Data Visualization (CSCI 627/490)

Interaction & Multiple Views

Dr. David Koop

What is wrong with here and how can it be fixed?

3D Category Scatter

D. Koop, CSCI 627/490, Fall 2020

Northern Illinois University

2

Good: Data magnitude <=> Mark magnitude

Show when the baseline is not zero

Tufte's Lie Factor

- Size of effect = (2nd value 1st value) / (1st value)
- Lie factor = (size of effect in graphic) / (size of effect in data)
- In the graphic:

Lie Factor =

D. Koop, CSCI 627/490, Fall 2020

5.3 - 0.6 0.6 14.8 27.5 - 18

Avoid Chartjunk

No Unjustified 3D

- Occlusion hides information
- Perspective distortion dangers
- Tilted text isn't legible
- Can help with shape perception

D. Koop, CSCI 627/490, Fall 2020

7

Validation at each level

- Ineffective encoding/interaction idiom
- Validate Test on target users, collect anecdotal evidence of utility Validate Field study, document human usage of deployed system

Five Design Sheet Method

Sheets 2-4

D. Koop, CSCI 627/490, Fall 2020

1	TITLE A DOST WE BADROYADZLITY
4.0/	AUTHER:
XI	DATE : 16/11/2012
	SHEET : 2 - FOS 3
	TASK : BAR - CHART REPRESENTATION
	RE THE OSA, EMPLOYABILITY & LEANERS DATA
M	· HOVERENG OVER EACH AVORAGED UNEVERSETY BAR DRAWS THE YEAR BY YEAR BREAKDOWN.
	· (LICKENG ON AN INDEVEDUAL
	YEAR WOULD SET ALL DARAGROUND "INATH" BARS TO THE FIGURES
	OF THAT YEAR ALONE FOR
OUNI-4 O	·CLECKENG ON THE MINUS
0	SYMBOL WOULD MEMEMBE
	THAT UNE WETH THE REMARKED
	WHES EXAGNOING TO PERC
	DATA CRE- (DADED
	MONTEN TO CHANGE OD MAN
LAVOUT	HOLD COLOURS FOR DECERDINE
Luiout	USERS PREFERENCES?
Focus	
	OPERATION S
3	DISCUSSION
	· DOBS 'MENTINTISTIG' UNE'S AND
	ANY USEFUL INTERALTIONS
	· DUATING THE HOUSE AND
5	BREAK DOWN OF DATA SHOW O
	THE YEAR GE DESPLAYED IN
	TOXT FOR FASE OF ENDERDATION
	· SHOW ALL BUTTON COULD BE
1	WARKUIL BUT IT MAY CLUTTER THE DATA.
	. VIDUALISATION ASSUMES THE
TO SCALIS	ONLY CORECATIONS WILL BE
L/a,	· COULD OTHER DATA OF OTHER AND
	ON THE GARS? PERCENTAGES OF
	DEGREE CLASSEPECATEON BY TYPE?

[J. Roberts et al., 2016]

Project Design

- Work on turning your visualization ideas into designs
- Turn in:
 - Three Designs Sketches
 - One Bad Design
 - Progress on Implementation
- Options:
 - Try vastly different options
 - Refine an initial idea
- Due Friday, Nov. 13

Assignment 4

- Geospatial Visualizations & Treemap
 - Choose colormaps carefully
 - Add legend
- Due Nov. 2

Guidelines for Interaction Design

Interaction

- The view changes over time
- Changes can affect almost any aspect of the visualization
 - encoding
 - arrangement
 - ordering
 - viewpoint
 - attributes being shown
 - aggregation level

Interaction Overview

D. Koop, CSCI 627/490, Fall 2020

[Munzner (ill. Maguire), 2014]

Sorting

- Allow user to find patterns by reordering the data
- Do this with tabular data all the time
- Note that categorical attributes don't really need sorting
 - We can compare these attributes no matter what order
 - Instead, sort categorical attribute based on an ordered attribute

