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Color != Wavelength
but rather, a combination of wavelengths and energyColor != Wavelength

2

[via M. Meyer]
D. Koop, CSCI 627/490, Fall 2020



27

Human Color Perception
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Simulating Color Blindness
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Color Spaces and Gamuts
• Color space: the organization of all 

colors in space 
- Often human-specific, what we can 

see (e.g. CIELAB) 
• Color gamut: a subset of colors 
- Defined by corners of color space 
- What can be produced on a monitor 

(e.g. using RGB) 
- What can be produced on a printer 

(e.g. using CMYK) 
- The gamut of your monitor != the 

gamut of someone else's or a printer
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http://dot-color.com/2012/08/14/color-space-confusion/
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Luminance
• HSL does not truly reflect the way we perceive color 
• Even though colors have the same lightness, we perceive their luminance 

differently 
• Our perception (L*) is nonlinear
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CIELAB

Commonly used in visualizations

Approximately perceptually linear

1 unit Euclidean difference equals 
1 Just Noticeable Difference (JND)

Violations of CIELAB Assumptions
• CIELAB: 
- Approximately perceptually linear 
- 1 unit of Euclidean distance = 1 Just 

Noticeable Difference (JND) 
- JND: people detect change at least 50% of 

the time 
• Assumptions CIELAB makes: 
- Simple world 
- Isolation 
- Geometric
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[D. Szafir, 2017]
D. Koop, CSCI 627/490, Fall 2020

http://cmci.colorado.edu/visualab/VisColors/17-VIS-ModelingColorDifference.pdf
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http://www.handprint.com/HP/WCL/tech13.html

SIMULTANEOUS CONTRAST
Simultaneous Contrast
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Midterm
• Thursday, October 15 
• Covers material through this week 
• Format: 
- Multiple Choice 
- Free Response (often multi-part) 
- CS 627 students will have extra questions related to the research papers 

discussed

9D. Koop, CSCI 627/490, Fall 2020



Project
• Two Possibilities: 
- Create an interactive visualization 
- Work on a research project 

• Will be posting dataset choices

10D. Koop, CSCI 627/490, Fall 2020



Colormap
• A colormap specifies a mapping between colors and data values 
• Colormap should follow the expressiveness principle 
• Types of colormaps:
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Categorical vs. Ordered
• Hue has no implicit ordering: use for categorical data 
• Saturation and luminance do: use for ordered data
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[Munzner (ill. Maguire), 2014]
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Categorical Colormap Guidelines
• Don't use too many colors (~12) 
• Remember your background has a color, too 
• Nameable colors help 
• Be aware of luminance (e.g. difference between blue and yellow) 
• Think about other marks you might wish to use in the visualization

13D. Koop, CSCI 627/490, Fall 2020



Categorical Colormaps
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D. Koop, CSCI 627/490, Fall 2020

http://colorbrewer2.org
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Categorical Colormaps
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Number of distinguishable colors?
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[Sinha & Meller, 2007]
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Number of distinguishable colors?
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Discriminability
• Often, fewer colors are better 
• Don't let viewers combine colors because they can't tell the difference 
• Make the combinations yourself 
• Also, can use the "Other" category to reduce the number of colors

17D. Koop, CSCI 627/490, Fall 2020



Ordered Colormaps
• Used for ordinal or quantitative attributes 
• [0, N]: Sequential 
• [-N, 0, N]: Diverging (has some meaningful midpoint) 
• Can use hue, saturation, and luminance 
• Remember hue is not a magnitude channel so be careful 
• Can be continuous (smooth) or segmented (sharp boundaries) 
- Segmented matches with ordinal attributes  
- Can be used with quantitative data, too.

18D. Koop, CSCI 627/490, Fall 2020



Continuous Colormap
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Segmented Colormap
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Is continuous better than segmented?
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Evaluating the Impact of Binning 2D Scalar Fields
Lace Padilla, P. Samuel Quinan, Miriah Meyer, and Sarah H. Creem-Regehr

Fig. 1: Experimental stimuli for five binning conditions: A. Continuous, B. 10m binning, C. 20m binning, D. 30m binning, E. 40m
binning

Abstract— The expressiveness principle for visualization design asserts that a visualization should encode all of the available data,
and only the available data, implying that continuous data types should be visualized with a continuous encoding channel. And yet,
in many domains binning continuous data is not only pervasive, but it is accepted as standard practice. Prior work provides no clear
guidance for when encoding continuous data continuously is preferable to employing binning techniques or how this choice affects
data interpretation and decision making. In this paper, we present a study aimed at better understanding the conditions in which
the expressiveness principle can or should be violated for visualizing continuous data. We provided participants with visualizations
employing either continuous or binned greyscale encodings of geospatial elevation data and compared participants’ ability to complete
a wide variety of tasks. For various tasks, the results indicate significant differences in decision making, confidence in responses, and
task completion time between continuous and binned encodings of the data. In general, participants with continuous encodings were
faster to complete many of the tasks, but never outperformed those with binned encodings, while performance accuracy with binned
encodings was superior to continuous encodings in some tasks. These findings suggest that strict adherence to the expressiveness
principle is not always advisable. We discuss both the implications and limitations of our results and outline various avenues for
potential work needed to further improve guidelines for using continuous versus binned encodings for continuous data types.

