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Abstract— A mathematical evaluation and comparison of the space-efficiency of various 2D graphical representations of tree struc-
tures is presented. As part of the evaluation, a novel metric called the mean area exponent is introduced that quantifies the distribution
of area across nodes in a tree representation, and that can be applied to a broad range of different representations of trees. Several
representations are analyzed and compared by calculating their mean area exponent as well as the area they allocate to nodes and
labels. Our analysis inspires a set of design guidelines as well as a few novel tree representations that are also presented.
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1 INTRODUCTION

A variety of graphical representations are available for depicting tree
structures (Figure 1), from “classical” node-link diagrams [23, 7], to
treemaps [14, 26, 6, 30], concentric circles [2, 27, 31], and many others
(see [13] for a survey). A major consideration when designing, eval-
uating, or comparing such representations is how efficiently they use
screen space to show information about the tree. To date, however, it is
unclear how to go about evaluating space-efficiency in a way that can
be applied to the large variety of tree representations and that enables a
fair comparison of them. Space-efficiency might be described in terms
of area, aspect ratio, label size, or other measures. However, there is no
accepted standard set of metrics for evaluating the space-efficiency of
tree representations, and it is unclear what approach would be general
enough to be applied to all the forms in Figure 1.

Fig. 1. Several basic kinds of tree representations, here each showing
a complete 3-ary tree of depth 3 as an example. All representations
are drawn to just fit within a 1×1 unit square. A: classical (layered)
node-link [23, 7]. B: a variation on A, where the shape of nodes better
accommodates long labels. C: icicle. D: radial [10, 9]. E: concentric
circles [2, 27, 31]. F: nested circles, similar to [5, 28]. G: treemap [14,
26]. H: indented outline, sometimes called a “tree list”, and common in
file browsers such as Microsoft Explorer.
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One basic metric of space-efficiency is the total area of a representa-
tion. Assuming the representation is bound within a 1×1 square, both
icicle diagrams and treemaps (Figures 1C and 1G) have a total area of
1, and are equally efficient (and both optimal) according to this met-
ric. Likewise, concentric circles and nested circles (Figures 1E and 1F)
both have a total area of π/4 ≈ 0.785 (the area of a circle of diameter
1), and are also equally efficient according to the metric of total area.
However, experience suggests that the representations within each of
these pairs do not scale equally well with larger, deeper trees. This
article shows that there are finer ways of distinguishing efficiency, i.e.
that there is more to space-efficiency than total area.

Treemaps are often described as optimally space-efficient, not just
because they have a total area of 1, but also because they allow for
what we call a weighted partitioning of the area. Nodes can be allo-
cated more or less area, depending on some attribute such as file size,
population, or number of species, and furthermore this weighted par-
titioning can be done without reducing the total area used. These are
indeed desirable properties, however they are not unique to treemaps.
Figure 2 shows that icicle diagrams also allow for a weighted parti-
tioning of area, and incidentally have no need for margins between the
borders of nodes as treemaps often do.

Furthermore, although a weighted partitioning is useful for showing
the relative sizes of nodes in Figures 2A and 2C, an unfortunate side
effect is that labels on small nodes are very difficult to read. If users
are more interested in seeing the identity of all nodes rather than their
relative sizes, an alternative approach would be to give equal weight to
each leaf node (Figures 2B and 2D), improving the overall legibility
of nodes. (Although not shown in the figure, the labels could also be
augmented to numerically show the “size” attribute of each node.) In
terms of label size or legibility, Figures 2B and 2D are clearly prefer-
able, but even they still result in much whitespace around certain la-
bels, suggesting that a more space-efficient (in terms of label size)
representation might be possible.

Clearly, it would be useful to have some way to quantitatively dis-
tinguish the four possibilities in Figure 2, e.g. in terms of their respec-
tive scalability and the sizes of their labels. If total area is the only
metric of space-efficiency used, and “optimal” space-efficiency is de-
fined as a total area of 1 (possibly partitioned by weight), then we
have no way of distinguishing these four cases. If alternative metrics
of space-efficiency are used, such as those investigated in this article,
it is not clear initially if treemaps, or any other representation, will still
turn out to be optimal with respect to such alternative metrics.

This article identifies several metrics related to space-efficiency,
and performs the first rigorous analysis and comparison of the space-
efficiency of most of the basic tree representation styles in the infor-
mation visualization literature, including all those in Figure 1. Some
of the key ideas involved are (1) the use of a metric of the size of the
smallest nodes (i.e. the leaf nodes) in the representation, in addition to
a metric of total area; (2) analyzing the area of labels on the nodes,
which implicitly takes into account both the size and aspect ratio of
the nodes, measuring how much “useful” area they contain; and (3)
analyzing how these metrics behave asymptotically, as the tree grows
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Fig. 4. A tree and its mirror image positioned by Algorithm WS.

Fig. 2. Example tree as drawn by Algorithm TR.

Fig. 3. Example tree drawn by a modified Algorithm WS.

right subtree is built as usual, with Z being placed at 12. X,
the father of Y and Z, is given the average of their positions,
i.e., 9, and V receives the average of the positions ofW and X,
which is 8. This is too far to the left according to NEXT_POS,
so the subtree rooted at V is shifted two units to the right.
The resulting tree is two units wider than necessary. The
culprit is the empty space in the middle of the tree; it caused
Y to be placed too far to the left when it should have been
the minimum distance from Z (as A is from B). As the num-
ber of nodes increases, this anomalous behavior of Algorithm
WS can worsen.
Wetherell and Shannon present a modification to Algorithm

WS that guarantees minimum width drawings at the expense of
Aesthetic 3. Although the drawing it produces for the sample
tree (see Fig. 3) is not too wide, the drawing of Fig. 2 is much
better. Vaucher [5], independently of [3] and [6], developed
a tree printing algorithm that seems to avoid this problem but
does not satisfy the additional aesthetic constraint introduced
in the next section.
As our example illustrates, the difficulty with Algorithm WS

Fig. 5. A tree for which the narrowest drawing that satisfies Aesthetics
1-3 violates Aesthetic 4. The subtrees rooted at P and Q are iso-
morphic, but must be drawn nonisomorphically (as shown) to obtain
a minimum width drawing.

stems from the fact that the shape of a subtree is influenced
by the positioning of nodes outside that subtree; Sweet [3]
made a similar observation. As a consequence, symmetric
trees may be drawn asymmetrically, or more generally, a tree
and its reflection will not always produce mirror image draw-
ings; even the same subtree may appear differently in different
parts of the tree. Fig. 4 shows a small tree and its reflection
whose drawings by Algorithm WS are not mirror images.

A NEW AESTHETIC AND ALGORITHM
It is certainly desirable that a symmetric tree be drawn

symmetrically; therefore, we introduce a new aesthetic that
guarantees this (along with a somewhat stronger requirement).
Aesthetic 4: A tree and its mirror image should produce

drawings that are reflections of one another; moreover, a sub-
tree should be drawn the same way regardless of where it
occurs in the tree.
We pay a price for this aesthetic in terms of the width of the

tree. Fig. 5 illustrates a tree for which the narrowest drawing
that satisfies Aesthetics 1-3 violates Aesthetic 4. Nevertheless,
we consider Aesthetic 4 to be more important than minimum
width since the shape of the printed tree and its reflection
ought to be independent of its surroundings to aid in human
perception. In any case, with the exception of the theoreti-
cally interesting but impractical linear programming technique
of [2], the published tree printing algorithms all fail to pro-
duce minimum width placements, even without the stricture
of Aesthetic 4.