Example: LineUp

		s	JM (Academic reputation, Employer	reputation, Faculty/student ratio, Inter	natio
2a	School Name	Country	45.23%	11.31% 32.16% Employer Faculty/student	ratio
	Filter:	Filter:	Reducinic reputation		auro
	<none></none>	1 out of 50			
1.	Massachusetts Institute of Technology (MIT)	United States			
2.	Harvard University	United States			
3.	Yale University	United States			
4.	University of Chicago	United States			
5.	University of Pennsylvania	United States			
6.	Columbia University	United States			
7.	California Institute of Technology (Caltech)	United States			
8.	Princeton University	United States			
9.	University of Michigan	United States			
10.	New York University (NYU)	United States 97	.7 (0.98)	85.3 (0.85) 92.7 (0.93)	
11.	Johns Hopkins University	United States			
12.	Duke University	United States			
13.	Cornell University	United States			
14.	Stanford University	United States			
15.	University of Wisconsin-Madison	United States			
16.	Northwestern University	United States			
17.	University of California, Berkeley (UCB)	United States			
18.	University of California, Los Angeles (UCLA)	United States			
19.	Brown University	United States			
20.	University of North Carolina, Chapel Hill	United States			
21.	Boston University	United States			
22.	University of Illinois at Urbana-Champaign	United States			
23.	Washington University in St. Louis	United States			
4.	University of Texas at Austin	United States			
25.	University of Washington	United States			
26.	Purdue University	United States			
27.	University of Pittsburgh	United States			
28.	University of California, San Diego (UCSD)	United States			
29.	Ohio State University	United States			
30.	University of Rochester	United States			
31.	Pennsylvania State University	United States			
32.	University of Maryland, College Park	United States			
33.	University of Southern California	United States			
34.	Vanderbilt University	United States			
35.	Dartmouth College	United States			
36.	University of Virginia	United States			
7.	Georgia Institute of Technology	United States			
38.	University of California, Davis	United States			
39.	Rice University	United States			
10	Emory University	United States			

Example: LineUp

		s	JM (Academic reputation, Employer	reputation, Faculty/student ratio, Inter	natio
2a	School Name	Country	45.23%	11.31% 32.16% Employer Faculty/student	ratio
	Filter:	Filter:	Reducinic reputation		auro
	<none></none>	1 out of 50			
1.	Massachusetts Institute of Technology (MIT)	United States			
2.	Harvard University	United States			
3.	Yale University	United States			
4.	University of Chicago	United States			
5.	University of Pennsylvania	United States			
6.	Columbia University	United States			
7.	California Institute of Technology (Caltech)	United States			
8.	Princeton University	United States			
9.	University of Michigan	United States			
10.	New York University (NYU)	United States 97	.7 (0.98)	85.3 (0.85) 92.7 (0.93)	
11.	Johns Hopkins University	United States			
12.	Duke University	United States			
13.	Cornell University	United States			
14.	Stanford University	United States			
15.	University of Wisconsin-Madison	United States			
16.	Northwestern University	United States			
17.	University of California, Berkeley (UCB)	United States			
18.	University of California, Los Angeles (UCLA)	United States			
19.	Brown University	United States			
20.	University of North Carolina, Chapel Hill	United States			
21.	Boston University	United States			
22.	University of Illinois at Urbana-Champaign	United States			
23.	Washington University in St. Louis	United States			
4.	University of Texas at Austin	United States			
25.	University of Washington	United States			
26.	Purdue University	United States			
27.	University of Pittsburgh	United States			
28.	University of California, San Diego (UCSD)	United States			
29.	Ohio State University	United States			
30.	University of Rochester	United States			
31.	Pennsylvania State University	United States			
32.	University of Maryland, College Park	United States			
33.	University of Southern California	United States			
34.	Vanderbilt University	United States			
35.	Dartmouth College	United States			
36.	University of Virginia	United States			
7.	Georgia Institute of Technology	United States			
38.	University of California, Davis	United States			
39.	Rice University	United States			
10	Emory University	United States			

Slope Graphs

- Connection marks
- Link the same item appearing in different rows
- highlighted item
- Also called bump charts

