a five-stage methodology (Fig. 4) comprising of five sheets
(Fig. 3), each sheet containing five parts. Explicitly, the first sheet is
the brainstorm (ideas) sheet (Fig. 3a); three design sheets (Fig. 3b)
and a realization sheet (Fig. 3c). The latter four sheets are similar in
construction. The methodology is summarized as follows:

1. Five stages. The whole process consists of five stages, (see Fig.
4). (1) the user considers the task (the user meets the client). (2)
The user thinks divergently and considers many alternative ideas.

Five Design Sheet Method
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[J. Roberts et al., 2016]
D. Koop, CSCI 627/490, Fall 2020



Fig. 6: An example of the FdS are shown on the left, with a picture of the final prototype on the right. Created for the Information Visualization
module as part of the MSc course. The student chose to investigate data regarding University access for disabled students.

(a) Variables. List the data variables. What are the parame-
ters? Give them names. What are dependent and indepen-
dent variables?

(b) Types of data. What data-types are in the data? How are
they stored? What is the access to the data (API, JSON
file etc.)? What data-structure holds the data (e.g., is it
hierarchical)?

(c) Categories. Are the variables categorical (nominal or or-
dinal or ranks), are they quantitative (discrete or continu-
ous)?

(d) Temporal. Is the data streaming data? How was it stored
(all at one time or over several years)?

(e) Range & distribution. What is the distribution of the data?
Few values, small size, evenly spread, sparse or dense?

4. Resources. Finally the user needs to gather resources together
to create the FdS, e.g., colored pens or pencils, ruler and paper.

3.3 FdS Sheet 1: Ideation
Ideation is the process of creating new ideas. But where do ideas come
from? How do users actually think up ten, twenty or a hundred ideas?
How do new concepts get ‘born’? The five parts of sheet 1 leads the
user to think divergently, to first generate ideas, then filter and cate-
gorize them, followed by combining and refining them, before finally
questioning their suitability to the task, see Fig. 3

Ideas emerge by thinking, talking with other people, reading rele-
vant literature, gaining inspiration from other domains, resting and not
rushing, reflecting and collaborating. This theory is summarized in
the following literature: Relax: Good ideas come through long, slow
and careful thought, says Johnson [25] (he talks about a ‘slow hunch’).
Re-work: Webb [57] says we should gather-material, think, relax and
re-work. This reflection stage is extremely important in many domains
(we often encourage our students to write their work and then leave it
overnight before reading it again). Provoke: e.g., ask difficult ques-
tions, think of impossible solutions. Persist: Shneiderman [43] agrees
and says it’s “1% inspiration and 99% perspiration”. Iterate & Re-

fine: evaluate, revisit assumptions and re-design [10]. Different per-

sonalities: De Bono encourages us to take on different personalities in
his six thinking hats [15]. Collaborate: Work with different people,
with different skills and knowledge [48]. Dissimilar ideas: Glue dis-
similar ideas together. E.g., Johnson [25] suggests finding dissimilar
ideas and joining them together and through this joining up of differ-
ent thoughts new ideas can be formed. de Bono’s ‘green-hat’ suggests
using random pages of a book to inspire [14]. Transference: Look
to other subjects for inspiration, e.g., biomimicry [38]. Research:

Discover every idea and every solution so far. Look at other ideas
and learn from others’ work [43]. Metaphors: Generate abstractions
and use analogies. Metaphors help users to instantly understand the
corresponding idea [38]. Ziemkiewicz and Kosara [58] suggest that
metaphors work both ways: they both inspire and are needed for in-
terpretation. Make mistakes: Good ideas can come from serendipity.
Either try to fix these mistakes or use the result to your favor. There are
well written examples where scientists make errors or have accidents
and it is these that are actually good ideas: e.g., sticky-note glue or the
discovery of penicillin [54]. Reverse/Invert: Reverse, flip or invert an

idea to generate others.
As the user goes through this exercise they need to think-through

different possibilities, but also keep their mind on the task. Usually the
user does each action in turn, and decides whether they have completed
it to a satisfactory level before moving onto the next task. But the very
nature of considering the next task may put them back to an earlier
stage. E.g., by categorizing the ideas the user may realize that there is
a missing category and thus move back to drawing more ideas. That
themselves can be categorized. Indeed the point of each stage is not
only divergent and convergent thinking, but also to provoke new ideas
and increase the potential set of ideas.

1. Ideate. Users need to sketch as many ideas as possible. These
are ‘mini-ideas’. They are lots of little drawings. While they
could be full solutions, they are more likely to be ‘insufficiently
thought out’ or ‘half-baked’ ideas, short concepts, or even wacky
concepts. At the start, the point is to articulate different potential
ideas. The thoughts should be driven by the task and the user
should have ‘half an eye’ on the goal (to develop a tool that will
visualize data), and should hold off criticizing the ideas because
this will be done later. When a substantial1 amount of ideas have
been made the user moves on to filter.

2. Filter. Users should start to remove any duplicated ideas, or con-
cepts that are irrelevant or absolutely impossible. Users can use
these negative thoughts positively, such that if they are impossi-
ble then they should consider how they could they be fixed. In
practice the sketches are being annotated rather than fully deleted
(a single line crossed through a design will suffice). When con-
sidering these aspects, users need to think what is suitable to the
task, and how new ideas can be generated from these deletions
or duplications.

3. Categorize. Users need to consider what is similar and what is
different. Annotation can be used to group similar ideas together.
Categories change and develop, therefore users should not worry
about the fine details of categorization: it is merely a tool to
facilitate the exploration of ideas. While this operation converges
(reduces) the designs, users should consider ‘what is missing’.
E.g., is there another category of designs that should be present?
What is this category? Is it relevant?

4. Combine & refine. Users need to organize the mini-ideas into
bigger solutions. For instance, look to develop Multiple Coor-
dinate Views [35]. Think what visualizations complement each
other. E.g., spatial (map) with temporal (timeline), or overview
with detail. Indeed the Space-time cube is an example of com-
bining ideas [1]. Refine the ideas, making sure they use suitable
colors [19] or other best practice [53]. Draw new combinations,
look to refining or changing any designs; start to consider which
three ideas will be planned in more detail on Sheets 2,3,4. Draw
or annotate circles around three possible choices.

5. Question. Users should reflect on what has been created. Do so-
lutions meet the task? Are they effective designs? Do they mis-

1It is difficult to quantify the number of mini-ideas required; but the more
ideas that are sketched, the easier the next stages of filter, categorize etc. will
be. Three is too few; 10 may be ok; 20 would be better.

Sheets 2-4
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[J. Roberts et al., 2016]
D. Koop, CSCI 627/490, Fall 2020



Project Design
• Work on turning your visualization ideas into designs 
• Turn in: 
- Three Designs Sketches 
- One Bad Design 
- Progress on Implementation 

• Options: 
- Try vastly different options 
- Refine an initial idea 

• Due Friday, Nov. 13

11D. Koop, CSCI 627/490, Fall 2020



Assignment 4
• Geospatial Visualizations & Treemap 
- Choose colormaps carefully 
- Add legend 

• Due Nov. 2

12D. Koop, CSCI 627/490, Fall 2020
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Guidelines for Interaction Design

D. Koop, CSCI 627/490, Fall 2020



Interaction
• The view changes over time 
• Changes can affect almost any aspect of the visualization 
- encoding 
- arrangement 
- ordering 
- viewpoint 
- attributes being shown 
- aggregation level

14D. Koop, CSCI 627/490, Fall 2020



Manipulate

Change over Time

Select

Navigate

Item Reduction

Zoom

Pan/Translate

Constrained

Geometric or Semantic

Attribute Reduction

Slice

Cut

Project

Interaction Overview
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[Munzner (ill. Maguire), 2014]
D. Koop, CSCI 627/490, Fall 2020
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Sorting
• Allow user to find patterns by reordering the data 
• Do this with tabular data all the time 
• Note that categorical attributes don't really need sorting 
- We can compare these attributes no matter what order 
- Instead, sort categorical attribute based on an ordered attribute

16D. Koop, CSCI 627/490, Fall 2020



Example: LineUp

17

[Gratzl et al., 2013]
D. Koop, CSCI 627/490, Fall 2020

http://caleydo.github.io/projects/lineup/
http://caleydo.github.io/projects/lineup/


Example: LineUp

17

[Gratzl et al., 2013]
D. Koop, CSCI 627/490, Fall 2020

http://caleydo.github.io/projects/lineup/
http://caleydo.github.io/projects/lineup/