224 Reingold-Tilford Algorithm
• Recurse on left and right subtrees 
• Shift subtree over as long as it 

doesn’t overlap 
• Place parent centered above the 

subtrees 
• Originally, only binary trees, extended 

by Walker
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Treemap
• Containment marks instead of connection 

marks—show hierarchy 
• Encodes some quantitative attribute of the 

items as the size of the rectangles 
• Not as easy to see the intermediate 

rectangles (hierarchy) 
• Scalability: millions of leaf nodes and links 

possible
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Treemap Layouts: Squarify
• Slice & Dice and Strip can lead to 

bad aspect ratios 
• Solution: Strip only uses rows, allow 

columns to be used, too 
• Choose divisions (x/y) based on the 

width/height of region in order to 
maintain good aspect ratios 
- Use left and right side 
- Process large rectangles first 

• Ordering not preserved which may 
cause issues if the data is updated

6

[Notebook]
D. Koop, CSCI 627/490, Fall 2020

https://observablehq.com/@dakoop/treemap
https://observablehq.com/@dakoop/treemap


(a) File system (b) Organization

Fig. 5. Squarified treemaps

(a) File system (b) Organization

Fig. 6. Squarified cushion treemaps

figure 7(a). This method has some disadvantages. Extra screen-space is used, and fur-
thermore, it gives rise to maze-like images, which can be puzzling for the viewer.

However, the second disadvantage can be remedied in a similar way as for the visual-
ization of the nodes.We fill in the borderswith grey-shades, based on a simple geometric
model (figure 8). The width in pixels of a border of level , with is given
by:

where is the width of the root level border, and a factor that can be used to decrease
the width for lower level borders. For the profile of the border we use a parabola:

with

Squarified + Cushioned Treemaps

7

[Brus et al., 1999]
D. Koop, CSCI 627/490, Fall 2020



Set Visualization: Venn Diagram

8

[http://askville.amazon.com/idea-Venn-diagram/AnswerViewer.do?requestId=8420613]
D. Koop, CSCI 627/490, Fall 2020

http://askville.amazon.com/idea-Venn-diagram/AnswerViewer.do?requestId=8420613
http://askville.amazon.com/idea-Venn-diagram/AnswerViewer.do?requestId=8420613


Euler Diagram Variants

9

[B. Alsallakh et al., 2014]
D. Koop, CSCI 627/490, Fall 2020

use edges

use a concentric layout

split set into components

split set into components



a b

Fig. 7: Grouping research articles on a timeline. (a) Manually-created sketch (courtesy Tat [20]). (b) Bubble Sets visualization.

Fig. 8: Items can be expanded to reveal a larger image or the article’s abstract.
The boundary moves to accommodate the larger item, and other items move
along the y-axis to remain visible and selectable.

Sets of hotels, subway entrances, and medical clinics (Figure 9) may
help them find a hotel that is central to several medical clinics and near
a subway entrance.

4.4 Sets over Scatterplots
Scatterplots have clearly defined spatiality due to the numerical posi-
tioning of items. We add Bubble Sets to a reimplementation of the well
known GapMinder Trendalyzer [19]. This scatterplot shows fertility
rate against life expectancy and is animated over time. Data points
represent countries, sized by population. Colour (and set member-
ship) is defined by the continent. The grouping of the sub-Saharan
Africa countries, highlighted in Figure 10, reveals that while most of
the countries in this set had high fertility rates and low life expectan-
cies in 1985, there are two outliers, Mauritius and Reunion, which are
islands in the Indian Ocean. As the data set includes data for many

years, and since Bubbles Sets are calculated at interactive rates, the
temporal changes can be convincingly shown through animation.

5 DISCUSSION AND FUTURE WORK

We have presented Bubble Sets, a method for automatically drawing
set membership groups over existing visualizations with different de-
grees of requirements for primary spatial rights. In contrast to other
overlaid containment set visualizations, Bubble Sets maximizes set
membership inclusion and minimizes inclusion of non-set members.
In fact, Bubble Sets can guarantee that all set members will be within
one container, as opposed to the more common multiple disjoint con-
tainers. While Bubble Sets cannot guarantee non-set member exclu-
sion, the routing algorithm minimizes these occurrences.

Within our isocontour approach we have implemented several
heuristics to reduce surface calculation and rendering time, such as
grouping pixels for potential calculations and restricting the regions in
which items influence the potential field. The current implementation
works without noticeable lag (items can be dragged and the surface
follows) for our examples (order of 100 nodes, 10–20 sets). For ex-
ample, it takes on average 105ms to calculate the virtual edge set, fill
the energy field, find the contour, and render the Sub-Saharan Africa
set in a window size 1920 � 1200 pixels. That set has 48 items and
the entire scatter plot has 196 points. The majority of this time is
spent creating the virtual edge set. An incremental approach, using
A⇥ search as in [23] may provide improvements in speed and stability.
As the number of items, the screen resolution, or the number of sets
increases, so will the rendering time. Additional techniques, such as
grouping close items into larger pseudo-nodes, and caching the energy
field values between frames may increase the capacity of the system.
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[Collins et al., 2009]
D. Koop, CSCI 627/490, Fall 2020



Bubble Sets & Overlay Techniques
• Given spatial layout is determined by other attributes, want to show set 

containment without modifying spatial layout
• Idea of "spatial rights"
• Construct regions based on a potential field
• Draw using containment marks
• How do we compute these? 

11D. Koop, CSCI 627/490, Fall 2020



Bubble Sets & Overlay Techniques
• Given spatial layout is determined by other attributes, want to show set 

containment without modifying spatial layout
• Idea of "spatial rights"
• Construct regions based on a potential field
• Draw using containment marks
• How do we compute these? 
- Marching Squares!

11D. Koop, CSCI 627/490, Fall 2020



KelpFusion

12

[Meulemans et al., 2013]
D. Koop, CSCI 627/490, Fall 2020

2 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

(d) KelpFusion (dense)(a) Bubble Sets

(b) Kelp Diagrams

(f) KelpFusion (sparse)

(e) KelpFusion (medium)

(c) LineSets

Figure 1. Visualizations using the various methods discussed in this paper. (a) Image generated using the implementation generously
provided by the authors of Bubble Sets [7]. (b) Image courtesy of Kasper Dinkla. (c) Image generated using the LineSets implementation
described in [1]. (d-f) Images generated by our KelpFusion implementation.

on a spanning graph, KelpFusion introduces the use of a
proximity graph, a so-called shortest-path graph. In the
context of Geographic Information Science, shortest-path
graphs have been used to delineate imprecise regions, re-
constructing a boundary of a region based on points that are
likely inside the intended region [2]. Shortest-path graphs
adapt to point sets of varying density and aim to capture the
shape and clusters of a point set. In other words, the use of
shortest-path graphs allows KelpFusion to fill faces when
points are spatially close. Furthermore, we show that the
shortest-path graph and its corresponding boundary can be
computed efficiently, enabling interactive manipulation of
the visualization. Figure 1 illustrates three existing methods,
Bubble Sets, LineSets, and Kelp Diagrams, in comparison
with our new hybrid technique, KelpFusion.

To understand the advantages and drawbacks of our
technique, we performed a controlled experiment with 13

participants, comparing KelpFusion to Bubble Sets [7] and
LineSets [1]. We discovered that KelpFusion improved on
Bubble Sets, outperforming the technique in accuracy and
completion time. We also found that KelpFusion was on
par with LineSets in terms of accuracy but yielded faster
response times. User preferences and comments also indi-
cated that KelpFusion provides a good sense of grouping
and is aesthetically more pleasing than the other methods.

2 RELATED WORK
Venn or Euler diagrams are popular ways to visually
represent set intersections. In these diagrams, closed curves
correspond to sets and overlaps between the curves indicate
intersections. Several papers have explored the problem of
automatically drawing Euler diagrams to convey abstract
set topology, for example, Simonetto and Auber [14] and
Stapleton et al. [16]. Other approaches investigated the
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Overlays

13

[via B. Alsallakh et al., 2014]
D. Koop, CSCI 627/490, Fall 2020

Region-based

[Collins et al., 2009]

Line-based

[Dinkla et al., 2012]

Glyph-based

[Itoh et al., 2009]



More…
• Node-Link Visualizations 

• Matrix-based techniques 

• Aggregation-based techniques

14

[via B. Alsallakh et al., 2014]
D. Koop, CSCI 627/490, Fall 2020



Data: Robert J. MacG. Dawson. Curves?