Show changes for different attributes (parallel coordinates idea) but with one

Q♣	A♣
K♦	Q♣
A♥	J♣
A♦	Q♠
Q♠	J♦
Q♥	Q♦
A♣	J♥
K♠	J♠
K♥	K♦
A♠	K 뢒
J♥	Q♥
Q♦	K♥
K♣	A♠
J♦	K♠
J♣	A♥
J♠	A♦

- Q♠ K♠ A♦ J♥ A♠ J♣
 - K♠
 - A♣ Q♦
 - K♥
- K♦

Q♣	A♣
K♦	Q♣
A♥	J♣
A♦	Q♠
Q♠	J♦
Q♥	Q♦
A♣	J♥
K♠	J♠
K♥	K♦
A♠	K 뢒
J♥	Q♥
Q♦	K♥
K♣	A♠
J♦	K♠
J♣	A♥
J♠	A♦

- Q♠ K♠ A♦ J♥ A♠ J♣
 - K♠
 - A♣ Q♦
 - K♥
- K♦

Q♣	A♣
K♦	Q♣
A♥	J♣
A♦	Q♠
Q♠	J♦
Q♥	Q♦
A♣	J♥
K♠	J♠
K♥	K♦
A♠	K 뢒
J♥	Q♥
Q♦	K♥
K♣	A♠
J♦	K♠
J♣	A♥
J♠	A♦

- Q♠ K♠ A♦ J♥ A♠ J♣
 - K♠
 - A♣ Q♦
 - K♥
- K♦

Q♣	A♣
K♦	Q♣
A♥	J♣
A♦	Q♠
Q♠	J♦
Q♥	Q♦
A♣	J♥
K♠	J♠
K♥	K♦
A♠	K 뢒
J♥	Q♥
Q♦	K♥
K♣	A♠
J♦	K♠
J♣	A♥
J♠	A♦

- Q♠ K♠ A♦ J♥ A♠ J♣
 - K♠
 - A♣ Q♦
 - K♥
- K♦

Side-by-side views

Q♣
K♦
A♥
A♦
Q♠
Q♥
A♣
K♠
K♥
A♠
J♥
Q♦
K 📥
J♦
J♣
J∳

A♦			
Q♥			
Q♠			
A♣			
Q♦			
J♦			
K♦			
Q♣			
K♥			
A♠			
J∳			
A♥			
J♣			
K♠			
K♣			
J♥			

Side-by-side views

Q♣
K♦
A♥
A♦
Q♠
Q♥
A♣
K♠
K♥
A♠
J♥
Q♦
K 📥
J♦
J♣
J∳

A♦			
Q♥			
Q♠			
A♣			
Q♦			
J♦			
K♦			
Q♣			
K♥			
A♠			
J∳			
A♥			
J♣			
K♠			
K♣			
J♥			

Animated Transitions

Animated Transitions

Animated Transitions

- "Jump cuts" are hard to follow
- Animations help users maintain sense of context between two states
- Empirical study showed that they work (Heer & Robertson, 2007)

Studying Animated Transitions

D. Koop, CSCI 627/490, Fall 2020

Northern Illinois University

Studying Animated Transitions

D. Koop, CSCI 627/490, Fall 2020

Northern Illinois University

Design Considerations

- Based on Tversky et al.'s Congruence and Apprehension Principles
- Congruence (Expressiveness):
 - Use consistent semantic-syntactic mappings
 - Respect semantic correspondence
 - Avoid ambiguity

D. Koop, CSCI 627/490, Fall 2020

- Apprehension (Effectiveness):
 - Group similar transitions
 - Minimize occlusion
 - Maximize predictability
 - Use simple transitions
 - Use staging for complex transitions
 - Transitions as long as needed, but no longer

24

Experiment 1 (Syntactic)

- of the objects in the final graphic
 - chart, scatter plot to bar chart, timestep in a scatterplot
- Tests: bar chart to donut chart, stacked to grouped bars, sorting a bar - Either a jump cut or an animated transition
- Users pick highlighted elements after transition (measure #pixels from correct)

D. Koop, CSCI 627/490, Fall 2020

Object Tracking: Follow objects across a transition and identify the locations

Experiment 2 (Semantic)

- estimate the percentage change in value
 - Tesster a sresc ling + timester anim tions
- to 90% or click "?" for no idea)

Results/Conclusions Stacked Bars

• User Preferences: Staged animation > animation > static transitions

- Animation improves graphical perception
- Staging is better (do axis rescaling before value changes)
- Avoid axis rescaling when possible

Change Blindness

• <u>https://www.youtube.com/watch?v=uO8wpm9HSB0</u>

Change Blindness

• <u>https://www.youtube.com/watch?v=uO8wpm9HSB0</u>

Selection

- Selection is often used to initiate other changes
- User needs to select something to drive the next change
- What can be a selection target?
 - Items, links, attributes, (views)
- How?
 - mouse click, mouse hover, touch
 - keyboard modifiers, right/left mouse click, force
- Selection modes:
 - Single, multiple
 - Contiguous?