Slope Graphs
• Connection marks 
• Link the same item appearing in different rows 
• Show changes for different attributes (parallel coordinates idea) but with one 

highlighted item 
• Also called bump charts

18D. Koop, CSCI 627/490, Fall 2020



Animation: Jump Cut vs. Animated Transitions

19D. Koop, CSCI 627/490, Fall 2020



Animation: Jump Cut vs. Animated Transitions

19D. Koop, CSCI 627/490, Fall 2020



Animation: Jump Cut vs. Animated Transitions

19D. Koop, CSCI 627/490, Fall 2020



Animation: Jump Cut vs. Animated Transitions

19D. Koop, CSCI 627/490, Fall 2020



Side-by-side views

20D. Koop, CSCI 627/490, Fall 2020



Side-by-side views

20D. Koop, CSCI 627/490, Fall 2020



Animated Transitions

21

[M. Bostock]
D. Koop, CSCI 627/490, Fall 2020

http://bl.ocks.org/mbostock/3943967
http://bl.ocks.org/mbostock/3943967


Animated Transitions

21

[M. Bostock]
D. Koop, CSCI 627/490, Fall 2020

http://bl.ocks.org/mbostock/3943967
http://bl.ocks.org/mbostock/3943967


Animated Transitions
• "Jump cuts" are hard to follow 
• Animations help users maintain sense of context between two states 
• Empirical study showed that they work (Heer & Robertson, 2007)

22D. Koop, CSCI 627/490, Fall 2020



Studying Animated Transitions

23

[Heer and Robertson, 2007]
D. Koop, CSCI 627/490, Fall 2020

http://vis.stanford.edu/papers/animated-transitions
http://vis.stanford.edu/papers/animated-transitions


Studying Animated Transitions

23

[Heer and Robertson, 2007]
D. Koop, CSCI 627/490, Fall 2020

http://vis.stanford.edu/papers/animated-transitions
http://vis.stanford.edu/papers/animated-transitions


Design Considerations
• Based on Tversky et al.'s 

Congruence and Apprehension 
Principles 

• Congruence (Expressiveness): 
- Use consistent semantic-syntactic 

mappings  
- Respect semantic 

correspondence  
- Avoid ambiguity  

• Apprehension (Effectiveness): 
- Group similar transitions  
- Minimize occlusion  
- Maximize predictability  
- Use simple transitions  
- Use staging for complex 

transitions  
- Transitions as long as needed, but 

no longer

24

[Heer and Robertson, 2007]
D. Koop, CSCI 627/490, Fall 2020

http://vis.stanford.edu/papers/animated-transitions
http://vis.stanford.edu/papers/animated-transitions


Experiment 1 (Syntactic)
• Object Tracking: Follow objects across a transition and identify the locations 

of the objects in the final graphic 
- Tests: bar chart to donut chart, stacked to grouped bars, sorting a bar 

chart, scatter plot to bar chart, timestep in a scatterplot 
- Either a jump cut or an animated transition 
- Users pick highlighted elements after transition (measure #pixels from correct)

25

[Heer and Robertson, 2007]
D. Koop, CSCI 627/490, Fall 2020

The dependent measure was average error, measured as the 
aYeUage Si[eO diVWaQce fURP Whe ORcaWiRQ Rf VXbMecWV¶ mouse clicks to 
the respective target objects. Error was computed optimistically, 
such that if participants accidentally clicked the targets in reverse 
order their error rate would not be adversely affected. 

5.1.1 Results 
The results for animation conditions are shown in Figure 6, finding a 
strong advantage for animation. Repeated Measures ANOVA found 
significant differences at the .05 level for each transition type 
(F(2,286) >= 22.03, p < 0.001). Post-hoc comparisons between 
animation and staged animations using FiVheU¶V LSD WeVW ZeUe 
significant at the .05 level for the Zoom & Filter (p = 0.026) and 
Timestep Scatter Plot (p = 0.002) conditions. Sort Bars (p = 0.051) 
and Bar to Donut (p = 0.071) differences were significant at the .10 
level. Timestep Scatter Plot is the only transition in which staged 
animation has more error than direct animation. In this case, there 
were two transitions (a rescale and then movement) in a short time 
period, potentially compounding opportunity for error. 

Analysis across the size condition revealed that tracking error 
increased with size in all conditions except the Stacked to Grouped 
Bars transition. Repeated Measures ANOVA results for all transition 
types except Stacked to Grouped Bars, Zoom & Filter, and Timestep 
Scatter Plot were significant at the .05 level (F(2,143) >= 19.13, p < 
0.001). Increasing the number of elements noticeably increased error 
rates in the Bar to Donut transitions when labels were removed, but a 
similar interaction did not take place in the Sort Bars transition. 

5.2 Experiment 2: Estimating Changing Values 
Our second experiment focused on the semantic level of analysis. 
Subjects were asked to follow a single target across a transition and 
estimate the percentage change in value in the underlying data. The 
goal was to test the hypothesis that animation facilitates graphical 
perception of changing values over time. Experiment 2 used the 
same 3 x 2 within-subjects design as before. However, Experiment 2 
involved only four transitions: timesteps in Scatter Plot, Grouped 
Bars, Stacked Bars, and Donut Chart displays. Subjects performed 6 
replications of the 3*2*4=24 cells for a total of 144 trials. 

Staged animation for Scatter Plot and Grouped Bars conditions 
consisted of axis rescalings (if needed) followed by timestep 
animations. In the Stacked Bars and Donut Chart conditions we 
tested highly staged animations, such that objects never change 
position and value simultaneously. For Stacked Bars, this meant that 
each stack level would update separately, starting from the top stack 
sequentially down to the bottom stack. For Donut Charts, this 
involved the multi-stage animations of Figure 3. 

Figure 5 depicts a sample trial for Experiment 2. Subjects were 
shown an initial graphic for 3 seconds before transition onset, with 
only a single target highlighted. Animations were lengthened to 2 
seconds in this experiment to comfortably accommodate the multi-
staged animations. The display was masked after 3 seconds, at which 
point a panel of buttons appeared with which the user could enter 
WheiU eVWiPaWe Rf Whe WaUgeW¶V SeUceQWage chaQge iQ YaOXe. The bXWWRQV 
ranged from -90% to +90% by increments of 20% and indicated 
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Figure 6. Experiment 1 Results for Animation Conditions. Animation is significantly better than static across all conditions. Except for 
Timestep Scatter Plot, staged animation outperforms animation. Post-hoc analysis finds significant differences between animation and staged 
animation at the .05 level for Zoom & Filter and Timestep Scatter transitions and at the .10 level for Bar to Donut and Sort Bars transitions. 
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Figure 7. Experiment 2 Results for Animation Conditions. Left: For Scatter Plot and Grouped Bars conditions, animation significantly 
outperforms static transitions. Staged animation outperforms animation, but not significantly so. Stacked Bars show no significant difference, 
while animation is significantly better than static transitions and staged animation in the Donut Chart. Right: The total number of unknown (?) 
responses was higher for static transitions, though occurred for animation conditions when axis rescaling was performed. 
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Figure 8. Preference Survey Results. Overall, staged animation is preferred to animation, which is preferred to static transitions. Statistically 
significant differences are found for all transition types. Post-hoc analysis finds that preference for staged animation is significant at the .05 level 
for all transitions except the Timestep Stacked Bars and Timestep Donut conditions, in which an extreme form of staging was applied. 

http://vis.stanford.edu/papers/animated-transitions
http://vis.stanford.edu/papers/animated-transitions


Experiment 2 (Semantic)
• Estimating Changing Values: Follow a single target across transition and 

estimate the percentage change in value 
- Tests: axis rescaling + timestep animations 
- In stacked bars, each stack level updates separately, donut charts are multi-stage 
- Users asked to enter an estimate of change (increments of 20% from -90% 

to 90% or click "?" for no idea)
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[Heer and Robertson, 2007]
D. Koop, CSCI 627/490, Fall 2020

The dependent measure was average error, measured as the 
aYeUage Si[eO diVWaQce fURP Whe ORcaWiRQ Rf VXbMecWV¶ mouse clicks to 
the respective target objects. Error was computed optimistically, 
such that if participants accidentally clicked the targets in reverse 
order their error rate would not be adversely affected. 

5.1.1 Results 
The results for animation conditions are shown in Figure 6, finding a 
strong advantage for animation. Repeated Measures ANOVA found 
significant differences at the .05 level for each transition type 
(F(2,286) >= 22.03, p < 0.001). Post-hoc comparisons between 
animation and staged animations using FiVheU¶V LSD WeVW ZeUe 
significant at the .05 level for the Zoom & Filter (p = 0.026) and 
Timestep Scatter Plot (p = 0.002) conditions. Sort Bars (p = 0.051) 
and Bar to Donut (p = 0.071) differences were significant at the .10 
level. Timestep Scatter Plot is the only transition in which staged 
animation has more error than direct animation. In this case, there 
were two transitions (a rescale and then movement) in a short time 
period, potentially compounding opportunity for error. 

Analysis across the size condition revealed that tracking error 
increased with size in all conditions except the Stacked to Grouped 
Bars transition. Repeated Measures ANOVA results for all transition 
types except Stacked to Grouped Bars, Zoom & Filter, and Timestep 
Scatter Plot were significant at the .05 level (F(2,143) >= 19.13, p < 
0.001). Increasing the number of elements noticeably increased error 
rates in the Bar to Donut transitions when labels were removed, but a 
similar interaction did not take place in the Sort Bars transition. 