Index Terms—Geographic/Geospatial Visualization, Qualitative Evaluation, Color Perception, Perceptual Cognition

1 INTRODUCTION

A foundational design principle in visualization is the expressiveness
principle, which states that a visual encoding should express all of the
relationships in the data, and only the relationships in the data [24, 35].
For a continuous data type, this implies that a continuous encoding
channel is a good choice. In practice, however, domains such as car-
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• S. Quinan and M. Meyer are with the University of Utah School of
Computing. E-mail: psq,miriah@cs.utah.edu.
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tography [43] and meteorology [36] have strong conventions that visu-
alize continuous data with a discrete encoding. These domains rely on
visual channels, such as color and saturation to encode a continuous
function defined over two-dimensional space, known as a 2D scalar
field. They commonly do so by employing discrete colormaps or con-
tour lines, also called isarithmic maps [43].

Existing literature provides little guidance about encoding contin-
uous, 2D scalar fields with binned colormaps, or how this design de-
cision affects data interpretation and decision making. Research into
properties of colormaps for encoding continuous data types has largely
focused on continuous colormaps [2, 28, 38, 48]. This line of research
provides guidance on how to capture properties of the data, such as
divergence around a center point [48] or emphasis on one end of the
data range [2]. These papers go so far as proposing corresponding
binned colormaps, but do not make claims, or even discuss, their ef-
ficacy for continuous data. Work on transfer function design has also
proposed methods for binning colors, but with a focus on volumetric
scalar fields, with the underlying goal of classifying materials or fea-
tures [12], as opposed to directly understanding the continuous nature

Continuous
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Evaluating the Impact of Binning 2D Scalar Fields
Lace Padilla, P. Samuel Quinan, Miriah Meyer, and Sarah H. Creem-Regehr

Fig. 1: Experimental stimuli for five binning conditions: A. Continuous, B. 10m binning, C. 20m binning, D. 30m binning, E. 40m
binning

Abstract— The expressiveness principle for visualization design asserts that a visualization should encode all of the available data,
and only the available data, implying that continuous data types should be visualized with a continuous encoding channel. And yet,
in many domains binning continuous data is not only pervasive, but it is accepted as standard practice. Prior work provides no clear
guidance for when encoding continuous data continuously is preferable to employing binning techniques or how this choice affects
data interpretation and decision making. In this paper, we present a study aimed at better understanding the conditions in which
the expressiveness principle can or should be violated for visualizing continuous data. We provided participants with visualizations
employing either continuous or binned greyscale encodings of geospatial elevation data and compared participants’ ability to complete
a wide variety of tasks. For various tasks, the results indicate significant differences in decision making, confidence in responses, and
task completion time between continuous and binned encodings of the data. In general, participants with continuous encodings were
faster to complete many of the tasks, but never outperformed those with binned encodings, while performance accuracy with binned
encodings was superior to continuous encodings in some tasks. These findings suggest that strict adherence to the expressiveness
principle is not always advisable. We discuss both the implications and limitations of our results and outline various avenues for
potential work needed to further improve guidelines for using continuous versus binned encodings for continuous data types.

Index Terms—Geographic/Geospatial Visualization, Qualitative Evaluation, Color Perception, Perceptual Cognition

1 INTRODUCTION

A foundational design principle in visualization is the expressiveness
principle, which states that a visual encoding should express all of the
relationships in the data, and only the relationships in the data [24, 35].
For a continuous data type, this implies that a continuous encoding
channel is a good choice. In practice, however, domains such as car-
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tography [43] and meteorology [36] have strong conventions that visu-
alize continuous data with a discrete encoding. These domains rely on
visual channels, such as color and saturation to encode a continuous
function defined over two-dimensional space, known as a 2D scalar
field. They commonly do so by employing discrete colormaps or con-
tour lines, also called isarithmic maps [43].