Survived
Survived Perished

Sex alpha » size »
Female Male

Age alpha » size »
Child Adult

Class alpha » size »
Second Class First Class Third Class Crew

Explanation

More… Parallel Sets

15

[Kosara et al., 2006, Example: J. Davies]
D. Koop, CSCI 627/490, Fall 2020



Assignment 4
• Geospatial Visualizations & Treemap 
- Choose colormaps carefully 
- Add legend

16D. Koop, CSCI 627/490, Fall 2020



Project Design
• Start working on turning your visualization ideas into designs 
• Feedback to Blackboard soon 
• Sketch (talk about today) 
• Options: 
- Try vastly different options 
- Refine an initial idea

17D. Koop, CSCI 627/490, Fall 2020
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Guidelines for Visualization Design

D. Koop, CSCI 627/490, Fall 2020



WTF Visualizations (wtfviz.net)

19

[WTF Visualizations, 2017]
D. Koop, CSCI 627/490, Fall 2020

http://wtfviz.net
http://wtfviz.net
http://viz.wtf/post/154254744863/weapon-illegibility
http://viz.wtf/post/154254744863/weapon-illegibility


Tufte: "The da Vinci of Data" —NYTimes

20

[https://www.edwardtufte.com/tufte/, 2017]
D. Koop, CSCI 627/490, Fall 2020

http://www.nytimes.com/1998/03/30/business/the-da-vinci-of-data.html
http://www.nytimes.com/1998/03/30/business/the-da-vinci-of-data.html
https://www.edwardtufte.com/tufte/
https://www.edwardtufte.com/tufte/


Bad: Data magnitude <≠> Mark magnitude

21

[Flowing Data, 2012]
D. Koop, CSCI 627/490, Fall 2020

https://flowingdata.com/2012/08/06/fox-news-continues-charting-excellence/
https://flowingdata.com/2012/08/06/fox-news-continues-charting-excellence/


Good: Data magnitude <=> Mark magnitude

22

[Flowing Data, 2012]
D. Koop, CSCI 627/490, Fall 2020

https://flowingdata.com/2012/08/06/fox-news-continues-charting-excellence/
https://flowingdata.com/2012/08/06/fox-news-continues-charting-excellence/


Start Scales at 0?

A. Kriebel, VizWiz

Starting Scales at Zero?

23

[A. Kirebel, VizWiz]
D. Koop, CSCI 627/490, Fall 2020



Wavy baselines for non-zero starts

24

[W. C. Brinton via RJ Andrews]
D. Koop, CSCI 627/490, Fall 2020

See also: "Tear Up Your Baseline" [RJ Andrews]

https://medium.com/data-visualization-society/tear-up-your-baseline-b6b68a2a60f1
https://medium.com/data-visualization-society/tear-up-your-baseline-b6b68a2a60f1
https://medium.com/data-visualization-society/tear-up-your-baseline-b6b68a2a60f1
https://medium.com/data-visualization-society/tear-up-your-baseline-b6b68a2a60f1


Cherry-picking data

25

[Fox News via Media Matters, 2012]
D. Koop, CSCI 627/490, Fall 2020

https://mediamatters.org/research/2012/10/01/a-history-of-dishonest-fox-charts/190225
https://mediamatters.org/research/2012/10/01/a-history-of-dishonest-fox-charts/190225


Show all the data

26

[AAA via Media Matters, 2012]
D. Koop, CSCI 627/490, Fall 2020

https://mediamatters.org/research/2012/10/01/a-history-of-dishonest-fox-charts/190225
https://mediamatters.org/research/2012/10/01/a-history-of-dishonest-fox-charts/190225


Tufte's Lie Factor

27

[NYTimes via Tufte, 1991]
D. Koop, CSCI 627/490, Fall 2020



Tufte's Lie Factor
• Size of effect = (2nd value - 1st value) / (1st value) 
• Lie factor = (size of effect in graphic) / (size of effect in data) 
• In the graphic:

28

[InfoVis Wiki]
D. Koop, CSCI 627/490, Fall 2020

http://www.infovis-wiki.net/index.php?title=Lie_Factor
http://www.infovis-wiki.net/index.php?title=Lie_Factor


(Some of) Tufte's Integrity Principles
• Show data variation, not design variation 
• Clear, detailed, and thorough labeling and appropriate scales 
• Size of the graphic effect should be directly proportional to the numerical 

quantities ("lie factor")

29D. Koop, CSCI 627/490, Fall 2020



Avoid Chartjunk

ongoing, Tim Brey

Extraneous visual elements that distract from the 
messageAvoid Chartjunk

30

[T. Brey via A. Lex]
D. Koop, CSCI 627/490, Fall 2020

http://dataviscourse.net
http://dataviscourse.net


Avoid Chartjunk

ongoing, Tim Brey

Avoid Chartjunk

31

[T. Brey via A. Lex]
D. Koop, CSCI 627/490, Fall 2020

http://dataviscourse.net
http://dataviscourse.net


Avoid Chartjunk

ongoing, Tim Brey

Avoid Chartjunk

32

[T. Brey via A. Lex]
D. Koop, CSCI 627/490, Fall 2020

http://dataviscourse.net
http://dataviscourse.net


HIGH 
QUALITY 
DESCRIPTION

LOW 
QUALITY 

DESCRIPTION

MEMORABLE

FORGETTABLE

Avoid Chartjunk?

33

[M. Borkin et al., InfoVis 2015]
D. Koop, CSCI 627/490, Fall 2020



Maximize Data-Ink Ratio

0-$24,999 $25,000+ 0-$24,999 $25,000+

Data-to-Ink Ratio (Also Unjustified 3D)

34

[via A. Lex]
D. Koop, CSCI 627/490, Fall 2020

http://dataviscourse.net
http://dataviscourse.net


Maximize Data-Ink Ratio

0

175

350

525

700

Males Females

0-$24,999 $25,000+ 0-$24,999 $25,000+

Maximize Data-to-Ink Ratio

35

[via A. Lex]
D. Koop, CSCI 627/490, Fall 2020

http://dataviscourse.net
http://dataviscourse.net


Don’t

matplotlib gallery

Excel Charts Blog

No Unjustified 3D

36

[via A. Lex]
D. Koop, CSCI 627/490, Fall 2020

http://dataviscourse.net
http://dataviscourse.net


Don’t

matplotlib gallery

Excel Charts Blog

No Unjustified 3D
• Occlusion hides information 
• Perspective distortion dangers 
• Tilted text isn't legible 

• Can help with shape perception

37

[via A. Lex]
D. Koop, CSCI 627/490, Fall 2020

http://dataviscourse.net
http://dataviscourse.net


Eyes Beat Memory
• Reduce cognitive load (using up working memory) 
• Animation versus side-by-side views 
• Change blindness

38D. Koop, CSCI 627/490, Fall 2020
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“Computer-based visualization systems provide visual 
representations of datasets designed to help people carry out 
tasks more effectively.”  

— T. Munzner

D. Koop, CSCI 627/490, Fall 2020



Design Iteration

40

[K. Quealy, 2013]
D. Koop, CSCI 627/490, Fall 2020

http://kpq.github.io/chartsnthings/2013/09/19-sketches-of-quarterback-timelines.html
http://kpq.github.io/chartsnthings/2013/09/19-sketches-of-quarterback-timelines.html


Design Iteration

41

[K. Quealy, 2013]
D. Koop, CSCI 627/490, Fall 2020

http://kpq.github.io/chartsnthings/2013/09/19-sketches-of-quarterback-timelines.html
http://kpq.github.io/chartsnthings/2013/09/19-sketches-of-quarterback-timelines.html


Design Iteration

42

[K. Quealy, 2013]
D. Koop, CSCI 627/490, Fall 2020

http://kpq.github.io/chartsnthings/2013/09/19-sketches-of-quarterback-timelines.html
http://kpq.github.io/chartsnthings/2013/09/19-sketches-of-quarterback-timelines.html


Design
• Unlike a math problem, there are many different approaches for the 

visualization of some data 
• Need to have some way to discuss how to determine whether a visualization 

is doing what we want 
• Validation: Understand why a design is effective 
- What problems can be effective 
- Do this at different levels