5.2 Experiment 2: Estimating Changing Values 
Our second experiment focused on the semantic level of analysis. 
Subjects were asked to follow a single target across a transition and 
estimate the percentage change in value in the underlying data. The 
goal was to test the hypothesis that animation facilitates graphical 
perception of changing values over time. Experiment 2 used the 
same 3 x 2 within-subjects design as before. However, Experiment 2 
involved only four transitions: timesteps in Scatter Plot, Grouped 
Bars, Stacked Bars, and Donut Chart displays. Subjects performed 6 
replications of the 3*2*4=24 cells for a total of 144 trials. 

Staged animation for Scatter Plot and Grouped Bars conditions 
consisted of axis rescalings (if needed) followed by timestep 
animations. In the Stacked Bars and Donut Chart conditions we 
tested highly staged animations, such that objects never change 
position and value simultaneously. For Stacked Bars, this meant that 
each stack level would update separately, starting from the top stack 
sequentially down to the bottom stack. For Donut Charts, this 
involved the multi-stage animations of Figure 3. 

Figure 5 depicts a sample trial for Experiment 2. Subjects were 
shown an initial graphic for 3 seconds before transition onset, with 
only a single target highlighted. Animations were lengthened to 2 
seconds in this experiment to comfortably accommodate the multi-
staged animations. The display was masked after 3 seconds, at which 
point a panel of buttons appeared with which the user could enter 
WheiU eVWiPaWe Rf Whe WaUgeW¶V SeUceQWage chaQge iQ YaOXe. The bXWWRQV 
ranged from -90% to +90% by increments of 20% and indicated 

0

50

100

150

200

250

Bar to Donut 

(With Labels)

Bar to Donut 

(No Labels)

Stacked to 

Grouped Bars

Sort Bars (With 

Labels)

Sort Bars (No 

Labels)

Scatter Plot to 

Bar Chart

Zoom & Filter 

Scatter Plot

Timestep 

Scatter Plot

Av
er

ag
e 

Er
ro

r 
(in

 p
ix

el
s)

Static

Animation

Staged Animation

 
Figure 6. Experiment 1 Results for Animation Conditions. Animation is significantly better than static across all conditions. Except for 
Timestep Scatter Plot, staged animation outperforms animation. Post-hoc analysis finds significant differences between animation and staged 
animation at the .05 level for Zoom & Filter and Timestep Scatter transitions and at the .10 level for Bar to Donut and Sort Bars transitions. 
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Figure 7. Experiment 2 Results for Animation Conditions. Left: For Scatter Plot and Grouped Bars conditions, animation significantly 
outperforms static transitions. Staged animation outperforms animation, but not significantly so. Stacked Bars show no significant difference, 
while animation is significantly better than static transitions and staged animation in the Donut Chart. Right: The total number of unknown (?) 
responses was higher for static transitions, though occurred for animation conditions when axis rescaling was performed. 
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Figure 8. Preference Survey Results. Overall, staged animation is preferred to animation, which is preferred to static transitions. Statistically 
significant differences are found for all transition types. Post-hoc analysis finds that preference for staged animation is significant at the .05 level 
for all transitions except the Timestep Stacked Bars and Timestep Donut conditions, in which an extreme form of staging was applied. 
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Results/Conclusions
• User Preferences: Staged animation > animation > static transitions 

• Animation improves graphical perception 
• Staging is better (do axis rescaling before value changes) 
• Avoid axis rescaling when possible
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The dependent measure was average error, measured as the 
aYeUage Si[eO diVWaQce fURP Whe ORcaWiRQ Rf VXbMecWV¶ mouse clicks to 
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period, potentially compounding opportunity for error. 
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Scatter Plot were significant at the .05 level (F(2,143) >= 19.13, p < 
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Subjects were asked to follow a single target across a transition and 
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goal was to test the hypothesis that animation facilitates graphical 
perception of changing values over time. Experiment 2 used the 
same 3 x 2 within-subjects design as before. However, Experiment 2 
involved only four transitions: timesteps in Scatter Plot, Grouped 
Bars, Stacked Bars, and Donut Chart displays. Subjects performed 6 
replications of the 3*2*4=24 cells for a total of 144 trials. 

Staged animation for Scatter Plot and Grouped Bars conditions 
consisted of axis rescalings (if needed) followed by timestep 
animations. In the Stacked Bars and Donut Chart conditions we 
tested highly staged animations, such that objects never change 
position and value simultaneously. For Stacked Bars, this meant that 
each stack level would update separately, starting from the top stack 
sequentially down to the bottom stack. For Donut Charts, this 
involved the multi-stage animations of Figure 3. 

Figure 5 depicts a sample trial for Experiment 2. Subjects were 
shown an initial graphic for 3 seconds before transition onset, with 
only a single target highlighted. Animations were lengthened to 2 
seconds in this experiment to comfortably accommodate the multi-
staged animations. The display was masked after 3 seconds, at which 
point a panel of buttons appeared with which the user could enter 
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Figure 6. Experiment 1 Results for Animation Conditions. Animation is significantly better than static across all conditions. Except for 
Timestep Scatter Plot, staged animation outperforms animation. Post-hoc analysis finds significant differences between animation and staged 
animation at the .05 level for Zoom & Filter and Timestep Scatter transitions and at the .10 level for Bar to Donut and Sort Bars transitions. 
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Figure 7. Experiment 2 Results for Animation Conditions. Left: For Scatter Plot and Grouped Bars conditions, animation significantly 
outperforms static transitions. Staged animation outperforms animation, but not significantly so. Stacked Bars show no significant difference, 
while animation is significantly better than static transitions and staged animation in the Donut Chart. Right: The total number of unknown (?) 
responses was higher for static transitions, though occurred for animation conditions when axis rescaling was performed. 
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Figure 8. Preference Survey Results. Overall, staged animation is preferred to animation, which is preferred to static transitions. Statistically 
significant differences are found for all transition types. Post-hoc analysis finds that preference for staged animation is significant at the .05 level 
for all transitions except the Timestep Stacked Bars and Timestep Donut conditions, in which an extreme form of staging was applied. 
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Change Blindness
• https://www.youtube.com/watch?v=uO8wpm9HSB0
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Selection
• Selection is often used to initiate other changes 
• User needs to select something to drive the next change 
• What can be a selection target? 
- Items, links, attributes, (views) 

• How? 
- mouse click, mouse hover, touch 
- keyboard modifiers, right/left mouse click, force 

• Selection modes: 
- Single, multiple 
- Contiguous?

29D. Koop, CSCI 627/490, Fall 2020



Highlighting
• Selection is the user action 
• Feedback is important! 
• How? Change selected item's visual encoding 
- Change color: want to achieve visual popout 
- Add outline mark: allows original color to be preserved 
- Change size (line width) 
- Add motion: marching ants
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Highlighting
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Selection Outcomes
• Selection is usually a part of an action sequence 
• Can filter, aggregate, reorder selected items

32D. Koop, CSCI 627/490, Fall 2020



Responsiveness Required
• Delays are perceived by users 
• Visual feedback  
- Show the user they did something (highlighting, etc) 
- Interaction should happen quick! 

• Latency: mouse click versus mouse hover 
• Popup versus detail displays

33D. Koop, CSCI 627/490, Fall 2020



Interaction Latency
• The Effects of Interactive Latency on Exploratory Visual Analysis,  

Z. Liu and J. Heer, 2014 
• Brush & link, select, pan, zoom 

• 500ms added latency causes significant cost 
- decreases user activity and dataset coverage 
- reduces rate of observations, generalizations, and hypotheses

34D. Koop, CSCI 627/490, Fall 2020

3.2 Latency Conditions

We considered multiple choices when designing our latency condi-
tions. One approach is to include multiple latencies in small incre-
ments, which is useful for identifying time scale thresholds for each
interactive operation. Assessing thresholds, however, is not the fo-
cus of our study, and often requires conducting studies with highly-
controlled, low-level tasks. We are more interested in understanding
the effects of latency on various dimensions of exploratory visual anal-
ysis. Thus a more ecologically valid setting, in which users perform
open-ended exploratory analysis, is appropriate. However, studying
ecologically valid behavior imposes practical constraints. Exploratory
visual analysis is a complex process, requiring careful analysis of both
quantitative interactive event log data and qualitative data concerning
insight discovery. We also anticipate that datasets with different se-
mantics can lead to different user behaviors, so it is necessary to in-
clude dataset and visualization configuration as a factor and repeat the
latency conditions in more than one analysis scenario. As a result, we
decided to use a 2 (datasets) x 2 (latency conditions) mixed design.

Table 2 summarizes the latency for the primary interactive opera-
tions supported in imMens (brushing and linking, selecting, panning
and zooming) in the two latency conditions. In the control condition,
the latency is simply the time taken by imMens to fetch data tiles,
perform aggregation (roll-up) queries and re-render the display. In the
delay condition, we injected an additional 500 milliseconds for each of
these operations. We experimented with different delays in pilot stud-
ies. Initially we chose to inject an additional delay of 1 second, based
on the representative latencies of related data-processing systems. Our
pilot subjects found the system unusable, especially for operations like
brushing and linking. We thus reduced the additional delay to 500ms.
Since there is little prior work on the time scales of different interactive
operations in visual analysis, we applied the same amount of delay for
all four operations to see if the operations have varying sensitivity to
the same delay.