Existing literature provides little guidance about encoding contin-
uous, 2D scalar fields with binned colormaps, or how this design de-
cision affects data interpretation and decision making. Research into
properties of colormaps for encoding continuous data types has largely
focused on continuous colormaps [2, 28, 38, 48]. This line of research
provides guidance on how to capture properties of the data, such as
divergence around a center point [48] or emphasis on one end of the
data range [2]. These papers go so far as proposing corresponding
binned colormaps, but do not make claims, or even discuss, their ef-
ficacy for continuous data. Work on transfer function design has also
proposed methods for binning colors, but with a focus on volumetric
scalar fields, with the underlying goal of classifying materials or fea-
tures [12], as opposed to directly understanding the continuous nature

Many Segments
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Evaluating the Impact of Binning 2D Scalar Fields
Lace Padilla, P. Samuel Quinan, Miriah Meyer, and Sarah H. Creem-Regehr

Fig. 1: Experimental stimuli for five binning conditions: A. Continuous, B. 10m binning, C. 20m binning, D. 30m binning, E. 40m
binning

Abstract— The expressiveness principle for visualization design asserts that a visualization should encode all of the available data,
and only the available data, implying that continuous data types should be visualized with a continuous encoding channel. And yet,
in many domains binning continuous data is not only pervasive, but it is accepted as standard practice. Prior work provides no clear
guidance for when encoding continuous data continuously is preferable to employing binning techniques or how this choice affects
data interpretation and decision making. In this paper, we present a study aimed at better understanding the conditions in which
the expressiveness principle can or should be violated for visualizing continuous data. We provided participants with visualizations
employing either continuous or binned greyscale encodings of geospatial elevation data and compared participants’ ability to complete
a wide variety of tasks. For various tasks, the results indicate significant differences in decision making, confidence in responses, and
task completion time between continuous and binned encodings of the data. In general, participants with continuous encodings were
faster to complete many of the tasks, but never outperformed those with binned encodings, while performance accuracy with binned
encodings was superior to continuous encodings in some tasks. These findings suggest that strict adherence to the expressiveness
principle is not always advisable. We discuss both the implications and limitations of our results and outline various avenues for
potential work needed to further improve guidelines for using continuous versus binned encodings for continuous data types.

Index Terms—Geographic/Geospatial Visualization, Qualitative Evaluation, Color Perception, Perceptual Cognition

1 INTRODUCTION

A foundational design principle in visualization is the expressiveness
principle, which states that a visual encoding should express all of the
relationships in the data, and only the relationships in the data [24, 35].
For a continuous data type, this implies that a continuous encoding
channel is a good choice. In practice, however, domains such as car-
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tography [43] and meteorology [36] have strong conventions that visu-
alize continuous data with a discrete encoding. These domains rely on
visual channels, such as color and saturation to encode a continuous
function defined over two-dimensional space, known as a 2D scalar
field. They commonly do so by employing discrete colormaps or con-
tour lines, also called isarithmic maps [43].

Existing literature provides little guidance about encoding contin-
uous, 2D scalar fields with binned colormaps, or how this design de-
cision affects data interpretation and decision making. Research into
properties of colormaps for encoding continuous data types has largely
focused on continuous colormaps [2, 28, 38, 48]. This line of research
provides guidance on how to capture properties of the data, such as
divergence around a center point [48] or emphasis on one end of the
data range [2]. These papers go so far as proposing corresponding
binned colormaps, but do not make claims, or even discuss, their ef-
ficacy for continuous data. Work on transfer function design has also
proposed methods for binning colors, but with a focus on volumetric
scalar fields, with the underlying goal of classifying materials or fea-
tures [12], as opposed to directly understanding the continuous nature

Fewer Segments
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Types of Tasks
• Locate/Explore & Identify: Highest Point (Global, In Region), 275m 
• Locate/Explore & Compare: Height Compare/Rank 
• Explore & Identify: Steepest 
• Lookup & Identify: Lookup 
• Explore & Compare: Steepness Compare/Rank 
• Browse & Summarize: Average Height 
• Browse & Compare: Compare Average Height 
• Combination: Steepest at 355m
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(a) Click locations overlaid on the continu-
ous encoding, showing three main regions.
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Fig. 6: Steepest Task

Fig. 7: A visualization of the spatial frequency of the DEM used in
this study.

binning conditions. We can speculate that different binning techniques
influenced some participants’ incorrect assumptions relating elevation
and steepness; however, future studies are needed to fully understand
these effects.

An additional complicating factor when asking participants to make
judgments of steepness comes from the high spatial frequency of the
gradient magnitude (See Figure 7). In the areas with the greatest gra-
dient magnitude, relatively close points (i.e., only a few pixels apart)
could have vastly different gradient magnitude values. While beyond
the scope of this study, future work should investigate strategies to
account for this.

3.3.5 Lookup and Identify Task
7. Lookup. This task followed the Steepest Point task and asked
participants to report the lowest and highest values adjacent to their
click; thus, accuracy of lowest and highest points were analyzed sep-
arately. For the lowest value, participants were the least accurate us-
ing the continuous encoding, specifically when compared to the 30m
and 40m binnings. Accuracy was calculated by subtracting the re-
ported lower adjacent elevation from the actual lower adjacent ele-
vation, creating an error score in CIELAB space distance. Outliers
> 2SD above the mean were removed (7.8% of trials). A one-way
between-subjects ANOVA, (controlling for reported higher adjacent
elevation), showed there was a significant effect of binning technique,
F(4,451) = 4.418, p = .001,h2

p = .057. The mean error score for
the continuous encoding (M = 134.91,SD= 105.20) was significantly
less accurate than the 30m binning (M = 94.33,SD = 87.21) and 40m
binning (M = 86.20,SD = 82.88), p < .05 (See Figure 8a).