43D. Koop, CSCI 627/490, Fall 2020



Data/task abstraction

Visual encoding/interaction idiom

Algorithm

Domain situation

Four Nested Levels of Design

44

[Munzner, 2014]
D. Koop, CSCI 627/490, Fall 2020



Domain situation
You misunderstood their needs

You’re showing them the wrong thing

Visual encoding/interaction idiom
The way you show it doesn’t work

Algorithm
Your code is too slow

Data/task abstraction

Potential problems at each level

45

[Munzner, 2014]
D. Koop, CSCI 627/490, Fall 2020



Threat       Wrong problem

Threat   Wrong task/data abstraction

Threat       Ine!ective encoding/interaction idiom

Threat       Slow algorithm

Validate   Observe and interview target users

Validate   Analyze computational complexity

Validate   Measure system time/memory

Validate   Observe adoption rates

Validate   Test on target users, collect anecdotal evidence of utility
Validate   Field study, document human usage of deployed system

Validate   Qualitative/quantitative result image analysis

Validate   Lab study, measure human time/errors for task

Validate   Justify encoding/interaction design

Implement system

 Test on any users, informal usability study

Validation at each level

46

[Munzner, 2014]
D. Koop, CSCI 627/490, Fall 2020



Data 
Collection

Visualizing
Context

Exploration
& ideation

Concept
Development

Prototyping Solution

User Observation
Interviews
Workshops

Sketching
Storyboarding

Quick sketching
User scenarios
Improvisation

Refined Sketching
Rendering
Animated sequences
Videos, model making

Data Collection: Synthesis: Explore & Ideate: Prototype:

Document solutions
Goals Requirements

Validate Understand 
existing solutions

Explore lots of
 solutions

Communicate
Demonstrate

G
O

AL
S

TE
CH

NI
Q

UE
S

DE
SI

G
N

G
EN

EX

COLLECT RELATE DONATECREATE

Sheet 1 Sheets 2,3,4 Sheet 5

Fd
S

Fig. 2: Schematic that shows where the FdS design fits in with the
Genex model of Shneiderman [43] (collect, relate, donate and create)
and the design process of Sanders and Stappers’ [40].

These ideas would certainly adapt and be improved at later stages of
the design process. Nonetheless, the goal of the ‘early’ process is
exploratory. In fact, for the FdS we are not concerned with data col-
lection, but users do need to think about the data, and to consider,
synthesize and consolidate ideas in sheet 1. Users need to think over
the data and to consider the different parts of the data at this stage.
They explore different possible solutions (sheets 2,3 and 4) and finally
plan a prototype.

2.2 Sketching as a planning method for visualization
Many creative industries use sketching as a way to investigate, ex-
plore and plan different possible solutions. E.g., product, fashion and
graphic designers, architects and film-makers all sketch many differ-
ent possible solutions. Heller and Landers provide insights into about
fifty designers’ sketching practices based on excerpts of their sketch-
books [21]. The use of lo-fidelity sketching frees the user from worry-
ing about technical limitations or assumptions and encourages them
to explore different solutions. In fact architectural design was one
of the main inspirations for our work. Tovey writes “[designers use
sketches to] generate concepts, to externalize and visualize problems,
to facilitate problem solving and creative effort, revising and refining
ideas” [46]. In visualization, this has been less formally used. Users
often sketch and plan, but usually don’t follow a method, rather they
do it in an ad hoc way. Recent work by Keefe [26] and Jackson et al.
[23] demonstrate the power of sketching; they explore one designer
generating several solutions, and make comparison to other lo-fidelity
prototyping methods. Sketching is also used by Walny et al. [52],
where users directly sketch the data.

Another inspirational idea from architecture design was the idea of
the parti pris [17] (the big idea). The word comes from the French
prendre parti, a bias or a mind-made-up. In architectural-criticism the
parti is an assumption that informs the design; it is therefore the cen-
tral, most overarching concept that the design is portraying. In other
words, it is pivotal to making the design work. Let’s consider the ex-
ample of a parallel coordinate plot. In this case the parti is the fact
that axis are parallel and the data is plotted as polylines across the
axis. Each sheet of the FdS (apart from the first) have a focus/parti
segment.

Rettig [33] writes, “Lo-fi prototyping works because it effectively
educates developers to have a concern for usability and formative
evaluation, and because it maximizes the number of times you get to
refine your design before you must commit to code”. He encourages it-
eration and refinement at the prototype stage, saying that quality of the
final product comes through iterative refinement: “get the big things
right during lo-fi, and the little things will follow in future iterations”.
Rettig gave users a pragmatic set of instructions for programmers to
develop lo-fi prototypes on paper: assemble a kit (pens, paper, ruler,
scissors, etc.), set a deadline, draw models not illustrations. He also
suggests that one sheet of paper should be used per interface. Then
these paper interfaces could be tested with users. So, prepare the test,

Ideas

Filter

Categorize

Combine & Refine

Question

Sheet 1

(a)

Layout Information

Discussion
Focus / Parti

Operations

Sheet 2,3,4

(b)

Detail

Layout Information

Focus / Parti

Operations

Sheet 5

(c)
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Fig. 4: Five stages to the FdS: (S1) meet with client and consider
task; or contemplate task on own. (S2) Ideate and sketch small ideas.
(S3) Sketch and plan three alternative designs. (S4) Consider solutions
with client; or deliberate on own. (S5) Generate realization sheet, and
implement prototype. Discuss with client and re-iterate if necessary.

select users, prepare test scenarios, practice these scenarios, and allo-
cate roles (greeter, facilitator, computer, observers).

Our focus on sketching fits well with other work in the visualization
domain. For instance, Craft and Cairns [11] and Curtis and Vertel-
ney [13] encourage storyboarding and sketching prototypes for rapid
visualization interface development. Roam [34] presents a series of
visual sketching methods as a way to solve problems in business and
help developers crystallize ideas. Buxton et al. [7] encourage sketch-
ing for interface design.

Through sketching the design is recorded, and tells the story of the
fluid, ephemeral evolution of the idea [3]. Users often sketch multiple
designs on the same sheet of paper [18]. Even when the designer uses
a computer to create different 3D models, they often render the output
in a sketchy appearance. Similarly prototype visualization tools can
be rendered in a sketchy appearance (e.g., [28, 55]) while sketching
can also be an input device [42].

3 THE FDS METHODOLOGY

The FdS is a five-stage methodology (Fig. 4) comprising of five sheets
(Fig. 3), each sheet containing five parts. Explicitly, the first sheet is
the brainstorm (ideas) sheet (Fig. 3a); three design sheets (Fig. 3b)
and a realization sheet (Fig. 3c). The latter four sheets are similar in
construction. The methodology is summarized as follows:

1. Five stages. The whole process consists of five stages, (see Fig.
4). (1) the user considers the task (the user meets the client). (2)
The user thinks divergently and considers many alternative ideas.

Five Design-Sheet Methodology
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Five Stages
1. Meet with client and consider task; or contemplate task on own. 
2. Ideate and sketch small ideas. 
3. Sketch and plan three alternative designs. 
4. Consider solutions with client; or deliberate on own. 
5. Generate realization sheet, and implement prototype. Discuss with client 

and re-iterate if necessary. 
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Fig. 2: Schematic that shows where the FdS design fits in with the
Genex model of Shneiderman [43] (collect, relate, donate and create)
and the design process of Sanders and Stappers’ [40].

These ideas would certainly adapt and be improved at later stages of
the design process. Nonetheless, the goal of the ‘early’ process is
exploratory. In fact, for the FdS we are not concerned with data col-
lection, but users do need to think about the data, and to consider,
synthesize and consolidate ideas in sheet 1. Users need to think over
the data and to consider the different parts of the data at this stage.
They explore different possible solutions (sheets 2,3 and 4) and finally
plan a prototype.