Highlighting

- Selection is the user action
- Feedback is important!
- How? Change selected item's visual encoding
 - Change color: want to achieve visual popout
 - Add outline mark: allows original color to be preserved

_ _ _ _ _

- Change size (line width)
- Add motion: marching ants

(II)	Contacts
- 6	Dashboard
Aa	Dictionary
- 😵	Dropbox
8	DVD Player
3	Emacs
-0	FaceTime
Æ	FileZilla
8	Firefox

Highlighting

- Selection is the user action
- Feedback is important!
- How? Change selected item's visual encoding
 - Change color: want to achieve visual popout
 - Add outline mark: allows original color to be preserved

_ _ _ _ _

- Change size (line width)
- Add motion: marching ants

(II)	Contacts
- 6	Dashboard
Aa	Dictionary
- 😵	Dropbox
8	DVD Player
3	Emacs
-0	FaceTime
Æ	FileZilla
8	Firefox

Highlighting

Selection Outcomes

- Selection is usually a part of an action sequence
- Can filter, aggregate, reorder selected items

D. Koop, CSCI 627/490, Fall 2020

on sequence ed items

Responsiveness Required

- Delays are perceived by users
- Visual feedback
 - Show the user they did something (highlighting, etc)
 - Interaction should happen quick!
- Latency: mouse click versus mouse hover
- Popup versus detail displays

Interaction Latency

- The Effects of Interactive Latency on Exploratory Visual Analysis, Z. Liu and J. Heer, 2014
- Brush & link, select, pan, zoom

- 500ms added latency causes significant cost - decreases user activity and dataset coverage - reduces rate of observations, generalizations, and hypotheses

Interaction Overview

D. Koop, CSCI 627/490, Fall 2020

[Munzner (ill. Maguire), 2014]

Navigation

- change
- Camera analogy: only certain features visible in a frame
 - Zooming
 - Panning (aka scrolling)
 - Translating
 - Rotating (rare in 2D, important in 3D)

D. Koop, CSCI 627/490, Fall 2020

• Fix the layout of all visual elements but provide methods for the viewpoint to

Navigation

→ Item Reduction

→ Pan/Translate

→ Constrained

D. Koop, CSCI 627/490, Fall 2020

→ Attribute Reduction

→ Project

[Munzner (ill. Maguire), 2014]

Northern Illinois University

Zooming

Geometric Zooming

Zooming

Semantic Zooming

Zooming

- Geometric Zooming: just like a camera
- scales Manua
- LiveRAC Example: (focus + context)

D. Koop, CSCI 627/490, Fall 2020

• Semantic Zooming: visual appearance of objects can change at different

Northern Illinois University

Navigation Constraints

- environment

 - Fairly standard in computer games to go where you want - Constrained by walls, objects (collision detection)
- Constrained navigation:
 - 3D: camera must be right-side up
 - Limit pan/zoom to certain areas
 - corresponds to a selection in another view