A similar analysis was performed on the reported upper adjacent
elevation. Outliers > 2SD above the mean were removed (2% of tri-
als). There was a significant effect of binning technique on reporting
the upper adjacent elevation, F(4,479) = 2.602, p = .03,h2

p = .044.
However, post hoc Tukey HSD comparisons did not reveal signif-
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Fig. 8: Lookup Task. Error bars (95% CI)

Fig. 9: An example portion of the continuous encoding from the Steep-
ness Compare task, showing Area A and Area B.

icant differences between the conditions at the p < .05 level when
accounting for multiple comparisons. To understand the main ef-
fect of binning, planned contrast codes were generated which com-
pared the continuous encoding to the binned encodings. Similar to the
lower elevation analysis above, we found that the continuous encoding
(M = 128.60,SD = 100.90) was less accurate than binned encoding
(M = 107.36,SD = 97.16), F(1,490) = 7.79, p = 0.005 (See Figure
8b).

3.3.6 Explore and Compare Task

8. Steepness Compare. A binomial logistic regression found that
there was no significant effect of binning technique on a steepness
comparison, c2(d f = 7) = 1.35, p = .98. Area A contained the steep-
est point with a magnitude gradient of 44.33, and Area B contained
the second steepest point with a magnitude gradient of 41.65 (See
Figure 9). 62% of participants incorrectly selected Area B as con-
taining the steeper point. Similar to the Steepest task, these findings
suggest that participants’ prior understanding of topography and an as-
sumption about a connection between steepness and peaks could have
biased incorrect responses. Additionally, these findings may be influ-
enced by the issues related to the high spatial frequency of the gradient
magnitude noted in Section 3.3.4.

9. Steepness Rank. An ordinal logistic regression was used to test the
effect of binning technique on rankings of the greatest gradient mag-
nitude between regions. Participants responded to this question by
entering rankings of 1-3 (three indicating the greatest gradient magni-
tude region and one the least) for regions A, B, and C. Each of these
regions were selected because they contained the 3rd, 4th, and 5th
steepest points (See Figure 10). The ordinal logistic regression equa-
tion did significantly predict rankings when using binning technique
and regions as predictors c2(d f = 9) = 137.79, p < .00, but binning
technique did not effect gradient magnitude rankings. Both the regions
and the order of rankings were significant predictors of rankings.

This task and the prior tasks relating to steepness judgments suggest
that a number of different factors likely influenced a reduced effect
of binning, such as prior assumptions about how elevation peaks and
slopes relate and variable gradient magnitudes.

Results
• "[C]ontrary to the expressiveness principle, 

no cases were found in which a continuous 
encoding of 2D scalar field data was 
advantageous for task accuracy, and for 
some tasks, specific binned encodings 
facilitated accuracy." 

• "[S]upport for the counterintuitive finding that 
decisions with binned encoding were slower 
than those made with continuous encoding" 

• Word of caution: single image!
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Don't Use Rainbow Colormaps
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[M. Bussonnier]
D. Koop, CSCI 627/490, Fall 2020

Which has a discontinuity?

https://twitter.com/Mbussonn/status/982739252516536320
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Other Colormaps Work Better
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Which has a discontinuity?
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details in the data falling within single color ranges in
the color map (see Figure 2). 

Actively misleading
Not only does the rainbow color map confuse view-

ers through its lack of perceptual ordering and obscure
data through its inability to present small details, but it
actively misleads the viewer by introducing artifacts to
the visualization. The rainbow color map appears as if
it’s separated into bands of almost constant hue, with
sharp transitions between hues. Viewers perceive these
sharp transitions as sharp transitions in the data, even
when this is not the case (see Figure 3). When combined
with the lack of perceptual ordering, viewers face a
daunting task when trying to correctly interpret the data
via the rainbow color map. The goal of visualization is
to present data so that viewers can quickly and accu-
rately learn about the underlying data. The rainbow
color map does a great deal to hinder this learning
process by introducing confusing artifacts in some loca-
tions and reducing detail in others.

Prevalence of the rainbow color map
Although researchers have well documented these

deficiencies, the visualization community still widely
uses the rainbow color map. We present the findings of
two surveys illustrating this prevalence. The first survey
looks at papers in the IEEE Visualization Conference pro-
ceedings; the second considers visualization toolkits.