2.2 Sketching as a planning method for visualization
Many creative industries use sketching as a way to investigate, ex-
plore and plan different possible solutions. E.g., product, fashion and
graphic designers, architects and film-makers all sketch many differ-
ent possible solutions. Heller and Landers provide insights into about
fifty designers’ sketching practices based on excerpts of their sketch-
books [21]. The use of lo-fidelity sketching frees the user from worry-
ing about technical limitations or assumptions and encourages them
to explore different solutions. In fact architectural design was one
of the main inspirations for our work. Tovey writes “[designers use
sketches to] generate concepts, to externalize and visualize problems,
to facilitate problem solving and creative effort, revising and refining
ideas” [46]. In visualization, this has been less formally used. Users
often sketch and plan, but usually don’t follow a method, rather they
do it in an ad hoc way. Recent work by Keefe [26] and Jackson et al.
[23] demonstrate the power of sketching; they explore one designer
generating several solutions, and make comparison to other lo-fidelity
prototyping methods. Sketching is also used by Walny et al. [52],
where users directly sketch the data.

Another inspirational idea from architecture design was the idea of
the parti pris [17] (the big idea). The word comes from the French
prendre parti, a bias or a mind-made-up. In architectural-criticism the
parti is an assumption that informs the design; it is therefore the cen-
tral, most overarching concept that the design is portraying. In other
words, it is pivotal to making the design work. Let’s consider the ex-
ample of a parallel coordinate plot. In this case the parti is the fact
that axis are parallel and the data is plotted as polylines across the
axis. Each sheet of the FdS (apart from the first) have a focus/parti
segment.

Rettig [33] writes, “Lo-fi prototyping works because it effectively
educates developers to have a concern for usability and formative
evaluation, and because it maximizes the number of times you get to
refine your design before you must commit to code”. He encourages it-
eration and refinement at the prototype stage, saying that quality of the
final product comes through iterative refinement: “get the big things
right during lo-fi, and the little things will follow in future iterations”.
Rettig gave users a pragmatic set of instructions for programmers to
develop lo-fi prototypes on paper: assemble a kit (pens, paper, ruler,
scissors, etc.), set a deadline, draw models not illustrations. He also
suggests that one sheet of paper should be used per interface. Then
these paper interfaces could be tested with users. So, prepare the test,
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Fig. 3: The FdS sheets. (a) Sheet 1: Generate Ideas, filter, categorize,
combine & refine then question. (b) Sheets 2,3,4 with the five sections
in the 2-row 3-row format; (c) Sheet 5, the realization sheet where
Detail is included instead of Discussion.

Fig. 4: Five stages to the FdS: (S1) meet with client and consider
task; or contemplate task on own. (S2) Ideate and sketch small ideas.
(S3) Sketch and plan three alternative designs. (S4) Consider solutions
with client; or deliberate on own. (S5) Generate realization sheet, and
implement prototype. Discuss with client and re-iterate if necessary.

select users, prepare test scenarios, practice these scenarios, and allo-
cate roles (greeter, facilitator, computer, observers).

Our focus on sketching fits well with other work in the visualization
domain. For instance, Craft and Cairns [11] and Curtis and Vertel-
ney [13] encourage storyboarding and sketching prototypes for rapid
visualization interface development. Roam [34] presents a series of
visual sketching methods as a way to solve problems in business and
help developers crystallize ideas. Buxton et al. [7] encourage sketch-
ing for interface design.

Through sketching the design is recorded, and tells the story of the
fluid, ephemeral evolution of the idea [3]. Users often sketch multiple
designs on the same sheet of paper [18]. Even when the designer uses
a computer to create different 3D models, they often render the output
in a sketchy appearance. Similarly prototype visualization tools can
be rendered in a sketchy appearance (e.g., [28, 55]) while sketching
can also be an input device [42].

3 THE FDS METHODOLOGY

The FdS is a five-stage methodology (Fig. 4) comprising of five sheets
(Fig. 3), each sheet containing five parts. Explicitly, the first sheet is
the brainstorm (ideas) sheet (Fig. 3a); three design sheets (Fig. 3b)
and a realization sheet (Fig. 3c). The latter four sheets are similar in
construction. The methodology is summarized as follows:

1. Five stages. The whole process consists of five stages, (see Fig.
4). (1) the user considers the task (the user meets the client). (2)
The user thinks divergently and considers many alternative ideas.

Five Stages
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Fig. 2: Schematic that shows where the FdS design fits in with the
Genex model of Shneiderman [43] (collect, relate, donate and create)
and the design process of Sanders and Stappers’ [40].

These ideas would certainly adapt and be improved at later stages of
the design process. Nonetheless, the goal of the ‘early’ process is
exploratory. In fact, for the FdS we are not concerned with data col-
lection, but users do need to think about the data, and to consider,
synthesize and consolidate ideas in sheet 1. Users need to think over
the data and to consider the different parts of the data at this stage.
They explore different possible solutions (sheets 2,3 and 4) and finally
plan a prototype.

2.2 Sketching as a planning method for visualization
Many creative industries use sketching as a way to investigate, ex-
plore and plan different possible solutions. E.g., product, fashion and
graphic designers, architects and film-makers all sketch many differ-
ent possible solutions. Heller and Landers provide insights into about
fifty designers’ sketching practices based on excerpts of their sketch-
books [21]. The use of lo-fidelity sketching frees the user from worry-
ing about technical limitations or assumptions and encourages them
to explore different solutions. In fact architectural design was one
of the main inspirations for our work. Tovey writes “[designers use
sketches to] generate concepts, to externalize and visualize problems,
to facilitate problem solving and creative effort, revising and refining
ideas” [46]. In visualization, this has been less formally used. Users
often sketch and plan, but usually don’t follow a method, rather they
do it in an ad hoc way. Recent work by Keefe [26] and Jackson et al.
[23] demonstrate the power of sketching; they explore one designer
generating several solutions, and make comparison to other lo-fidelity
prototyping methods. Sketching is also used by Walny et al. [52],
where users directly sketch the data.

Another inspirational idea from architecture design was the idea of
the parti pris [17] (the big idea). The word comes from the French
prendre parti, a bias or a mind-made-up. In architectural-criticism the
parti is an assumption that informs the design; it is therefore the cen-
tral, most overarching concept that the design is portraying. In other
words, it is pivotal to making the design work. Let’s consider the ex-
ample of a parallel coordinate plot. In this case the parti is the fact
that axis are parallel and the data is plotted as polylines across the
axis. Each sheet of the FdS (apart from the first) have a focus/parti
segment.

Rettig [33] writes, “Lo-fi prototyping works because it effectively
educates developers to have a concern for usability and formative
evaluation, and because it maximizes the number of times you get to
refine your design before you must commit to code”. He encourages it-
eration and refinement at the prototype stage, saying that quality of the
final product comes through iterative refinement: “get the big things
right during lo-fi, and the little things will follow in future iterations”.
Rettig gave users a pragmatic set of instructions for programmers to
develop lo-fi prototypes on paper: assemble a kit (pens, paper, ruler,
scissors, etc.), set a deadline, draw models not illustrations. He also
suggests that one sheet of paper should be used per interface. Then
these paper interfaces could be tested with users. So, prepare the test,
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Fig. 3: The FdS sheets. (a) Sheet 1: Generate Ideas, filter, categorize,
combine & refine then question. (b) Sheets 2,3,4 with the five sections
in the 2-row 3-row format; (c) Sheet 5, the realization sheet where
Detail is included instead of Discussion.

Fig. 4: Five stages to the FdS: (S1) meet with client and consider
task; or contemplate task on own. (S2) Ideate and sketch small ideas.
(S3) Sketch and plan three alternative designs. (S4) Consider solutions
with client; or deliberate on own. (S5) Generate realization sheet, and
implement prototype. Discuss with client and re-iterate if necessary.

select users, prepare test scenarios, practice these scenarios, and allo-
cate roles (greeter, facilitator, computer, observers).

Our focus on sketching fits well with other work in the visualization
domain. For instance, Craft and Cairns [11] and Curtis and Vertel-
ney [13] encourage storyboarding and sketching prototypes for rapid
visualization interface development. Roam [34] presents a series of
visual sketching methods as a way to solve problems in business and
help developers crystallize ideas. Buxton et al. [7] encourage sketch-
ing for interface design.

Through sketching the design is recorded, and tells the story of the
fluid, ephemeral evolution of the idea [3]. Users often sketch multiple
designs on the same sheet of paper [18]. Even when the designer uses
a computer to create different 3D models, they often render the output
in a sketchy appearance. Similarly prototype visualization tools can
be rendered in a sketchy appearance (e.g., [28, 55]) while sketching
can also be an input device [42].