To ensure the usability of the system in the delay condition, we im-
plemented throttling and debouncing in imMens. Throttling prevents
repeated firings of the same event. For example, mouse movements
within the same bar only trigger a single brushing event. Debouncing
maintains a queue of events being fired, delays processing by 500ms,
and drops unprocessed events when a new event of the same kind ar-
rives. The injected delay per operation thus does not result in a grow-
ing accumulation of unprocessed events, preventing cascading delays
and thus substantial usability problems.

Both log transform and color scale adjustment are client-side ren-
dering operations that do not incur data processing latency. We chose
not to inject delays into these two operations to maintain ecological
validity. It is also beneficial to include both low- and high-latency
operations so that we can examine if subjects preferentially use low-
latency operations in favor of higher-latency ones.

3.3 Datasets and Visualizations

We use two publicly available datasets from different domains. One
contains 4.5 million user check-ins on Brightkite [13], a location-
based check-in service similar to Foursquare, over a period of two
years. We visualize this dataset using five linked components (Figure
1(a)): a multi-scale geographic heatmap showing the locations of the
checkins, three histograms showing the number of check-ins aggre-
gated by month, day and hour, and a bar chart showing the number
of check-ins by the top 30 travelers whose check-ins span the greatest
geographic bounding box. The geographic heatmap has 8 zoom levels.

The other dataset consists of 140 million records about the on-time
performance of domestic flights in the US from 1987 to 2008 [9]. Sub-
jects explore this dataset using four linked visualizations (Figure 1(b)):
a binned scatterplot showing departure delay against arrival delay, two
bar charts showing the number of flights by carrier and year, and a his-
togram showing the distribution of flights across months. The binned
scatterplot has 5 zoom levels.

(a) Five coordinated visualizations showing geographical and temporal dis-
tribution of user checkins and top users.

(b) Four linked visualizations showing departure and arrival delays, carriers,
yearly and monthly distribution of flights.

Fig. 1. Visualizations for the datasets used in the study.

Operation Control Condition Delay Condition

brush & link 20 ms 520 ms
select 20 ms 520 ms
pan 100 ms 600 ms

zoom 1000 ms 1500 ms

Table 2. Average latencies for interactive operations, across conditions.

3.4 Study Procedure
We recruited 16 subjects from the San Francisco Bay Area. All par-
ticipants had experience analyzing data using systems such as Excel,
R and Tableau. We instructed the participants to perform two analysis
sessions, one dataset each. Every participant experienced both latency
conditions, but not all combinations of latency and dataset; the same
dataset cannot be reused for different latency conditions due to learn-
ing effects. For each subject, one dataset had the default latency and
the other dataset had the injected 500 millisecond delay. To control
for order and learning effects, half of the subjects experienced delay
in the first session and the other half experienced delay in the second
session. The order of the dataset analyzed was also counterbalanced.

We first gave each subject a 15-minute tutorial on imMens for each
of the two analysis scenarios, teaching them how to interact with the
visualizations under the respective latency condition. Subjects then
spent approximately one hour exploring both datasets. They could
spend a maximum of 30 minutes on a single dataset, but could stop
their analysis at any time if they felt nothing more could be found. At
the end of each study, we conducted an exit interview. We did not
inform the subjects about the injected delay in one of the two sessions.

We considered carefully the challenge of evaluating subjects’ per-
formance when designing the study procedure. Compared with solv-
ing a tightly-specified problem, visual analysis is open-ended and
lacks clear-cut performance metrics. To this end, we were inspired
by the insight-based evaluation methodology proposed by Saraiya et
al. [37, 38]. A fundamental premise of visualization research is that
“the purpose of visualization is insight, not pictures” [10]. Insight-
based evaluations collect qualitative data about the knowledge discov-
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Navigation
• Fix the layout of all visual elements but provide methods for the viewpoint to 

change 
• Camera analogy: only certain features visible in a frame 
- Zooming 
- Panning (aka scrolling) 
- Translating 
- Rotating (rare in 2D, important in 3D)
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Zooming
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Geometric Zooming
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Zooming
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Semantic Zooming
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Zooming
• Geometric Zooming: just like a camera 
• Semantic Zooming: visual appearance of objects can change at different 

scales 
• LiveRAC Example: 

(focus + context)

42

[McLachlan et al., 2008]
D. Koop, CSCI 627/490, Fall 2020

(a) (b)

Figure 3. LiveRAC shows a full day of system management time-series data using a reorderable matrix of area-aware

charts. Over 4000 devices are shown in rows, with 11 columns representing groups of monitored parameters. (a): The

user has sorted by the maximum value in the CPU column. The first several dozen rows have been stretched to show

sparklines for the devices, with the top 13 enlarged enough to display text labels. The time period of business hours

has been selected, showing the increase in the In pkts parameter for many devices. (b): The top three rows have been

further enlarged to show fully detailed charts in the CPU column and partially detailed ones in Swap and two other

columns. The time marker (vertical black line on each chart) indicates the start of anomalous activity in several of

spire’s parameters. Below the labeled rows, we see many blocks at the lowest semantic zoom level, and further below

we see a compressed region of highly saturated blocks that aggregate information from many charts.

as the minimum, maximum, or average of the time-series.
Rows can be sorted by device names or metadata such as lo-
cation, customer, or other groupings. Columns can also be
reordered by the user.

Principle: multiple views are most effective when coor-

dinated through explicit linking. The principle of linked
views [15] is that explicit coordination between views en-
hances their value. In LiveRAC, as the user moves the cur-
sor within a chart, the same point in time is marked in all
charts with a vertical line. Similarly, selecting a time seg-
ment in one chart shows a mark in all of them. This tech-
nique allows direct comparison between parameter values
at the same time on different charts. In addition, people can
easily correlate times between large charts with detailed axis
labels, and smaller, more concise charts.

Assertion: showing several levels of detail simultane-

ously provides useful high information density in con-

text. Several technique choices are based on this assertion.
First, LiveRAC uses stretch and squish navigation, where
expanding one or many regions compresses the rest of the
view [11, 17]. The accompanying video shows the look and
feel of this navigation technique. The stretching and squish-
ing operates on rectangular regions, so expanding a single
chart also magnifies the entire row for the device it repre-
sents, and the entire column for the parameters that it shows.
The edges of the display are fixed so that all cells remain
within the visible area, as opposed to conventional zoom-
ing where some regions are pushed off-screen. There are
rapid navigation shortcuts to zoom a single cell, a column,

an aggregated group of devices, the results of a search, or to
zoom out to an overview. Users can also directly drag grid
lines or resize freely drawn on-screen rectangles. Naviga-
tion shortcuts can also be created for any arbitrary grouping,
whose cells do not need to be contiguous. This interaction
mechanism affords multiple focus regions, supporting mul-
tiple levels of detail.

Second, charts in LiveRAC dynamically adapt to show vi-
sual representations adapted in each cell to the available
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parameter time-series. In Figure 3, the largest charts have
multiple overlaid curves and detailed axis and legend labels.
Smaller charts show fewer curves and less labeling, and at
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period is indicated with a red dot, the minimum with a blue
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Navigation Constraints
• Unconstrained navigation: walking around in the world or an immersive 3D 

environment 
- Fairly standard in computer games to go where you want 
- Constrained by walls, objects (collision detection) 

• Constrained navigation: 
- 3D: camera must be right-side up 
- Limit pan/zoom to certain areas 
- Comes up often with multiple views: want to show an area in one view that 

corresponds to a selection in another view
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van Wijk Smooth Zooming
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Multiple Views
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Multiple Views
• Why have just one visualization? 
• Sometimes data is best examined in more than one view 
- Clutter/visual overload 
- Different attributes (cannot show all attributes in one view) 
- Different scales (task requires overview or detail) 
- Different encodings (no single encoding is optimal for all tasks) 

• Eyes Beat Memory (Ch. 6) 
- Aiding working memory:  

side-by-side/layers > animated > jump cuts 
- Showing all visual elements at once → don't need to remember
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Multiple Views
• Big questions: 
- How to partition display or layer views? 
- How to coordinate views (e.g. navigation, selection)? 
- What data is shared?

47D. Koop, CSCI 627/490, Fall 2020



Design Space of Composite Visualization
• Composite visualization views (CVVs) 
- Includes Coordinated multiple views (CMV) 
- + More! 

• Design Patterns: 
- Juxtaposition: side-by-side 

- Superimposition: layers 

- Overloading: vis meshed with another 

- Nesting: vis inside a vis (recursive vis) 

- Integration: "merge" views + links
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ABSTRACT

We propose the notion of composite visualization views (CVVs)
as a theoretical model that unifies the existing coordinated mul-
tiple views (CMV) paradigm with other strategies for combining
visual representations in the same geometrical space. We identify
five such strategies—called CVV design patterns—based on an ex-
tensive review of the literature in composite visualization. We go
on to show how these design patterns can all be expressed in terms
of a design space describing the correlation between two visualiza-
tions in terms of spatial mapping as well as the data relationships
between items in the visualizations. We also discuss how to use this
design space to suggest potential directions for future research.