IEEE Visualization proceedings
We searched the IEEE Visualization conference pro-

ceedings from 2001 through 2005 for papers that dis-
played data using a pseudocolor map. We included
visualizations in which the rainbow color map was
applied to surfaces, such as isosurfaces and streamlines.
We excluded volume renderings as the literature does
not address the relative merits of the rainbow color map
when used for a color transfer function (although it
seems clear that the same objections would apply). We
did not count visualizations that used a banded version
of the rainbow color map because explicit banding can be
a useful visualization technique. We only included scalar
data visualizations, excluding techniques such as map-
ping vector components to RGB—which is common with
diffusion tensor MRI images. Such visualizations can
appear at first glance to use the rainbow color map, but
they are in fact using a different technique (see
Rheingans8 for a discussion of the hazards of encoding
multiple values into a pseudocolor map). 

Results
Table 1 (next page) presents statistics from the 2001

through 2005 IEEE Visualization Conference proceed-
ings. The table gives percentages of papers imple-
menting pseudocoloring to display data using the
rainbow color map. We’ve included all papers that
include at least one use of the rainbow color map. The
results are alarming:

! Each year between 40 and 59 percent of all papers
using pseudocoloring used a rainbow color map. 

IEEE Computer Graphics and Applications 15

1 Perceptual ordering. (a) We can easily place the gray
paint chips in order based on perception, (b) but can-
not do this with the colored chips.

2 Spatial contrast sensitivity function. Frequency
increases to the right and contrast increases toward the
bottom of both images in the figure. We can see detail
at much lower contrast in the (a) luminance-varying
gray-scale image than with the (b) rainbow color map.

3 Four data sets visualized with (a) rainbow, (b) gray-scale, (c) black-body
radiation, and (d) isoluminant green–red color maps. Apparent sharp
gradients in the data in (a) are revealed as rainbow color map artifacts, not
data features, by comparing this row with the same data viewed using the
other color maps. Conversely, the sharp gradient found at the center of the
second data set (see the second column) shown in the gray-scale and black-
body radiation (and to a lesser extent, the isoluminate green–red) images
is not found in the corresponding image with the rainbow color map.

(a) (b)

(a) (b)

(a)

(b)

(c)

(d)

Ordering Color?
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Rainbow Colormap
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Artifacts from Rainbow Colormaps
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Artifacts from Rainbow Colormaps
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Two-Hue Colormap
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"Get It Right in Black and White" - M. Stone

33

[S. Eddins (Matlab Blog), 2014]
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jet colormap

http://blogs.mathworks.com/steve/2014/10/20/a-new-colormap-for-matlab-part-2-troubles-with-rainbows/
http://blogs.mathworks.com/steve/2014/10/20/a-new-colormap-for-matlab-part-2-troubles-with-rainbows/


"Get It Right in Black and White" - M. Stone
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jet colormap

http://blogs.mathworks.com/steve/2014/10/20/a-new-colormap-for-matlab-part-2-troubles-with-rainbows/
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parula colormap
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Isoluminant Rainbow Colormap
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A Arg Agb Arb

0.552 0.557 0.557 0.551
0.593 0.611 0.586 0.614
0.598 0.605 0.600 0.600
0.599 0.606 0.587 0.593
0.613 0.622 0.600 0.604

Table 1: Data from informal additivity test on five participants.

Figure 6: Double face image for gamma measurement

range of hues in between, by interpolation. If we had the luxury
of matching a great many control points along the colormap, then
the choice of colorspace in which to do color interpolation would
not significantly matter. However, the trade-off we encounter, if we
aim to perform as few matches as possible, is that we must know
the gamma of the display device.
Luminance matching based on the image of the double face can

be employed to measure the gamma of the monitor. Specifically,
the black in Figure 1 is replaced by a constant gray value which can
be adjusted, and white is replaced by alternating black and white
scanlines, as seen in Figure 6. This relies on the same principle
used in existing gamma measurement images and applets, namely
that a gray value created by alternating black and white lines has
intensity half that of white, regardless of gamma [15].
Knowing the monitor gamma γ, we can perform interpolation in

what is essentially gamma-corrected RGB space. Suppose we have
two RGB colors c0 = (r0, g0, b0) and c1 = (r1, g1, b1) which
have been determined to have equal luminance. These could be, for
instance, two of the colors determined as part of our user study. The
interpolation between them can be parameterized by f ∈ [0.0, 1.0],
and is calculated by:

cf =





((1 − f)r0
γ + fr1

γ)1/γ

((1 − f)g0
γ + fg1

γ)1/γ

((1 − f)b0
γ + fb1

γ)1/γ



 (2)

This has the effect of converting RGB component levels to inten-
sity, linearly interpolating, and converting back to RGB component
levels.
If we use the data generated by our user study, we can average

over all participants and all trials to produce six points along an
isoluminant rainbow colormap. These values, and the resulting col-
ormap, are shown in Figure 7.
The methods described thus far can also be applied to the