3 THE FDS METHODOLOGY

The FdS is a five-stage methodology (Fig. 4) comprising of five sheets
(Fig. 3), each sheet containing five parts. Explicitly, the first sheet is
the brainstorm (ideas) sheet (Fig. 3a); three design sheets (Fig. 3b)
and a realization sheet (Fig. 3c). The latter four sheets are similar in
construction. The methodology is summarized as follows:

1. Five stages. The whole process consists of five stages, (see Fig.
4). (1) the user considers the task (the user meets the client). (2)
The user thinks divergently and considers many alternative ideas.

The Five Sheets
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Fig. 6: An example of the FdS are shown on the left, with a picture of the final prototype on the right. Created for the Information Visualization
module as part of the MSc course. The student chose to investigate data regarding University access for disabled students.

(a) Variables. List the data variables. What are the parame-
ters? Give them names. What are dependent and indepen-
dent variables?

(b) Types of data. What data-types are in the data? How are
they stored? What is the access to the data (API, JSON
file etc.)? What data-structure holds the data (e.g., is it
hierarchical)?

(c) Categories. Are the variables categorical (nominal or or-
dinal or ranks), are they quantitative (discrete or continu-
ous)?

(d) Temporal. Is the data streaming data? How was it stored
(all at one time or over several years)?

(e) Range & distribution. What is the distribution of the data?
Few values, small size, evenly spread, sparse or dense?

4. Resources. Finally the user needs to gather resources together
to create the FdS, e.g., colored pens or pencils, ruler and paper.

3.3 FdS Sheet 1: Ideation
Ideation is the process of creating new ideas. But where do ideas come
from? How do users actually think up ten, twenty or a hundred ideas?
How do new concepts get ‘born’? The five parts of sheet 1 leads the
user to think divergently, to first generate ideas, then filter and cate-
gorize them, followed by combining and refining them, before finally
questioning their suitability to the task, see Fig. 3

Ideas emerge by thinking, talking with other people, reading rele-
vant literature, gaining inspiration from other domains, resting and not
rushing, reflecting and collaborating. This theory is summarized in
the following literature: Relax: Good ideas come through long, slow
and careful thought, says Johnson [25] (he talks about a ‘slow hunch’).
Re-work: Webb [57] says we should gather-material, think, relax and
re-work. This reflection stage is extremely important in many domains
(we often encourage our students to write their work and then leave it
overnight before reading it again). Provoke: e.g., ask difficult ques-
tions, think of impossible solutions. Persist: Shneiderman [43] agrees
and says it’s “1% inspiration and 99% perspiration”. Iterate & Re-

fine: evaluate, revisit assumptions and re-design [10]. Different per-

sonalities: De Bono encourages us to take on different personalities in
his six thinking hats [15]. Collaborate: Work with different people,
with different skills and knowledge [48]. Dissimilar ideas: Glue dis-
similar ideas together. E.g., Johnson [25] suggests finding dissimilar
ideas and joining them together and through this joining up of differ-
ent thoughts new ideas can be formed. de Bono’s ‘green-hat’ suggests
using random pages of a book to inspire [14]. Transference: Look
to other subjects for inspiration, e.g., biomimicry [38]. Research:

Discover every idea and every solution so far. Look at other ideas
and learn from others’ work [43]. Metaphors: Generate abstractions
and use analogies. Metaphors help users to instantly understand the
corresponding idea [38]. Ziemkiewicz and Kosara [58] suggest that
metaphors work both ways: they both inspire and are needed for in-
terpretation. Make mistakes: Good ideas can come from serendipity.
Either try to fix these mistakes or use the result to your favor. There are
well written examples where scientists make errors or have accidents
and it is these that are actually good ideas: e.g., sticky-note glue or the
discovery of penicillin [54]. Reverse/Invert: Reverse, flip or invert an

idea to generate others.
As the user goes through this exercise they need to think-through

different possibilities, but also keep their mind on the task. Usually the
user does each action in turn, and decides whether they have completed
it to a satisfactory level before moving onto the next task. But the very
nature of considering the next task may put them back to an earlier
stage. E.g., by categorizing the ideas the user may realize that there is
a missing category and thus move back to drawing more ideas. That
themselves can be categorized. Indeed the point of each stage is not
only divergent and convergent thinking, but also to provoke new ideas
and increase the potential set of ideas.

1. Ideate. Users need to sketch as many ideas as possible. These
are ‘mini-ideas’. They are lots of little drawings. While they
could be full solutions, they are more likely to be ‘insufficiently
thought out’ or ‘half-baked’ ideas, short concepts, or even wacky
concepts. At the start, the point is to articulate different potential
ideas. The thoughts should be driven by the task and the user
should have ‘half an eye’ on the goal (to develop a tool that will
visualize data), and should hold off criticizing the ideas because
this will be done later. When a substantial1 amount of ideas have
been made the user moves on to filter.

2. Filter. Users should start to remove any duplicated ideas, or con-
cepts that are irrelevant or absolutely impossible. Users can use
these negative thoughts positively, such that if they are impossi-
ble then they should consider how they could they be fixed. In
practice the sketches are being annotated rather than fully deleted
(a single line crossed through a design will suffice). When con-
sidering these aspects, users need to think what is suitable to the
task, and how new ideas can be generated from these deletions
or duplications.

3. Categorize. Users need to consider what is similar and what is
different. Annotation can be used to group similar ideas together.
Categories change and develop, therefore users should not worry
about the fine details of categorization: it is merely a tool to
facilitate the exploration of ideas. While this operation converges
(reduces) the designs, users should consider ‘what is missing’.
E.g., is there another category of designs that should be present?
What is this category? Is it relevant?

4. Combine & refine. Users need to organize the mini-ideas into
bigger solutions. For instance, look to develop Multiple Coor-
dinate Views [35]. Think what visualizations complement each
other. E.g., spatial (map) with temporal (timeline), or overview
with detail. Indeed the Space-time cube is an example of com-
bining ideas [1]. Refine the ideas, making sure they use suitable
colors [19] or other best practice [53]. Draw new combinations,
look to refining or changing any designs; start to consider which
three ideas will be planned in more detail on Sheets 2,3,4. Draw
or annotate circles around three possible choices.

5. Question. Users should reflect on what has been created. Do so-
lutions meet the task? Are they effective designs? Do they mis-

1It is difficult to quantify the number of mini-ideas required; but the more
ideas that are sketched, the easier the next stages of filter, categorize etc. will
be. Three is too few; 10 may be ok; 20 would be better.

Example: University Access for Disabled Students
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Fig. 6: An example of the FdS are shown on the left, with a picture of the final prototype on the right. Created for the Information Visualization
module as part of the MSc course. The student chose to investigate data regarding University access for disabled students.

(a) Variables. List the data variables. What are the parame-
ters? Give them names. What are dependent and indepen-
dent variables?

(b) Types of data. What data-types are in the data? How are
they stored? What is the access to the data (API, JSON
file etc.)? What data-structure holds the data (e.g., is it
hierarchical)?

(c) Categories. Are the variables categorical (nominal or or-
dinal or ranks), are they quantitative (discrete or continu-
ous)?

(d) Temporal. Is the data streaming data? How was it stored
(all at one time or over several years)?

(e) Range & distribution. What is the distribution of the data?
Few values, small size, evenly spread, sparse or dense?

4. Resources. Finally the user needs to gather resources together
to create the FdS, e.g., colored pens or pencils, ruler and paper.