Index Terms: H.5.1 [Information Systems]: Multimedia Infor-
mation Systems—Animations; H.5.2 [Information Systems]: User
Interfaces; I.3 [Computer Methodologies]: Computer Graphics

1 INTRODUCTION

While the design space of visual representations is far from ex-
hausted, it is clear that it is becoming increasingly difficult to de-
velop entirely novel visual representations that significantly extend
the existing vocabulary of such representations in our field. It is
also clear that there is generally no visual representation that is
obviously superior for a given dataset; all visual representations
have strengths and weaknesses. In recent years, efforts have been
made towards combining different visualizations to balance these
strengths and weaknesses. This also addresses novelty: new visual
representations can be generated by combining existing ones.

However, there exists many ways to combine two or more vi-
sualizations in a single space. One common approach is coordi-
nated multiple views (CMV) [31], where the visualizations are of-
ten juxtaposed in the same space and coordinated using some form
of linking mechanism. However, there exist many examples where
multiple visualizations are combined in other ways than CMV-style
juxtaposition. For example, the NodeTrix [17] technique combines
adjacency matrices inside a node-link diagram, SparkClouds [21]
overlays a temporal visualization over tag clouds, and semantic sub-
strates [34] connect nodes in different views using links. These
examples show that juxtaposition, used for many CMV-based visu-
alization systems, is not an isolated approach to combining multiple
visualizations, but that there exists a spectrum of different patterns
for composing visualizations. However, although these examples
are discussed in the literature, there is no formal characterization
that organizes these in the same way as for CMV.

⇤e-mail: wjaved@purdue.edu
†e-mail: elm@purdue.edu

In this paper, we identify the design space of composite visual-
ization views (CVVs) that allows us to combine multiple visualiza-
tion in the same visual space. As a starting point, we survey the
literature of composite visualization and find five general design
patterns for how existing work merges two different visualizations
into one: juxtaposition, integration, overloading, superimposition,
and nesting. Some of these patterns are already known and formally
recognized; for example, juxtaposition gives rise to the CMV com-
position pattern, where views are simply placed next to each other.
Other design patterns have so far not been formally defined in the
literature, but we try to highlight each pattern with examples. We
then use these patterns to define a design space that captures the
salient aspects of composite visualization. We proceed to use this
design space to suggest avenues for future research.

2 COMPOSITE VISUALIZATION VIEWS

We define a composite visualization as the visual composition of
two or more visual structures in the same view. In this definition,
we use the following concepts from Card et al. [9]’s pipeline:

• visual composition: the combination (placement or arrange-
ment) of multiple visual objects;

• visual structure: the mapping from data to visual form (i.e.,
the result of a visualization technique);

• view: the physical display space (most often 2D) where a vi-
sual structure is rendered.

The nature of the composition governs the resulting type of com-
posite visualization. As we shall see in this paper, composite visual-
izations are relatively common. However, only one type of compos-
ite visualization—coordinated multiple views (CMV) [4, 32, 40],
where the visual composition is often a juxtaposition—is formally
recognized as a visualization design strategy in the literature.

Composite visualizations are used primarily for situations where
a single visualization is not sufficient because of high complexity,
large scale, or heterogeneous data [31]. In these situations, display-
ing data in several different ways may benefit user cognition. For
example, the same file system hierarchy could be visualized in both
a treemap [20] as well as a radial layout (such as Sunburst [35]),
each representation allowing the user to focus on different aspects
of the data. Furthermore, different types of data have varying repre-
sentation affinities. For example, locations are best represented in a
geospatial visualization, whereas multidimensional data fit best in
a parallel coordinate plot [18] or a scatterplot matrix [10].

2.1 Method

Our approach in this work is to derive a design space of compos-
ite visualization based on the literature of visualization techniques
where several visual structures are combined in the same view. We
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collect such composite visualizations using literature searches and
prior experience. We then let existing work inform our model by
organizing this prior art into rough categories that emerge from the
characteristics of the techniques. In later sections, we discuss each
category in more detail. Finally, we construct a design space that
captures all aspects of these composite visualization techniques.

2.2 Visual Composition

The method for visual composition is an emerging theme when sur-
veying composite visualizations in the literature. In other words,
the different ways of composing two visualizations A and B in the
same visual space seems to be a useful organizing principle in this
domain. Based on the literature, we derive the four visual compo-
sitions (Figure 1) that give rise to four rough categories—we call
them CVV design patterns—for composing visualizations:

• Juxtaposition ! Juxtaposed Views: Placing visualizations
side-by-side in one view (Coordinated Multiple Views [32]);

• Superimposition ! Superimposed Views: Overlaying two
visualizations in a single view;

• Overloading ! Overloaded Views: Utilizing the space of
one visualization for another; and

• Nesting ! Nested Views: Nesting the contents of one visu-
alization inside another visualization.

In addition, another emergent CVV design pattern is to juxtapose
visual structures, but to add graphical objects such as arrows, dotted
lines, or glyphs to visually link one view with another. We therefore
think this method deserves a design pattern of its own:

• Integration ! Integrated Views: Placing visualizations in
the same view with visual links.

2.3 Design Patterns

Identifying and characterizing composite visualization views
(CVVs) as a unified design approach not only allows us to explore
this space in a structured fashion, but also provides a method for
comparing the effectiveness of different designs. The reason we
use the term design pattern [15] here is that these are high-level ap-
proaches where the actual composition generally differs on a case-
by-case basis. This is consistent with the notion of a design pattern
as a general and reusable solution to a common problem.

We should also note that these design patterns are very differ-
ent from the software design patterns for visualization proposed by
Heer and Agrawala [16]. The latter deal with software engineering
design aspects, whereas our CVV patterns are defined on a visual
design level. While the pattern movement is popular in software
engineering, the reader should note that design patterns first were
proposed by Alexander et al. [2] for urban planning, and so our use
of the concept is in fact closer to its original spirit.

Below we describe the five rough categories of composite visu-
alization that we identified in the literature. In each section, we
first describe each pattern and then give a couple of in-depth ex-
amples of representative composite visualization techniques. These
examples are not intended to be exhaustive, but to be illustrative of
practical implementations of each pattern.

2.4 Existing Formalisms

Using multiple views for visualization is not a new concept, and
early examples date back to the beginnings of the field [27]. Bal-
donado et al. [4] gave general guidelines on the use of multi-
ple views in information visualization, and North and Shneider-
man [30, 28, 29] discussed relational models for achieving this.

Figure 2: ComVis [24] (Juxtaposed Views). Meteorology data.

Figure 3: Improvise [39] (Juxtaposed Views). Juxtaposed views are

used to explore the simulated ion trajectory in a cubic ion trap.

These discussions were later formalized into the concept of coor-
dinated multiple views (CMV) [31, 32], where multiple views of
different visualizations are combined in visual space and are im-
plicitly linked together, often using brushing [5].

In their work on multiple and explicitly linked visualizations,
Collins et al. [11] discuss the formalization of multi-relation visu-
alizations, in the process deriving three different techniques for this
practice. Their formalism is related to our work but of a preliminary
nature, lacks the discussion of some of the design patterns discussed
here, and also does not identify CVVs as a unified approach.

3 JUXTAPOSITION ! JUXTAPOSED VIEWS

Juxtaposed views (Figures 2 and 3) are the most prominent—and
probably the most flexible and easy to implement—design pattern
for composing visualizations in a single view [4, 28, 31, 33]. The
design pattern is based on juxtaposing multiple visualizations side
by side. Any linking between visualizations is implicit, i.e., it is not
a part of the visual representation. Examples include brushing [5],
synchronized scrolling [27], and synchronized drill-down [23].

The effectiveness of juxtaposed views has been an important re-
search topic. North and Shneiderman presented a taxonomy [29] of
such visualization. They showed that a well-designed juxtaposed
view increases user performance while exploring relations among
multiple data dimensions. However, designing effective juxtaposed
views can be a challenging task and requires efficient relational
linking and spatial layout. Weaver’s cross-filtered views [41] ad-
dresses this by abstracting the relations between the views to make
definining, implementing, and reusing them easier.

There currently exists a large number of visualization tools based
on juxtaposed views in the literature; e.g. [3, 7, 36]. Below we
review two such tools that are representative of these.

Juxtaposition
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collect such composite visualizations using literature searches and
prior experience. We then let existing work inform our model by
organizing this prior art into rough categories that emerge from the
characteristics of the techniques. In later sections, we discuss each
category in more detail. Finally, we construct a design space that
captures all aspects of these composite visualization techniques.

2.2 Visual Composition

The method for visual composition is an emerging theme when sur-
veying composite visualizations in the literature. In other words,
the different ways of composing two visualizations A and B in the
same visual space seems to be a useful organizing principle in this
domain. Based on the literature, we derive the four visual compo-
sitions (Figure 1) that give rise to four rough categories—we call
them CVV design patterns—for composing visualizations:

• Juxtaposition ! Juxtaposed Views: Placing visualizations
side-by-side in one view (Coordinated Multiple Views [32]);

• Superimposition ! Superimposed Views: Overlaying two
visualizations in a single view;

• Overloading ! Overloaded Views: Utilizing the space of
one visualization for another; and

• Nesting ! Nested Views: Nesting the contents of one visu-
alization inside another visualization.