(a) Isoluminant colormap created by user study

red: (0.847,0.057,0.057) yellow: (0.527,0.527,0.000)
green: (0.000,0.592,0.000) cyan: (0.000,0.559,0.559)
blue: (0.316,0.316,0.991) magenta: (0.718,0.000,0.718)

(b) Isoluminant RGB triples

Figure 7: Isoluminant colormap (a) generated by averaging double
face luminance matching data across participants (b), using evenly
spaced control points, starting and ending with red. The gamma
used for interpolation (2.7) was estimated using the image in Fig-
ure 6.

problem of generating colormaps which monotonically increase
in luminance, while also varying in hue. Such a colormap com-
bines perceptual benefits from both grayscale and isoluminant col-
ormaps [25]. Instead of adjusting colors (in HLS space) to match
luminance with a fixed gray, we can specify a different gray level
for each colormap control point. Equation 2 is again used to in-
terpolate in a way that controls luminance, but now luminance is
linearly increasing between control points. The sequence of lumi-
nances chosen for the control points can increase linearly, or ac-
cording to a power law that accounts for the non-linearity of bright-
ness perception [26]. Figure 8 shows a colormap produced by one
of the authors, by sampling the standard rainbow colors (going from
magenta through blue and green to red), and matching against light-
ness increasing linearly from 0.0 to 1.0.

Figure 8: Monotonically increasing luminance colormap.

The properties of these colormaps can be demonstrated with the
help of the Craik-O’Brian-Cornsweet illusion, shown in Figure 9.
The gray region in the center of the circle should appear brighter
than the gray at the outer edge of the circle, because of how local
edge brightness contrast tends to propagate over neighboring re-
gions [16]. The effect is somewhat weaker with the monotonically
increasing colormap, but is eliminated with the isoluminant col-
ormap. Although the strength of these effects vary with the method
of printing or display, and with the observer, this is an example of
how isoluminant colormaps can be preferable for interpreting im-
age values.

7 DISCUSSION AND FUTURE WORK

We have shown that a simple perceptual test, observing the dou-
ble face image, allows a user to quickly create a luminance match
between two colors. As compared to luminance matching using
the minimally distinct border technique, the double face method
is equivalent in measured result, but more precise, and no slower.
Given that the monitors we generally use for creating and display-
ing visualizations are not calibrated, this test provides a convenient
means of creating colormaps with any pre-determined pattern of lu-
minance variation (such as constant, or increasing). We believe the
success of our method is due to the brain’s special ability to detect
and interpret images of human faces. Because of the simplicity of
the method, we feel these results should be simple to reproduce.
Also, since each color match takes about 20 seconds, a color map

Original

Isoluminant



Turbo Colormap (August 2019)
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Turbo: More Detail in Disparity Maps?
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Turbo: Lightness Profiles
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Turbo Discussion
• Turbo is an improvement over jet 
• Some fields (e.g. meteorology) have long used rainbow-like colormaps 
• Argument is that segments are more easily located 
• Turbo post claims that hue is prioritized in attention, but this seems to 

misinterpret the study… 
• Brightness and saturation are more important than hue in attracting attention 

[Camgöz et al., 2004 h/t J. Stevens]
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More Guidelines
• Nice set of articles by Lisa Charlotte Rost: 
- https://blog.datawrapper.de/colorguide/ 
- https://blog.datawrapper.de/beautifulcolors/ 

• Her guidelines on choosing colors: 
1. Copy from others 
2. Use Tools 
3. …

40D. Koop, CSCI 627/490, Fall 2020
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Don't Dance Around the Color Wheel
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Use Warm Colors & Blue
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Avoid Too Little Contrast to Background
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D3's color scales
• https://github.com/d3/d3-scale-chromatic 
• In v6, included in default bundle (no separate import) 
• D3's built-in color scales 
• Derived from ColorBrewer 
• Sequential and diverging scales created using interpolation 
• Hue can change, but be careful 
• Color ramp [M. Bostock]
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Remember Separable vs. Integral
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Remember Separable vs. Integral
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Same Channels, just binned differently
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Evaluation
• Tasks: 
- Identification: locate spatial regions 

- Prediction: place battleships in "safest locations"

52
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VSUP Traditional Bivariate Continous Bivariate Juxtaposed Univariate

Discrete ContinuousSquareWedgeSquareWedgeSquareWedge

Legend Style

Sample Data

Figure 6: The 8 conditions from the identification experiment. Juxtaposed maps require participants to make an error-prone
connection between areas in two separate maps in order to make a decision that integrates value and uncertainty. Traditional
bivariate maps integrate both value and uncertainty. VSUPs attempt to improve on traditional bivariate maps by reducing color
resolution as uncertainty increases, discouraging conclusions based on noisy or imprecise data.