3.3 FdS Sheet 1: Ideation
Ideation is the process of creating new ideas. But where do ideas come
from? How do users actually think up ten, twenty or a hundred ideas?
How do new concepts get ‘born’? The five parts of sheet 1 leads the
user to think divergently, to first generate ideas, then filter and cate-
gorize them, followed by combining and refining them, before finally
questioning their suitability to the task, see Fig. 3

Ideas emerge by thinking, talking with other people, reading rele-
vant literature, gaining inspiration from other domains, resting and not
rushing, reflecting and collaborating. This theory is summarized in
the following literature: Relax: Good ideas come through long, slow
and careful thought, says Johnson [25] (he talks about a ‘slow hunch’).
Re-work: Webb [57] says we should gather-material, think, relax and
re-work. This reflection stage is extremely important in many domains
(we often encourage our students to write their work and then leave it
overnight before reading it again). Provoke: e.g., ask difficult ques-
tions, think of impossible solutions. Persist: Shneiderman [43] agrees
and says it’s “1% inspiration and 99% perspiration”. Iterate & Re-

fine: evaluate, revisit assumptions and re-design [10]. Different per-

sonalities: De Bono encourages us to take on different personalities in
his six thinking hats [15]. Collaborate: Work with different people,
with different skills and knowledge [48]. Dissimilar ideas: Glue dis-
similar ideas together. E.g., Johnson [25] suggests finding dissimilar
ideas and joining them together and through this joining up of differ-
ent thoughts new ideas can be formed. de Bono’s ‘green-hat’ suggests
using random pages of a book to inspire [14]. Transference: Look
to other subjects for inspiration, e.g., biomimicry [38]. Research:

Discover every idea and every solution so far. Look at other ideas
and learn from others’ work [43]. Metaphors: Generate abstractions
and use analogies. Metaphors help users to instantly understand the
corresponding idea [38]. Ziemkiewicz and Kosara [58] suggest that
metaphors work both ways: they both inspire and are needed for in-
terpretation. Make mistakes: Good ideas can come from serendipity.
Either try to fix these mistakes or use the result to your favor. There are
well written examples where scientists make errors or have accidents
and it is these that are actually good ideas: e.g., sticky-note glue or the
discovery of penicillin [54]. Reverse/Invert: Reverse, flip or invert an

idea to generate others.
As the user goes through this exercise they need to think-through

different possibilities, but also keep their mind on the task. Usually the
user does each action in turn, and decides whether they have completed
it to a satisfactory level before moving onto the next task. But the very
nature of considering the next task may put them back to an earlier
stage. E.g., by categorizing the ideas the user may realize that there is
a missing category and thus move back to drawing more ideas. That
themselves can be categorized. Indeed the point of each stage is not
only divergent and convergent thinking, but also to provoke new ideas
and increase the potential set of ideas.

1. Ideate. Users need to sketch as many ideas as possible. These
are ‘mini-ideas’. They are lots of little drawings. While they
could be full solutions, they are more likely to be ‘insufficiently
thought out’ or ‘half-baked’ ideas, short concepts, or even wacky
concepts. At the start, the point is to articulate different potential
ideas. The thoughts should be driven by the task and the user
should have ‘half an eye’ on the goal (to develop a tool that will
visualize data), and should hold off criticizing the ideas because
this will be done later. When a substantial1 amount of ideas have
been made the user moves on to filter.

2. Filter. Users should start to remove any duplicated ideas, or con-
cepts that are irrelevant or absolutely impossible. Users can use
these negative thoughts positively, such that if they are impossi-
ble then they should consider how they could they be fixed. In
practice the sketches are being annotated rather than fully deleted
(a single line crossed through a design will suffice). When con-
sidering these aspects, users need to think what is suitable to the
task, and how new ideas can be generated from these deletions
or duplications.

3. Categorize. Users need to consider what is similar and what is
different. Annotation can be used to group similar ideas together.
Categories change and develop, therefore users should not worry
about the fine details of categorization: it is merely a tool to
facilitate the exploration of ideas. While this operation converges
(reduces) the designs, users should consider ‘what is missing’.
E.g., is there another category of designs that should be present?
What is this category? Is it relevant?

4. Combine & refine. Users need to organize the mini-ideas into
bigger solutions. For instance, look to develop Multiple Coor-
dinate Views [35]. Think what visualizations complement each
other. E.g., spatial (map) with temporal (timeline), or overview
with detail. Indeed the Space-time cube is an example of com-
bining ideas [1]. Refine the ideas, making sure they use suitable
colors [19] or other best practice [53]. Draw new combinations,
look to refining or changing any designs; start to consider which
three ideas will be planned in more detail on Sheets 2,3,4. Draw
or annotate circles around three possible choices.

5. Question. Users should reflect on what has been created. Do so-
lutions meet the task? Are they effective designs? Do they mis-

1It is difficult to quantify the number of mini-ideas required; but the more
ideas that are sketched, the easier the next stages of filter, categorize etc. will
be. Three is too few; 10 may be ok; 20 would be better.

Sheets 2-4

52

[J. Roberts et al., 2016]
D. Koop, CSCI 627/490, Fall 2020



Fig. 6: An example of the FdS are shown on the left, with a picture of the final prototype on the right. Created for the Information Visualization
module as part of the MSc course. The student chose to investigate data regarding University access for disabled students.

(a) Variables. List the data variables. What are the parame-
ters? Give them names. What are dependent and indepen-
dent variables?

(b) Types of data. What data-types are in the data? How are
they stored? What is the access to the data (API, JSON
file etc.)? What data-structure holds the data (e.g., is it
hierarchical)?

(c) Categories. Are the variables categorical (nominal or or-
dinal or ranks), are they quantitative (discrete or continu-
ous)?

(d) Temporal. Is the data streaming data? How was it stored
(all at one time or over several years)?

(e) Range & distribution. What is the distribution of the data?
Few values, small size, evenly spread, sparse or dense?

4. Resources. Finally the user needs to gather resources together
to create the FdS, e.g., colored pens or pencils, ruler and paper.

3.3 FdS Sheet 1: Ideation
Ideation is the process of creating new ideas. But where do ideas come
from? How do users actually think up ten, twenty or a hundred ideas?
How do new concepts get ‘born’? The five parts of sheet 1 leads the
user to think divergently, to first generate ideas, then filter and cate-
gorize them, followed by combining and refining them, before finally
questioning their suitability to the task, see Fig. 3

Ideas emerge by thinking, talking with other people, reading rele-
vant literature, gaining inspiration from other domains, resting and not
rushing, reflecting and collaborating. This theory is summarized in
the following literature: Relax: Good ideas come through long, slow
and careful thought, says Johnson [25] (he talks about a ‘slow hunch’).
Re-work: Webb [57] says we should gather-material, think, relax and
re-work. This reflection stage is extremely important in many domains
(we often encourage our students to write their work and then leave it
overnight before reading it again). Provoke: e.g., ask difficult ques-
tions, think of impossible solutions. Persist: Shneiderman [43] agrees
and says it’s “1% inspiration and 99% perspiration”. Iterate & Re-

fine: evaluate, revisit assumptions and re-design [10]. Different per-

sonalities: De Bono encourages us to take on different personalities in
his six thinking hats [15]. Collaborate: Work with different people,
with different skills and knowledge [48]. Dissimilar ideas: Glue dis-
similar ideas together. E.g., Johnson [25] suggests finding dissimilar
ideas and joining them together and through this joining up of differ-
ent thoughts new ideas can be formed. de Bono’s ‘green-hat’ suggests
using random pages of a book to inspire [14]. Transference: Look
to other subjects for inspiration, e.g., biomimicry [38]. Research:

Discover every idea and every solution so far. Look at other ideas
and learn from others’ work [43]. Metaphors: Generate abstractions
and use analogies. Metaphors help users to instantly understand the
corresponding idea [38]. Ziemkiewicz and Kosara [58] suggest that
metaphors work both ways: they both inspire and are needed for in-
terpretation. Make mistakes: Good ideas can come from serendipity.
Either try to fix these mistakes or use the result to your favor. There are
well written examples where scientists make errors or have accidents
and it is these that are actually good ideas: e.g., sticky-note glue or the
discovery of penicillin [54]. Reverse/Invert: Reverse, flip or invert an

idea to generate others.
As the user goes through this exercise they need to think-through

different possibilities, but also keep their mind on the task. Usually the
user does each action in turn, and decides whether they have completed
it to a satisfactory level before moving onto the next task. But the very
nature of considering the next task may put them back to an earlier
stage. E.g., by categorizing the ideas the user may realize that there is
a missing category and thus move back to drawing more ideas. That
themselves can be categorized. Indeed the point of each stage is not
only divergent and convergent thinking, but also to provoke new ideas
and increase the potential set of ideas.