In addition, another emergent CVV design pattern is to juxtapose
visual structures, but to add graphical objects such as arrows, dotted
lines, or glyphs to visually link one view with another. We therefore
think this method deserves a design pattern of its own:

• Integration ! Integrated Views: Placing visualizations in
the same view with visual links.

2.3 Design Patterns

Identifying and characterizing composite visualization views
(CVVs) as a unified design approach not only allows us to explore
this space in a structured fashion, but also provides a method for
comparing the effectiveness of different designs. The reason we
use the term design pattern [15] here is that these are high-level ap-
proaches where the actual composition generally differs on a case-
by-case basis. This is consistent with the notion of a design pattern
as a general and reusable solution to a common problem.

We should also note that these design patterns are very differ-
ent from the software design patterns for visualization proposed by
Heer and Agrawala [16]. The latter deal with software engineering
design aspects, whereas our CVV patterns are defined on a visual
design level. While the pattern movement is popular in software
engineering, the reader should note that design patterns first were
proposed by Alexander et al. [2] for urban planning, and so our use
of the concept is in fact closer to its original spirit.

Below we describe the five rough categories of composite visu-
alization that we identified in the literature. In each section, we
first describe each pattern and then give a couple of in-depth ex-
amples of representative composite visualization techniques. These
examples are not intended to be exhaustive, but to be illustrative of
practical implementations of each pattern.

2.4 Existing Formalisms

Using multiple views for visualization is not a new concept, and
early examples date back to the beginnings of the field [27]. Bal-
donado et al. [4] gave general guidelines on the use of multi-
ple views in information visualization, and North and Shneider-
man [30, 28, 29] discussed relational models for achieving this.

Figure 2: ComVis [24] (Juxtaposed Views). Meteorology data.

Figure 3: Improvise [39] (Juxtaposed Views). Juxtaposed views are

used to explore the simulated ion trajectory in a cubic ion trap.

These discussions were later formalized into the concept of coor-
dinated multiple views (CMV) [31, 32], where multiple views of
different visualizations are combined in visual space and are im-
plicitly linked together, often using brushing [5].

In their work on multiple and explicitly linked visualizations,
Collins et al. [11] discuss the formalization of multi-relation visu-
alizations, in the process deriving three different techniques for this
practice. Their formalism is related to our work but of a preliminary
nature, lacks the discussion of some of the design patterns discussed
here, and also does not identify CVVs as a unified approach.

3 JUXTAPOSITION ! JUXTAPOSED VIEWS

Juxtaposed views (Figures 2 and 3) are the most prominent—and
probably the most flexible and easy to implement—design pattern
for composing visualizations in a single view [4, 28, 31, 33]. The
design pattern is based on juxtaposing multiple visualizations side
by side. Any linking between visualizations is implicit, i.e., it is not
a part of the visual representation. Examples include brushing [5],
synchronized scrolling [27], and synchronized drill-down [23].

The effectiveness of juxtaposed views has been an important re-
search topic. North and Shneiderman presented a taxonomy [29] of
such visualization. They showed that a well-designed juxtaposed
view increases user performance while exploring relations among
multiple data dimensions. However, designing effective juxtaposed
views can be a challenging task and requires efficient relational
linking and spatial layout. Weaver’s cross-filtered views [41] ad-
dresses this by abstracting the relations between the views to make
definining, implementing, and reusing them easier.

There currently exists a large number of visualization tools based
on juxtaposed views in the literature; e.g. [3, 7, 36]. Below we
review two such tools that are representative of these.
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Juxtaposition Guidelines
• Benefits:  
- The component visualizations are independent and can be composed 

without interference 
- Easy to implement 

• Drawbacks:  
- Implicit visual linking is not always easy to see, particularly when multiple 

objects are selected 
- Space is divided between the views, yielding less space for each view 

• Applications: Use for heterogeneous datasets consisting of many different 
types of data, or for where different independent visualizations need to be 
combined.
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3.1 ComVis

ComVis [24] is a multidimensional visualization system support-
ing multiple coordinated views for exploring complex datasets (Fig-
ure 2). The dataset is shown in the form a table view at the bottom
of the main window. Beyond basic interactions, ComVis also sup-
port interactive brushing using both single and composite brushes.

Figure 2 shows a visual exploration of meteorology data using
ComVis. The user has created eight different views, each with a
different visualization. The analyst has then used a single brush to
select three bins in the histogram view, causing all the other views
to highlight the corresponding data items.

3.2 Improvise

Improvise [39, 40] is a visualization framework based on the jux-
taposed views design pattern. The framework allows users to build
and browse multiple visualizations while coordinating relational
linking among them. The system is highly extensible and modular-
ized, allowing it to be adapted for virtually any type of data and vi-
sual representation. To explore relational data in an interactive man-
ner, Improvise provides support for coordinated queries, a visual
abstraction language designed for relational databases. More re-
cent work on cross-filtered views [41] adds to the expressive power
of the framework for relation linking between different views.

Figure 3 shows a visual exploration of a simulated ion trajec-
tory in a cubic ion trap using Improvise. The tool allows user to
visualize different portions of the data set, selected using dynamic
queries [1]. All the visualizations are coordinated and data selection
in one view is projected in all others.

Figure 4: Semantic Substrates [34] (Integrated Views). Network

visualization of a dataset of court cases using semantic substrates.

4 INTEGRATION ! INTEGRATED VIEWS

The integrated views design pattern is also based on juxtaposing (or
tiling) the component visualizations (Figures 4, 5). For this reason,
the visual composition for integrated views is identical to that of
juxtaposed views. However, contrary to the implicit linking used in
juxtaposed views, integrated views use explicit linking, normally
in the form of graphical lines that relate data items in different
views another [11]. One prominent example of integrated views
is Charles Minard’s famous visualization of Napoleon’s march on
Moscow [37], where explicit linking shows the relations between
temperature and the number of surviving soldiers during the retreat.

Figure 5: VisLink [11] (Integrated Views). Radial and force-directed

graphs on separate visualization planes linked with visual edges.

The use of explicit linking in integrated views, compared to im-
plicit linking in juxtaposed views, allows for better relational cogni-
tion, but at the cost of added visual clutter. However, as the number
of data points increases in the visualizations, the visual clutter aris-
ing from the explicit links may become a major hindrance. Com-
monly used strategies to avoid this problem are to aggregate the
links, or to show relational links only for selected data values [11].

4.1 Semantic Substrates

Shneiderman and Aris [34] proposed a network visualization layout
based on a user-defined semantic substrate with node-links diagram
as an underlying visualization (Figure 4). Semantic substrates are
spatially non-overlapping regions that are built to hold nodes based
on some category present in the dataset. The individual regions
are sized proportionally to the number of data entries for the cate-
gory they visualize. This scheme allows users to get a quick idea
about the cardinality of different categories present in the under-
lying dataset. Their approach is in line with the integrated view
design pattern because the techniques add visual links to connect
the nodes in different substrates. To reduce clutter arising from the
links, the tool allows for toggling their visibility.

Figure 4 shows semantic substrates used for the exploration of
a subset of federal judicial cases on the legal issue of regulatory
takings from 1978 to 2005. The nodes in different views are placed
based on their chronological order along the horizontal axis and
links among the nodes highlight citation between different cases.

4.2 VisLink

VisLink [11] (Figure 5) creates multiple 2D planes, one for each
visualization, and shows relational linking between the different vi-
sualization planes. Visualization planes generated in VisLink are
interactive and users can re-position them in the view to explore
data relations. In contrast with semantic substrates, VisLink allows
the use of different visualizations while exploring the dataset.

As with semantic substrates, the VisLink relational linking is
done using visual lines that connect visual marks in one plane with
the corresponding mark in the other plane. To reduce the inher-
ent occlusion due to the explicit relational links between visualiza-
tions, the tool supports two kinds of edges: straight edges are used
to show one-to-one linking, while bundled curved edges are used
to highlight one to many linking. To reduce visual clutter the tool
shows relational links only between adjacent planes, and the planes
must be reordered for the user to see relations between other planes.
Figure 5 shows VisLink being used for exploring a dataset of En-
glish words based on the IS-A relation over synonym sets.

Integration
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3.1 ComVis

ComVis [24] is a multidimensional visualization system support-
ing multiple coordinated views for exploring complex datasets (Fig-
ure 2). The dataset is shown in the form a table view at the bottom
of the main window. Beyond basic interactions, ComVis also sup-
port interactive brushing using both single and composite brushes.

Figure 2 shows a visual exploration of meteorology data using
ComVis. The user has created eight different views, each with a
different visualization. The analyst has then used a single brush to
select three bins in the histogram view, causing all the other views
to highlight the corresponding data items.

3.2 Improvise

Improvise [39, 40] is a visualization framework based on the jux-
taposed views design pattern. The framework allows users to build
and browse multiple visualizations while coordinating relational
linking among them. The system is highly extensible and modular-
ized, allowing it to be adapted for virtually any type of data and vi-
sual representation. To explore relational data in an interactive man-
ner, Improvise provides support for coordinated queries, a visual
abstraction language designed for relational databases. More re-
cent work on cross-filtered views [41] adds to the expressive power
of the framework for relation linking between different views.