Figure 7: Accuracy results for the identification experiment.
For examples of each condition, see Figure 6. Juxtaposing
two univariate maps for both value and uncertainty requires
an error-prone search task for identification tasks. Continuous
rather than discrete bivariate maps requires an error-prone
color encoding and estimation task. Discrete bivariate maps,
both VSUPs and otherwise, avoid these issues. The confidence
intervals are bootstrapped 95% CIs of trimmed means.

bins (M = 0.63, SD = 0.48) performed significantly better
than charts with continuous color maps (M = 0.47, SD = 0.5).
The lack of quantization bias in continuous maps is countered
by the perceptual error in precisely estimating value from color.
Relying on a discrete set of output colors simplifies this task.

We performed a second ANOVA among the superimposed dis-
crete charts to determine the effect of legend shape (wedge or
square) and quantization scheme (VSUP or standard) on per-
formance, with participant ID as a random factor. We did not
find a significant effect for either the legend shape (F(1,70) =
0.04, p = 0.84) or the quantization scheme (F(1,70) = 1.4,
p = 0.24).

Figure 8: The prediction task. The participant has a list of
locations, and ought to place their ships on locations with low
probability of attack, and high certainty in this probability.
Ships above the heatmap have yet to be placed.

Prediction Experiment

For the prediction task, we gave participants the rules of a
game similar to Battleship. Greis et al. [18] employ these
game-like experimental tasks to assess how different visual
designs communicate uncertainty information, which can be
abstract or complex, to the general audience. In our task, the
participant and a (fictional) adversary have to place tokens
representing ships on a 5x5 spatial grid, with the expectation
that certain squares will be hit by missiles. Players have
to place all their tokens before continuing. The objective
is to minimize the number of your own ships that are hit.
In our task, participants were given a map representing the
predictions of missile strikes in each location on the grid.
The value component was the ship’s danger if placed on the
square. The uncertainty component was the confidence in
this prediction. Other studies of uncertainty representation,
such as in Cox et al. [12], have used “prediction + prediction
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bins (M = 0.63, SD = 0.48) performed significantly better
than charts with continuous color maps (M = 0.47, SD = 0.5).
The lack of quantization bias in continuous maps is countered
by the perceptual error in precisely estimating value from color.
Relying on a discrete set of output colors simplifies this task.
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connection between areas in two separate maps in order to make a decision that integrates value and uncertainty. Traditional
bivariate maps integrate both value and uncertainty. VSUPs attempt to improve on traditional bivariate maps by reducing color
resolution as uncertainty increases, discouraging conclusions based on noisy or imprecise data.
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Figure 7: Accuracy results for the identification experiment.
For examples of each condition, see Figure 6. Juxtaposing
two univariate maps for both value and uncertainty requires
an error-prone search task for identification tasks. Continuous
rather than discrete bivariate maps requires an error-prone
color encoding and estimation task. Discrete bivariate maps,
both VSUPs and otherwise, avoid these issues. The confidence
intervals are bootstrapped 95% CIs of trimmed means.

bins (M = 0.63, SD = 0.48) performed significantly better
than charts with continuous color maps (M = 0.47, SD = 0.5).
The lack of quantization bias in continuous maps is countered
by the perceptual error in precisely estimating value from color.
Relying on a discrete set of output colors simplifies this task.

We performed a second ANOVA among the superimposed dis-
crete charts to determine the effect of legend shape (wedge or
square) and quantization scheme (VSUP or standard) on per-
formance, with participant ID as a random factor. We did not
find a significant effect for either the legend shape (F(1,70) =
0.04, p = 0.84) or the quantization scheme (F(1,70) = 1.4,
p = 0.24).

Figure 8: The prediction task. The participant has a list of
locations, and ought to place their ships on locations with low
probability of attack, and high certainty in this probability.
Ships above the heatmap have yet to be placed.

Prediction Experiment

For the prediction task, we gave participants the rules of a
game similar to Battleship. Greis et al. [18] employ these
game-like experimental tasks to assess how different visual
designs communicate uncertainty information, which can be
abstract or complex, to the general audience. In our task, the
participant and a (fictional) adversary have to place tokens
representing ships on a 5x5 spatial grid, with the expectation
that certain squares will be hit by missiles. Players have
to place all their tokens before continuing. The objective
is to minimize the number of your own ships that are hit.
In our task, participants were given a map representing the
predictions of missile strikes in each location on the grid.
The value component was the ship’s danger if placed on the
square. The uncertainty component was the confidence in
this prediction. Other studies of uncertainty representation,
such as in Cox et al. [12], have used “prediction + prediction

Identification Results
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uncertainty” stimuli to elicit differences in decision-making
between visualizations of uncertainty.

Our stimuli were created by randomly sampling from values
that fell within each of the 16 bins of the 4x4 2D bivariate
color map. This resulted in 16 samples. The remaining 9
samples were “bad” values, with low safety and high certainty.
This created 4 quartile categories of uncertainty, with a skew
towards the highest quartile. This stimuli design meant that,
while participants had at least one “safe” square (low danger
with high certainty), they were forced to make at least some
guesses in other quartiles.