1. Ideate. Users need to sketch as many ideas as possible. These
are ‘mini-ideas’. They are lots of little drawings. While they
could be full solutions, they are more likely to be ‘insufficiently
thought out’ or ‘half-baked’ ideas, short concepts, or even wacky
concepts. At the start, the point is to articulate different potential
ideas. The thoughts should be driven by the task and the user
should have ‘half an eye’ on the goal (to develop a tool that will
visualize data), and should hold off criticizing the ideas because
this will be done later. When a substantial1 amount of ideas have
been made the user moves on to filter.

2. Filter. Users should start to remove any duplicated ideas, or con-
cepts that are irrelevant or absolutely impossible. Users can use
these negative thoughts positively, such that if they are impossi-
ble then they should consider how they could they be fixed. In
practice the sketches are being annotated rather than fully deleted
(a single line crossed through a design will suffice). When con-
sidering these aspects, users need to think what is suitable to the
task, and how new ideas can be generated from these deletions
or duplications.

3. Categorize. Users need to consider what is similar and what is
different. Annotation can be used to group similar ideas together.
Categories change and develop, therefore users should not worry
about the fine details of categorization: it is merely a tool to
facilitate the exploration of ideas. While this operation converges
(reduces) the designs, users should consider ‘what is missing’.
E.g., is there another category of designs that should be present?
What is this category? Is it relevant?

4. Combine & refine. Users need to organize the mini-ideas into
bigger solutions. For instance, look to develop Multiple Coor-
dinate Views [35]. Think what visualizations complement each
other. E.g., spatial (map) with temporal (timeline), or overview
with detail. Indeed the Space-time cube is an example of com-
bining ideas [1]. Refine the ideas, making sure they use suitable
colors [19] or other best practice [53]. Draw new combinations,
look to refining or changing any designs; start to consider which
three ideas will be planned in more detail on Sheets 2,3,4. Draw
or annotate circles around three possible choices.

5. Question. Users should reflect on what has been created. Do so-
lutions meet the task? Are they effective designs? Do they mis-

1It is difficult to quantify the number of mini-ideas required; but the more
ideas that are sketched, the easier the next stages of filter, categorize etc. will
be. Three is too few; 10 may be ok; 20 would be better.
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Fig. 6: An example of the FdS are shown on the left, with a picture of the final prototype on the right. Created for the Information Visualization
module as part of the MSc course. The student chose to investigate data regarding University access for disabled students.

(a) Variables. List the data variables. What are the parame-
ters? Give them names. What are dependent and indepen-
dent variables?

(b) Types of data. What data-types are in the data? How are
they stored? What is the access to the data (API, JSON
file etc.)? What data-structure holds the data (e.g., is it
hierarchical)?

(c) Categories. Are the variables categorical (nominal or or-
dinal or ranks), are they quantitative (discrete or continu-
ous)?

(d) Temporal. Is the data streaming data? How was it stored
(all at one time or over several years)?

(e) Range & distribution. What is the distribution of the data?
Few values, small size, evenly spread, sparse or dense?

4. Resources. Finally the user needs to gather resources together
to create the FdS, e.g., colored pens or pencils, ruler and paper.

3.3 FdS Sheet 1: Ideation
Ideation is the process of creating new ideas. But where do ideas come
from? How do users actually think up ten, twenty or a hundred ideas?
How do new concepts get ‘born’? The five parts of sheet 1 leads the
user to think divergently, to first generate ideas, then filter and cate-
gorize them, followed by combining and refining them, before finally
questioning their suitability to the task, see Fig. 3

Ideas emerge by thinking, talking with other people, reading rele-
vant literature, gaining inspiration from other domains, resting and not
rushing, reflecting and collaborating. This theory is summarized in
the following literature: Relax: Good ideas come through long, slow
and careful thought, says Johnson [25] (he talks about a ‘slow hunch’).
Re-work: Webb [57] says we should gather-material, think, relax and
re-work. This reflection stage is extremely important in many domains
(we often encourage our students to write their work and then leave it
overnight before reading it again). Provoke: e.g., ask difficult ques-
tions, think of impossible solutions. Persist: Shneiderman [43] agrees
and says it’s “1% inspiration and 99% perspiration”. Iterate & Re-

fine: evaluate, revisit assumptions and re-design [10]. Different per-

sonalities: De Bono encourages us to take on different personalities in
his six thinking hats [15]. Collaborate: Work with different people,
with different skills and knowledge [48]. Dissimilar ideas: Glue dis-
similar ideas together. E.g., Johnson [25] suggests finding dissimilar
ideas and joining them together and through this joining up of differ-
ent thoughts new ideas can be formed. de Bono’s ‘green-hat’ suggests
using random pages of a book to inspire [14]. Transference: Look
to other subjects for inspiration, e.g., biomimicry [38]. Research:

Discover every idea and every solution so far. Look at other ideas
and learn from others’ work [43]. Metaphors: Generate abstractions
and use analogies. Metaphors help users to instantly understand the
corresponding idea [38]. Ziemkiewicz and Kosara [58] suggest that
metaphors work both ways: they both inspire and are needed for in-
terpretation. Make mistakes: Good ideas can come from serendipity.
Either try to fix these mistakes or use the result to your favor. There are
well written examples where scientists make errors or have accidents
and it is these that are actually good ideas: e.g., sticky-note glue or the
discovery of penicillin [54]. Reverse/Invert: Reverse, flip or invert an

idea to generate others.
As the user goes through this exercise they need to think-through

different possibilities, but also keep their mind on the task. Usually the
user does each action in turn, and decides whether they have completed
it to a satisfactory level before moving onto the next task. But the very
nature of considering the next task may put them back to an earlier
stage. E.g., by categorizing the ideas the user may realize that there is
a missing category and thus move back to drawing more ideas. That
themselves can be categorized. Indeed the point of each stage is not
only divergent and convergent thinking, but also to provoke new ideas
and increase the potential set of ideas.

1. Ideate. Users need to sketch as many ideas as possible. These
are ‘mini-ideas’. They are lots of little drawings. While they
could be full solutions, they are more likely to be ‘insufficiently
thought out’ or ‘half-baked’ ideas, short concepts, or even wacky
concepts. At the start, the point is to articulate different potential
ideas. The thoughts should be driven by the task and the user
should have ‘half an eye’ on the goal (to develop a tool that will
visualize data), and should hold off criticizing the ideas because
this will be done later. When a substantial1 amount of ideas have
been made the user moves on to filter.

2. Filter. Users should start to remove any duplicated ideas, or con-
cepts that are irrelevant or absolutely impossible. Users can use
these negative thoughts positively, such that if they are impossi-
ble then they should consider how they could they be fixed. In
practice the sketches are being annotated rather than fully deleted
(a single line crossed through a design will suffice). When con-
sidering these aspects, users need to think what is suitable to the
task, and how new ideas can be generated from these deletions
or duplications.

3. Categorize. Users need to consider what is similar and what is
different. Annotation can be used to group similar ideas together.
Categories change and develop, therefore users should not worry
about the fine details of categorization: it is merely a tool to
facilitate the exploration of ideas. While this operation converges
(reduces) the designs, users should consider ‘what is missing’.
E.g., is there another category of designs that should be present?
What is this category? Is it relevant?

4. Combine & refine. Users need to organize the mini-ideas into
bigger solutions. For instance, look to develop Multiple Coor-
dinate Views [35]. Think what visualizations complement each
other. E.g., spatial (map) with temporal (timeline), or overview
with detail. Indeed the Space-time cube is an example of com-
bining ideas [1]. Refine the ideas, making sure they use suitable
colors [19] or other best practice [53]. Draw new combinations,
look to refining or changing any designs; start to consider which
three ideas will be planned in more detail on Sheets 2,3,4. Draw
or annotate circles around three possible choices.

5. Question. Users should reflect on what has been created. Do so-
lutions meet the task? Are they effective designs? Do they mis-

1It is difficult to quantify the number of mini-ideas required; but the more
ideas that are sketched, the easier the next stages of filter, categorize etc. will
be. Three is too few; 10 may be ok; 20 would be better.
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