Figure 3 shows a visual exploration of a simulated ion trajec-
tory in a cubic ion trap using Improvise. The tool allows user to
visualize different portions of the data set, selected using dynamic
queries [1]. All the visualizations are coordinated and data selection
in one view is projected in all others.

Figure 4: Semantic Substrates [34] (Integrated Views). Network

visualization of a dataset of court cases using semantic substrates.

4 INTEGRATION ! INTEGRATED VIEWS

The integrated views design pattern is also based on juxtaposing (or
tiling) the component visualizations (Figures 4, 5). For this reason,
the visual composition for integrated views is identical to that of
juxtaposed views. However, contrary to the implicit linking used in
juxtaposed views, integrated views use explicit linking, normally
in the form of graphical lines that relate data items in different
views another [11]. One prominent example of integrated views
is Charles Minard’s famous visualization of Napoleon’s march on
Moscow [37], where explicit linking shows the relations between
temperature and the number of surviving soldiers during the retreat.

Figure 5: VisLink [11] (Integrated Views). Radial and force-directed

graphs on separate visualization planes linked with visual edges.

The use of explicit linking in integrated views, compared to im-
plicit linking in juxtaposed views, allows for better relational cogni-
tion, but at the cost of added visual clutter. However, as the number
of data points increases in the visualizations, the visual clutter aris-
ing from the explicit links may become a major hindrance. Com-
monly used strategies to avoid this problem are to aggregate the
links, or to show relational links only for selected data values [11].

4.1 Semantic Substrates

Shneiderman and Aris [34] proposed a network visualization layout
based on a user-defined semantic substrate with node-links diagram
as an underlying visualization (Figure 4). Semantic substrates are
spatially non-overlapping regions that are built to hold nodes based
on some category present in the dataset. The individual regions
are sized proportionally to the number of data entries for the cate-
gory they visualize. This scheme allows users to get a quick idea
about the cardinality of different categories present in the under-
lying dataset. Their approach is in line with the integrated view
design pattern because the techniques add visual links to connect
the nodes in different substrates. To reduce clutter arising from the
links, the tool allows for toggling their visibility.

Figure 4 shows semantic substrates used for the exploration of
a subset of federal judicial cases on the legal issue of regulatory
takings from 1978 to 2005. The nodes in different views are placed
based on their chronological order along the horizontal axis and
links among the nodes highlight citation between different cases.

4.2 VisLink

VisLink [11] (Figure 5) creates multiple 2D planes, one for each
visualization, and shows relational linking between the different vi-
sualization planes. Visualization planes generated in VisLink are
interactive and users can re-position them in the view to explore
data relations. In contrast with semantic substrates, VisLink allows
the use of different visualizations while exploring the dataset.

As with semantic substrates, the VisLink relational linking is
done using visual lines that connect visual marks in one plane with
the corresponding mark in the other plane. To reduce the inher-
ent occlusion due to the explicit relational links between visualiza-
tions, the tool supports two kinds of edges: straight edges are used
to show one-to-one linking, while bundled curved edges are used
to highlight one to many linking. To reduce visual clutter the tool
shows relational links only between adjacent planes, and the planes
must be reordered for the user to see relations between other planes.
Figure 5 shows VisLink being used for exploring a dataset of En-
glish words based on the IS-A relation over synonym sets.

Integration
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Figure 6: Mapgets [38] (Superimposed Views). Presentation stack,

with superimposed layers for rivers, borders, and labels, in Mapgets.

Figure 7: GeoSpace [22] (Superimposed Views). A crime data layer

superimposed on a geographical map of the Cambridge, MA area.

5 SUPERIMPOSITION ! SUPERIMPOSED VIEWS

Superimposed views overlay two or more visual spaces on top of
each other (Figures 6 and 7). The resulting visualization becomes
the visual combination of the component visualizations, often using
transparency to enable seeing all views. Superimposed views are
generally used to highlight spatial relations in the component visu-
alizations. In other words, the spatial linking present in these views
is one-to-one, i.e., all the overlay visualizations share the same un-
derlying visual space. Line graph visualizations with several data
series, where more than one graph is superimposed in a single chart
(e.g., [19]), is a very commonly used example of this design pattern.

The spatial linking in the superimposed views allows for easy
comparison across different datasets because the user does not have
to split their attention between different parts of the visual space.
Furthermore, the fact that visualizations are stacked means that they
can each use the full available space in the view. However, because
the composition simply adds the component visualizations together,
the visual clutter may become significant, and it is also likely to
cause conflicts arising from one visualization occluding another.

5.1 Mapgets

Mapgets [38] is a geographic visualization system that allows users
to interactively perform map editing and querying of geographical
datasets. The maps generated using Mapgets are built on an under-
lying presentation stack that superimposes multiple dataset layers
on top of each other. The users can dynamically select the dataset

to use for each layer and the total number of layers to compose.
Different layers in the presentation stack allow users to indepen-
dently interact with each of the associated visualization and control
the layer attributes. The technique also allows the users to reorder
layers in the presentation stack to achieve the desirable map result.

Figure 6 shows an example of a European map generated in
Mapgets. The presentation stack associated with this map consists
of three layers: the bottom layer visualizes rivers, the center layer
is used to depict the country borders, and the topmost layer is used
to display the country labels.

5.2 GeoSpace

GeoSpace [22] allows users to interactively explore complex visual
spaces using superimposed views. It permits progressively overlay-
ing different datasets, based on the user queries, in a single view.
Beyond allowing users to explore datasets through dynamic queries,
GeoSpace also supports pan and zoom operations for navigation.

Figure 7 shows GeoSpace system being used for exploring crime
around the Cambridge, MA area. The figure shows a 2D view of
the visualization, where red dots that are spatially coupled to the
underlying layer show the reported crime cases in the region.

Figure 8: SPPC [45] (Overloaded Views). This tool overloads points

into the region bounded by two axes in the parallel coordinate plot.

Figure 9: Links on treemaps [14] (Overloaded Views). The tool

identifies a tree structure in a graph and visualizes it using a treemap.

Superimposition
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Figure 6: Mapgets [38] (Superimposed Views). Presentation stack,

with superimposed layers for rivers, borders, and labels, in Mapgets.

Figure 7: GeoSpace [22] (Superimposed Views). A crime data layer

superimposed on a geographical map of the Cambridge, MA area.

5 SUPERIMPOSITION ! SUPERIMPOSED VIEWS

Superimposed views overlay two or more visual spaces on top of
each other (Figures 6 and 7). The resulting visualization becomes
the visual combination of the component visualizations, often using
transparency to enable seeing all views. Superimposed views are
generally used to highlight spatial relations in the component visu-
alizations. In other words, the spatial linking present in these views
is one-to-one, i.e., all the overlay visualizations share the same un-
derlying visual space. Line graph visualizations with several data
series, where more than one graph is superimposed in a single chart
(e.g., [19]), is a very commonly used example of this design pattern.

The spatial linking in the superimposed views allows for easy
comparison across different datasets because the user does not have
to split their attention between different parts of the visual space.
Furthermore, the fact that visualizations are stacked means that they
can each use the full available space in the view. However, because
the composition simply adds the component visualizations together,
the visual clutter may become significant, and it is also likely to
cause conflicts arising from one visualization occluding another.

5.1 Mapgets

Mapgets [38] is a geographic visualization system that allows users
to interactively perform map editing and querying of geographical
datasets. The maps generated using Mapgets are built on an under-
lying presentation stack that superimposes multiple dataset layers
on top of each other. The users can dynamically select the dataset

to use for each layer and the total number of layers to compose.
Different layers in the presentation stack allow users to indepen-
dently interact with each of the associated visualization and control
the layer attributes. The technique also allows the users to reorder
layers in the presentation stack to achieve the desirable map result.

Figure 6 shows an example of a European map generated in
Mapgets. The presentation stack associated with this map consists
of three layers: the bottom layer visualizes rivers, the center layer
is used to depict the country borders, and the topmost layer is used
to display the country labels.

5.2 GeoSpace

GeoSpace [22] allows users to interactively explore complex visual
spaces using superimposed views. It permits progressively overlay-
ing different datasets, based on the user queries, in a single view.
Beyond allowing users to explore datasets through dynamic queries,
GeoSpace also supports pan and zoom operations for navigation.

Figure 7 shows GeoSpace system being used for exploring crime
around the Cambridge, MA area. The figure shows a 2D view of
the visualization, where red dots that are spatially coupled to the
underlying layer show the reported crime cases in the region.

Figure 8: SPPC [45] (Overloaded Views). This tool overloads points

into the region bounded by two axes in the parallel coordinate plot.

Figure 9: Links on treemaps [14] (Overloaded Views). The tool

identifies a tree structure in a graph and visualizes it using a treemap.

Overloading
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6 OVERLOADING ! OVERLOADED VIEWS

This design pattern characterizes compositions where one visual-
ization, called the client visualization, is rendered inside another
visualization, called the host, using the same spatial mapping as the
host [26]. Overloaded views (Figures 8 and 9) are similar to super-
imposed views, but with some important differences. Like super-
imposition, the client visualization in this design pattern is overlaid
on the host. However, unlike Superimposed Views, there exists no
one-to-one spatial linking between the two visualizations [12].