We selected this task in order to promote risk-averse behavior.
Tversky & Kahneman [45] illustrate that framings in terms
of gains or losses produce reliably different outcomes. In
particular, there is greater perceived value in avoiding large
losses as opposed to striving for a large gain [25]. Our results
from the prior study indicate that discrete, non-juxtaposed
maps outperformed the other bivariate maps we selected, so
we limited our study to only 4 types: square and wedge bi-
variate maps. While other map types might produce different
patterns of decision-making (for instance, the juxtaposed map
might encourage participants to ignore uncertainty information
altogether), their low accuracy for our previous information
fusion tasks led us to discard them, as it would be difficult to
distinguish between different patterns of predictions caused
by the design, and different patterns caused by simply mis-
reading the heatmap. Having fewer conditions also afforded
a within-subjects design that controlled for the variation in
interpersonal differences in strategies and risk-aversion, while
limiting the potential effects of learning and fatigue from large
numbers of stimuli.

The ideal strategy from a value-maximizing standpoint would
be to place tokens on areas with the lowest predicted danger
(highest expected value), ignoring the uncertainty information.
However, as with roulette and other similar games of chance,
the variability in expected value is relevant when considering
where to place bets [30]. A risky player would choose guesses
with high expected value, regardless of the uncertainty of those
points. A more conservative guesser might eschew high-risk,
high-reward locations, resulting in a lower average value of
guesses, but also lower uncertainty. We therefore measured
the distribution of both value and uncertainty of the tokens
placed by the participants.

We recruited 24 participants for this task: 12 female, 12 male,
(Mage= 37, SDage = 9.8). Our selected square and wedge maps
were either VSUPs or traditional bivariate maps, for a 2 (square
or wedge legend) x 2 (VSUP or standard) factorial design,
with 6 replications, for a total of 24 stimuli. Prior to the main
task, we included a short replication of the identification task
from the prior experiment (with 12 stimuli) for training and
exclusion purposes. 3 people with unacceptably low accuracy
on the training task (6%, 6%, and 25% accuracy compared to
a mean of 70%) were excluded from analysis.

Hypotheses

We had two hypotheses, stemming from our belief that VSUPs
promote better integration between uncertainty and value infor-
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Figure 9: 2D histogram of placements from the prediction
experiment. For each trial, participants were asked to place
5 tokens on heatmaps encoding both predicted safety, and
uncertainty in these predictions. There were intentionally more
tokens to place than there were “safe and certain” locations
(top left corner). When looking at traditional 2D maps (left),
participants favored safe but uncertain locations (bottom left
corner). When looking at VSUPs (right), participants favored
locations that were less safe, but more certain.)

mation, and encourage caution by highlighting the ambiguity
introduced by uncertain data. In particular:

1. Participants would avoid targets with high uncertainty

when using a VSUP.

2. This would result in a tradeoff where they would also choose
targets with higher danger when using a VSUP.

As with the prior experiment, we had no strong hypotheses
for square vs. wedge-shaped legends, but included both as a
check against the potential implicit VSUP-like properties of
wedge-shaped legends.

Results

Consistent with our first experiment, we found no significant
effect of legend shape on either uncertainty (F(1,61) = 0.01,
p = 0.92) or value (F(1,61) = 3.1, p = 0.08) of guesses. This
result suggests that wedge- and square-shaped legends pro-
mote similar patterns of decision-making. Overall, we pre-
fer to employ the wedge-shaped legend for VSUPs, and the
square-shaped legend for traditional maps, as it makes the
conceptual differences between the two more apparent.

The results partially support our first hypothesis. We per-
formed a repeated measures ANOVA on our results to measure
the effect of VSUP versus standard quantizations, and square-
versus wedge-shaped legends, on average uncertainty in bets.
We found no significant effect of quantization scheme on aver-
age guess uncertainty (F(1,61) = 0.05, p = 0.83). This result
indicates that there does not appear to be a uniform pattern
of risk aversion between the two scale types. However, given
our quartile-based stimuli design, the central tendency of un-
certainty would not necessarily capture caution in guesses.
To capture differences in this non-normal distribution, and to
test our belief that VSUP users would avoid highly uncertain
regions, we performed a one-sided two-sample, Kolmogorov-
Smirnov test on the distributions of uncertainty in guesses in
the VSUP and traditional bivariate conditions. We found a sig-
nificant difference (D = 0.5, p = 0.03), and an inspection of
the distribution shows that participants using VSUPs were less

Prediction Results
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Results & Conclusions
• Legend shape has no significant effect 
• Some indication that people avoid high uncertainty with VSUPs 
• Tradeoff is that people do choose targets with higher danger when using a VSUP 
• VSUPs present uncertainty information simultaneously (superimposed) 

instead of juxtaposed 
• VSUPs encode value and uncertainty via discrete, quantized bins instead of 

continuously
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