D. Koop, CSCI 627/490, Fall 2020

• Unconstrained navigation: walking around in the world or an immersive 3D

- Comes up often with multiple views: want to show an area in one view that

van Wijk Smooth Zooming

van Wijk Smooth Zooming

Multiple Views

* 🗗 🗵	Counties			· الا "۵	Cities	· 특 집 🗵
	Name	Area Po	pul Ce	Ce	Name	County Pop
	Montmorency MI Muskegon MI	0.167	10315 23.90 70200 12.90	02.08	Allen Park Bellefonte	MI Wayne County 29376 A PA Centre County 6395
	Newaygo MI Oakland MI	0.248	47874 12.80	02.75	Belleville Birch Run	MI Wayne County 3997 MI Saginaw County 1653
	Oceana MI	0.157	26873 14.00	02.66	Centre Hall Chesaning	PA Centre County 1079 MI Saginaw County 2548
	Ogemaw MI Ontonagon MI	0.168	7818 21.60	02.49 01.57	Dearborn	MI Wayne County 97775
	Osceola MI Osceola MI	0.167	23197 14.20 9418 20.20	02.53	Detroit	MI Wayne County 951270
	Otsego MI	0.155	23301 13.70	02.59	Ecorse Flat Rock	MI Wayne County 11229 MI Wayne County 8488
C. M.K. h.L	Presque Isle MI	0.164 2	14411 22.30	04.53	Frankenmuth Garden Oty	MI Saginaw County 4838
The 2 Con mil	Roscommon MI Saginaw MI	0.170	25469 23.80 10039 13.50	02.64	Gibraltar	MI Wayne County 4264
4 Show	Saint Clair MI	0.207 1	64235 12.20	03.88	Grosse Pointe Grosse Pointe Farms	MI Wayne County 5670 MI Wayne County 9764
$+ \Box \downarrow \uparrow \downarrow$	Sanilac MI	0.146	44547 15.40	02.61	Grosse Pointe Park Grosse Pointe Shores	MI Wayne County 12443
The for the the	Schoolcraft MI Shiawassee MI	0.370	8903 18.60 71687 12.00	01.66	Grosse Pointe Woods	MI Wayne County 17080
A A	Tuscola MI	0.234	58266 12.80	02.91	Hamtramck Harper Woods	MI Wayne County 22976 MI Wayne County 14254
and sugars	Washtenaw MI	0.204 3	22895 08.10	04.62	Highland Park Howard	MI Wayne County 16746 PA Centre County 699
Jan Martin	Wayne MI Wexford MI	0.174 20	61162 12.10 30484 14.00	07.61 02.71	Inkster	MI Wayne County 30115
STANDA H	OH	0.990	30484 00.00	00.00	Lincoln Park Livonia	MI Wayne County 40008 MI Wayne County 100545
	Adams OH Allen OH	0.158	08473 14.20	02.62	Melvindale	MI Wayne County 10735
and the second second second	Ashland OH Ashtabula OH	0.118	52523 13.90 02728 14.70	03.34	Milesburg	PA Centre County 1187
	Athens OH	0.138	62223 09.30	03.33	Northville	PA Centre County 749 MI Wayne County 6459
	Belmont OH	0.111	46611 14.40 70226 18.20	03.28		
	Brown OH Butler OH	0.133	42285 11.60 32807 10.70	03.05	Airports & Se	eaplane Bases 🗗 🗹 🖄
	Carroll OH	0.110	28836 14.20	02.92	Name	En., County
	Clark OH	0.110 1	44742 14.70	03.09	D Detroit Metropolita	n Wa 1698 MI Wayne Co 🔺
	Clermont OH Clinton OH	0.124 1	77977 09.40 40543 12.20	04.45	M MBS International DET Detroit City	294483 MI Saginaw
	Columbiana OH	0.148 1	12075 15.00	03.81	U University Park	126945 PA Centre Co 3046 MI Wayne Co.
	Crawford OH	0.136	46966 15.20	03.29		Solo mi Mayne co
	Cuyahoga OH Darke OH	0.129 13	93978 15.60 53309 15.30	07.43		
	Dofiance OH	0.116	20500 42.00	02.12		
🗗 🖉 🔣 🔲 🗖 Color Schem	10		City-	City Dista	nces	- <u>5</u> X
Sequential Seq	uential Non-Gray	•			M M M M M M M M M M M M M M M M M M M	guno Prunk Muno Muno Muno Muno
		a de	me C			
		E.			way Way	Way Way Way Way
					8 99 98 98 98 98 98 98 98 98 98 98 98 98	36 88 88 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
					179 179 179 125 125 125	001 190 190 01 190 01 190 01 384 190 384 190
					Pop. VVoo Pop.	Pop. Pop. Pop. Pop. Pop. Pop. Pop. Pop.
			MI	Allen Pa	rk 1.41 0.07 0 12 0 2	0 0.18 5.50 0.12 0.06 5.55 0.05
			Wayne Cour PA	Bellefon	76 0.00 0.00 0.00	
			Centre Cour	ty Pop. 63	6.66 5.53 5.60 5.8	0 5.77 0.10 5.54 5.65 0.15 5.57
			MI Wayne Cour	Bellevi Ity Pop. 399	le 1.34 0.34 0.25 0.1	5 0.13 5.76 0.31 0.22 5.80 0.29
Show 2000			MI	Birch R	n 0.26 1.22 1.24 1.0	1 1.05 6.37 1.27 1.14 6.42 1.20
			PA	Centre H		
Counties	Countie	es	Centre Cour	Pop. 10	79 6.77 5.63 5.70 5.9	0 5.88 0.20 5.64 5.75 0.18 5.67
Cities	Cities		Saginaw Co	Chesanii ounty Pop. 25	19 0.35 1.37 1.36 1.12	2 1.16 6.64 1.40 1.27 6.70 1.34
Roads	Roads		MI Waxaa Ca	Dearbo	m 1.37 0.11 0.19 0.2	2 0.21 5.49 0.18 0.12 5.53 0.11
		da	MI (Dearborn Heigh	ts 1 31 0 17 0 20 0 1	3 0 13 5 58 0 22 0 10 5 62 0 15
Railroads	Railroa	ds	Wayne Cour	ty Pop. 5820	34 1.31 0.17 0.20 0.1	0.10 0.00 0.22 0.10 0.03 0.15
Airports	Airport	S	Wayne Cour	nty Pop. 9512	1.44 0.16 0.27 0.3	5 0.34 5.36 0.23 0.24 5.41 0.19
.00 🔽 🔽 Urban Area	as 🗌 🗌 States		MI Wayne Cour	Econ ty Pop. 112	se 1.46 0.03 0.14 0.2	7 0.24 5.44 0.11 0.12 5.48 0.06