While previous design patterns have all operated on specific
views of component visualizations, overloaded views (and also the
next pattern, Nested Views) operate on the visual structure them-
selves. In other words, it is no longer possible to merely use vi-
sual layout operations to organize the views together, but the vi-
sual structures themselves must be modified to combine the com-
ponents. We will see examples of this below.

Figure 10: ZAME [13] (Nested Views). Visual exploration of a

protein-protein interaction dataset in ZAME.

6.1 Scatter Plots in Parallel Coordinates (SPPC)

Yuan et al. [45] presented a system that allows overloading of 2D
scatterplots on a parallel coordinates visualization [18] (Figure 8).
The technique is based on converting the space between pairs of
selected coordinate dimensions in a parallel coordinate plot into
scatterplots through multidimensional scaling [42]. The technique
takes advantage of the fact that parallel coordinate plots do not re-
ally use the space between the parallel dimensional axes, which
means that this space is open for being overloaded.

SPPC is also an example of combining two techniques to com-
pensate for their individual shortcomings. Parallel coordinates are
efficient for visualizing multiple dimensions in a compact 2D vi-
sual representation. However, they make it hard to correlate trends
across multiple dimensions due to their inherent visual clutter. Scat-
terplots, on the other hand, provide an effective way of correlating
trends in any dimension of a dataset [10]. Combining both tech-
niques allows for sharing their advantages.

6.2 Graph Links on Treemaps

Fekete et al. [14] proposed a technique for rendering graphs using a
treemap [20] with overloaded graph links. The idea is based on the
fact that it is possible to decompose a graph into a tree structure and
a set of remaining graph edges that are not included in the tree. This
graph decomposition allows for using a treemap to visualize the tree
structure, and then overload links corresponding to the remaining
graph edges on the treemap visualization. Even though Fekete et al.

call this “overlaying”, the technique is an example of overloading
in our terminology because the graph links are not just a separate
layer on top of the treemap, but they are embedded into the visual
structure of the treemap and use the node positions as anchors.

Figure 9 shows the technique being used to visualize a website.
Here, the directory structure, inherent in any website, is visualized
through an underlying treemap and external links are visualized
through overlaid edges. The overlaid edges are not straight lines,
but are curved to highlight source and target locations. The edges
are curved more near the source, hence making it easy to visually
recognize the direction of the link. The tool also supports con-
trolling the visibility of various edges to reduce visual clutter, and
coloring edges based on their attributes.

Figure 11: NodeTrix [17] (Nested Views). This example shows a

visualization of the InfoVis co-authorship network.

7 NESTING ! NESTED VIEWS

Nested views, like overloaded views, are also based on the notion of
host and client visualizations. However, in this design pattern, one
or more client visualizations are nested inside the visual marks of
the host visualizations, based on the relational linking between the
points. Most often, the nesting is performed simply by replacing
the visual marks in the host visualization by nested instances of the
client visualization (Figures 10 and 11). An example of this would
be a scatterplot where the individual marks are barchart glyphs [25].

The nested views pattern provides an effective way of relating
data points in the host visualization to the data visualized through
the client visualizations. Again the users need not divide their atten-
tion between multiple views, and the host visualization is allowed
to use the full available space. However, since the design pattern
embeds one or more visualizations inside a visual mark, the client
visualizations are allocated only a small portion of the host visual-
ization’s visual space, and zooming and panning may be required to
see details. Furthermore, just like overloading, nested views com-
pose the actual visual structures of the components, which typically
requires a more careful design.

One issue to discuss here is the difference between overloading
and nesting. These are different design patterns because nesting
simply replaces the visual marks of the host with the visual structure
of the client, whereas overloading requires a much more integrated
composition of the visual structures of the host and the client.

7.1 ZAME

Nested views are becoming increasingly prominent for visualizing
large-scale datasets using glyph-based methods. ZAME [13], a vi-
sualization system designed to explore large-scale adjacency matrix
graph visualization, uses this approach. The base matrix represen-
tation used in ZAME is a hierarchical aggregation of the underly-
ing dataset. The tool allows the user to zoom in data space, which
amounts to drilling-down and rolling-up in the aggregation hierar-
chy to see more or less details. Abstract glyphs representing aggre-
gated data for each cell in the matrix are nested inside the visual
marks of the matrix to convey information about the aggregation.

Nesting
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6 OVERLOADING ! OVERLOADED VIEWS

This design pattern characterizes compositions where one visual-
ization, called the client visualization, is rendered inside another
visualization, called the host, using the same spatial mapping as the
host [26]. Overloaded views (Figures 8 and 9) are similar to super-
imposed views, but with some important differences. Like super-
imposition, the client visualization in this design pattern is overlaid
on the host. However, unlike Superimposed Views, there exists no
one-to-one spatial linking between the two visualizations [12].

While previous design patterns have all operated on specific
views of component visualizations, overloaded views (and also the
next pattern, Nested Views) operate on the visual structure them-
selves. In other words, it is no longer possible to merely use vi-
sual layout operations to organize the views together, but the vi-
sual structures themselves must be modified to combine the com-
ponents. We will see examples of this below.

Figure 10: ZAME [13] (Nested Views). Visual exploration of a

protein-protein interaction dataset in ZAME.

6.1 Scatter Plots in Parallel Coordinates (SPPC)

Yuan et al. [45] presented a system that allows overloading of 2D
scatterplots on a parallel coordinates visualization [18] (Figure 8).
The technique is based on converting the space between pairs of
selected coordinate dimensions in a parallel coordinate plot into
scatterplots through multidimensional scaling [42]. The technique
takes advantage of the fact that parallel coordinate plots do not re-
ally use the space between the parallel dimensional axes, which
means that this space is open for being overloaded.

SPPC is also an example of combining two techniques to com-
pensate for their individual shortcomings. Parallel coordinates are
efficient for visualizing multiple dimensions in a compact 2D vi-
sual representation. However, they make it hard to correlate trends
across multiple dimensions due to their inherent visual clutter. Scat-
terplots, on the other hand, provide an effective way of correlating
trends in any dimension of a dataset [10]. Combining both tech-
niques allows for sharing their advantages.

6.2 Graph Links on Treemaps

Fekete et al. [14] proposed a technique for rendering graphs using a
treemap [20] with overloaded graph links. The idea is based on the
fact that it is possible to decompose a graph into a tree structure and
a set of remaining graph edges that are not included in the tree. This
graph decomposition allows for using a treemap to visualize the tree
structure, and then overload links corresponding to the remaining
graph edges on the treemap visualization. Even though Fekete et al.

call this “overlaying”, the technique is an example of overloading
in our terminology because the graph links are not just a separate
layer on top of the treemap, but they are embedded into the visual
structure of the treemap and use the node positions as anchors.

Figure 9 shows the technique being used to visualize a website.
Here, the directory structure, inherent in any website, is visualized
through an underlying treemap and external links are visualized
through overlaid edges. The overlaid edges are not straight lines,
but are curved to highlight source and target locations. The edges
are curved more near the source, hence making it easy to visually
recognize the direction of the link. The tool also supports con-
trolling the visibility of various edges to reduce visual clutter, and
coloring edges based on their attributes.

Figure 11: NodeTrix [17] (Nested Views). This example shows a

visualization of the InfoVis co-authorship network.

7 NESTING ! NESTED VIEWS

Nested views, like overloaded views, are also based on the notion of
host and client visualizations. However, in this design pattern, one
or more client visualizations are nested inside the visual marks of
the host visualizations, based on the relational linking between the
points. Most often, the nesting is performed simply by replacing
the visual marks in the host visualization by nested instances of the
client visualization (Figures 10 and 11). An example of this would
be a scatterplot where the individual marks are barchart glyphs [25].

The nested views pattern provides an effective way of relating
data points in the host visualization to the data visualized through
the client visualizations. Again the users need not divide their atten-
tion between multiple views, and the host visualization is allowed
to use the full available space. However, since the design pattern
embeds one or more visualizations inside a visual mark, the client
visualizations are allocated only a small portion of the host visual-
ization’s visual space, and zooming and panning may be required to
see details. Furthermore, just like overloading, nested views com-
pose the actual visual structures of the components, which typically
requires a more careful design.

One issue to discuss here is the difference between overloading
and nesting. These are different design patterns because nesting
simply replaces the visual marks of the host with the visual structure
of the client, whereas overloading requires a much more integrated
composition of the visual structures of the host and the client.

7.1 ZAME

Nested views are becoming increasingly prominent for visualizing
large-scale datasets using glyph-based methods. ZAME [13], a vi-
sualization system designed to explore large-scale adjacency matrix
graph visualization, uses this approach. The base matrix represen-
tation used in ZAME is a hierarchical aggregation of the underly-
ing dataset. The tool allows the user to zoom in data space, which
amounts to drilling-down and rolling-up in the aggregation hierar-
chy to see more or less details. Abstract glyphs representing aggre-
gated data for each cell in the matrix are nested inside the visual
marks of the matrix to convey information about the aggregation.

Nesting
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