Multiple Views

- Why have just one visualization?
- Sometimes data is best examined in more than one view
 - Clutter/visual overload
 - Different attributes (cannot show all attributes in one view)
 - Different scales (task requires overview or detail)
 - Different encodings (no single encoding is optimal for all tasks)
- Eyes Beat Memory (Ch. 6)
 - Aiding working memory:
 side-by-side/layers > animated > jump cuts
 - Showing all visual elements at once \rightarrow don't need to remember

Multiple Views

- Big questions:
 - How to partition display or layer views?
 - How to coordinate views (e.g. navigation, selection)?
 - What data is shared?

ews? rigation, selection)?

Design Space of Composite Visualization

- Composite visualization views (CVVs)
 - Includes Coordinated multiple views (CMV)
 - + More!
- Design Patterns:
 - Juxtaposition: side-by-side
 - Superimposition: layers
 - Overloading: vis meshed with another
 - Nesting: vis inside a vis (recursive vis)
 - Integration: "merge" views + links

D. Koop, CSCI 627/490, Fall 2020

 $|\otimes_{jux} \mathbf{B}| = |\mathbf{A} \mathbf{B}|$ $\bigotimes_{sup} \mathbf{B} = \mathbf{A} \mathbf{B}$ $\bigotimes_{\text{ovl}} \mathbf{B} = \mathbf{A} \mathbf{B}$ A $\bigotimes_{nst} B$ $\bigotimes_{int} B$

Northern Illinois University

48

Juxtaposition

D. Koop, CSCI 627/490, Fall 2020

NIU

Northern Illinois University

Juxtaposition

D. Koop, CSCI 627/490, Fall 2020

Northern Illinois University

Juxtaposition Guidelines

- Benefits:
 - without interference
 - Easy to implement
- Drawbacks:
 - objects are selected
- combined.

D. Koop, CSCI 627/490, Fall 2020

- The component visualizations are independent and can be composed

- Implicit visual linking is not always easy to see, particularly when multiple

- Space is divided between the views, yielding less space for each view

• Applications: Use for heterogeneous datasets consisting of many different types of data, or for where different independent visualizations need to be

[W. Javed and N. Elmqvist, 2012]

Integration

Integration

D. Koop, CSCI 627/490, Fall 2020

[VisLink, Collins and Carpendale, 2007]

Superimposition

is composed of:

Ireland

Portugal

D. Koop, CSCI 627/490, Fall 2020

Northern Illinois University 54

Overloading

Nesting

	Desp	Fush	Glov	Haeir	Haeir	Help.	Help	Help	Lach	Leix	Lisin	Lisin	Meslo	Meslo	Meslo	Meslo	Meslo	Meslo	Meslo	Meslo	Meta	Metti	Ocei	0°ei	Oniyo	Oniyo
	ů,	5	ω	Ľ.	Ľ.	2	<u>,</u>	<u>,</u>	<u> </u>	િત	눎	a.	Ľ.	Ľ.	Ľ.	Ľ.	Ľ.	Ľ.	Ľ.	Ľ,	Ň	Ľ.	N.	N.	ω	ω
	2	8	52	87	82	8	30	30	687	ğ,	ğ	ĕ	β 4	Ψų.	34J	347	¥	347	β 4	₩ E	١ <u>8</u>	8		lΩ Ω	8	88
	52	õ	1	Ν	ω̈́.	ģ	Б,	5	Ν	춼	ត្រូ	ğ	9	ыŇ	ω	ğ	ਲੂੰ	8	ğ	æ	ğ	ĝ	١ŏ	ι ω	ö	lö
	۱đ	۱X,	12	ы	2	12	ы	4	ы	ιö	ã	4	6	18	ы	ų,	ß	17	ß	4	8	١X.	ð	ß,	9	8
Meslo_13470759	i.	ĺ.										J.		14								1		1.		
Meslo_13473259					L	L,	1	1	le e	L.		1	4					h,		7		L		1		3
Meslo_13473305							i.	L.			1.			1				L	d.	_						
Meslo_13474097							U.	L,		k.		LI.			1	L,	4	1		1					L	
Meslo_13474522							h.				_									. 1		4		L,		
Meslo_13475817						L	4.	k		ы.					Ц	-	di.	4	6			J.	-		1	-
Meslo_13475942					1		de la	_		Ŀ		J.	h,	l,	Ц		5		L		Ч	1			L	Ш
Meslo_13474014	4					١.		Ļ	1			1				4			L d	4		-				
Metac_20090100										h		1							L I		h	ų				
Metth_100/8006	h								Ļ									μ	e.				H			-
Ocein_23100619	ŀ																						H			
Opine_20030332	۲				H									H												
Onive_39936970					Н													Н					H		H	
Pasmu 15601990		-	=		H		1	1	ч			1			h			2	11	t.				1		P.
Pasmu 15603594								1	÷.	1	1	2	1		T	Ť.				i.		11				H
Aartu 15888162													1					Ľ						Ť.		
Acine 50085668																										
Aartu 16119640																						П				
Aartu 15891435		1.																								
Agrtu 15887957									L																	
Agrtu_15888729				Π																						
Agrtu_15890417																										
Agrtu_15890732		1		L																						
Agrtu_15891761																										
Agrtu_16119689				d.	Ц																					
Agrtu_15890737				L.					J.																	
Agrtu_15891743																										
Agrtu_15891779																										
Agrtu_15891829	Ц.																									
Agrtu_16119287	H.													4			h.		-	ų						
Arctu_11499199				4	1	Ц	e.	-			h		4	d.			-		4	d.	1	÷	4			
Bacsu_16080435	-				4		4			E.			1	-				5	4	11		÷		4	1	H.
Bacsu_10080423		L.		-					÷	÷	H,	1					4	1	Ы	h		÷	4			
Birlo_23400028 Borbr_22604444					H			ų,				Н					t.					H				
Borbr_33601620					H					h			H									۲				
Borbr 33601051													H		۲											
Borbr 33602284							T						H										H	I.		
Borbr 33603522						Ľ,			1.																	
Braja 27378209																										
Braja_27379091										П										L			L.			
Braja_27381509					h.					L	L	a.		L		L.										
Braja_27382025								J.			L			L.			h.							1		
Braja_27382710								F									1						Ŀ			
Braja_27378421								L			-			di.	1			h.				Л				
Brume_17988945					L		1				L			de.								-				
Camje_15792248							a.				-						de.		d.			d a	a la		L,	
Close 15803888	4																									

D. Koop, CSCI 627/490, Fall 2020

Northern Illinois University

Nesting

Midterm

