### Data Visualization (CSCI 627/490)

### Marks and Channels

Dr. David Koop





# Visual Encoding

#### • How should we visualize this data?

| Name          | Region                | Population     | Life Expectancy | Income   |  |
|---------------|-----------------------|----------------|-----------------|----------|--|
| China         | East Asia & Pacific   | 1335029250     | 73.28           | 7226.07  |  |
| India         | South Asia            | 1140340245     | 64.01           | 2731     |  |
| United States | America               | 306509345      | 79.43           | 41256.08 |  |
| Indonesia     | East Asia & Pacific   | 228721000      | 71.17           | 3818.08  |  |
| Brazil        | America               | 193806549      | 72.68           | 9569.78  |  |
| Pakistan      | South Asia            | 176191165      | 66.84           | 2603     |  |
| Bangladesh    | South Asia            | 156645463      | 66.56           | 1492     |  |
| Nigeria       | Sub-Saharan Africa    | 141535316      | 48.17           | 2158.98  |  |
| Japan         | East Asia & Pacific   | 127383472      | 82.98           | 29680.68 |  |
| Mexico        | America               | 111209909      | 76.47           | 11250.37 |  |
| Philippines   | East Asia & Pacific   | 94285619       | 72.1            | 3203.97  |  |
| Vietnam       | East Asia & Pacific   | 86970762 74.7  |                 | 2679.34  |  |
| Germany       | Europe & Central Asia | 82338100 80.08 |                 | 31191.15 |  |
| Ethiopia      | Sub-Saharan Africa    | 79996293       | 55.69           | 812.16   |  |
| Turkey        | Europe & Central Asia | 72626967       | 72.06           | 8040.78  |  |





# Potential Solution



# Visual Encoding

- How do we encode data visually?
  - Marks are the basic graphical elements in a visualization
  - Channels are ways to control the appearance of the marks
- Marks classified by dimensionality:  $\rightarrow$  Points Lines  $( \rightarrow )$

- Also can have surfaces, volumes
- Illustrator or Inkscape, the path & point definitions

#### D. Koop, CSCI 627/490, Fall 2020



Think of marks as a mathematical definition, or if familiar with tools like Adobe







### Visual Channels



#### D. Koop, CSCI 627/490, Fall 2020



5

# Channel Types

#### Identity => what or where, Magnitude => how much

| → M | Magnitude Channels: Ordered Attributes |                                           |  |  |  |  |
|-----|----------------------------------------|-------------------------------------------|--|--|--|--|
| Po  | osition on common scale                |                                           |  |  |  |  |
| Po  | osition on unaligned scale             | ⊢- <b>●</b> -1                            |  |  |  |  |
| Le  | ength (1D size)                        |                                           |  |  |  |  |
| Ti  | lt/angle                               |                                           |  |  |  |  |
| Ar  | rea (2D size)                          | • • •                                     |  |  |  |  |
| De  | epth (3D position)                     | $\longmapsto \bullet \longmapsto \bullet$ |  |  |  |  |
| Сс  | olor luminance                         |                                           |  |  |  |  |
| Сс  | olor saturation                        |                                           |  |  |  |  |
| Cu  | urvature                               | ) ) )                                     |  |  |  |  |
| Vo  | olume (3D size)                        | · • • •                                   |  |  |  |  |

#### D. Koop, CSCI 627/490, Fall 2020

#### → Identity Channels: Categorical Attributes







Northern Illinois University







## <u>Assignment 3</u>

- Same stacked bar chart visualization
- Three tools
  - Tableau (free academic license)
  - Vega-Lite
  - D3
- For Vega-Lite, use the online editor
- For D3, use template files so the data is properly loaded
- [CS 490] Only need to do a standard bar chart in D3
- Three parts: set mini-deadlines

#### D. Koop, CSCI 627/490, Fall 2020

#### Result 1,000 800 600 · 400





### Tableau Example





## Data In Tableau

### → Categorical + $\bullet$

- Categorical data = Dimension
- Quantitative data = Measures









### <u>Vega-Lite Example</u>



#### D. Koop, CSCI 627/490, Fall 2020

#### Produce Item





### Expressiveness and Effectiveness

- Expressiveness Principle: all data from the dataset and nothing more should be shown
  - Do encode ordered data in an ordered fashion
  - Don't encode categorical data in a way that implies an ordering
- Effectiveness Principle: the most important attributes should be the most salient
  - Saliency: how noticeable something is
  - How do the channels we have discussed measure up?

#### D. Koop, CSCI 627/490, Fall 2020



11



# Mackinlay's Ranking of Perceptual Tasks

#### Quantitative



#### D. Koop, CSCI 627/490, Fall 2020

#### Ordinal

Position Density Color Saturation Color Hue Texture Connection Containment Length Angle Slope Area Volume Shape



#### Nominal

- Position
- Color Hue
- Texture
- Connection
- Containment
- Density
- Color Saturation
- Shape
- Length
- Angle
- Slope
- Area
- Volume







12

# Iliinsky's Best Uses, +Ordering, +NumValues

| Example          | Encoding               | Ordered                                   | Useful values | <b>Quantitative</b> | Ordinal | <b>Categorical</b> | <b>Relational</b> |
|------------------|------------------------|-------------------------------------------|---------------|---------------------|---------|--------------------|-------------------|
| • ••             | position, placement    | yes                                       | infinite      | Good                | Good    | Good               | Good              |
| 1, 2, 3; A, B, C | text labels            | optional<br>(alphabetical<br>or numbered) | infinite      | Good                | Good    | Good               | Good              |
|                  | length                 | yes                                       | many          | Good                | Good    |                    |                   |
| . • •            | size, area             | yes                                       | many          | Good                | Good    |                    |                   |
| /                | angle                  | yes                                       | medium/few    | Good                | Good    |                    |                   |
|                  | pattern density        | yes                                       | few           | Good                | Good    |                    |                   |
|                  | weight, boldness       | yes                                       | few           |                     | Good    |                    |                   |
|                  | saturation, brightness | yes                                       | few           |                     | Good    |                    |                   |
|                  | color                  | no                                        | few (< 20)    |                     |         | Good               |                   |
|                  | shape, icon            | no                                        | medium        |                     |         | Good               |                   |
|                  | pattern texture        | no                                        | medium        |                     |         | Good               |                   |
|                  | enclosure, connection  | no                                        | infinite      |                     |         | Good               | Good              |
|                  | line pattern           | no                                        | few           |                     |         |                    | Good              |
| <b>₽</b>         | line endings           | no                                        | few           |                     |         |                    | Good              |
|                  | line weight            | yes                                       | few           |                     | Good    |                    |                   |





## How do we get these rankings?



























D. Koop, CSCI 627/490, Fall 2020

[Heer & Bostock, 2010]



















D. Koop, CSCI 627/490, Fall 2020



[Modified from Heer & Bostock, 2010]







D. Koop, CSCI 627/490, Fall 2020

Answer: Right is 4x larger than Left

[Modified from Heer & Bostock, 2010]





















#### D. Koop, CSCI 627/490, Fall 2020

Answer: A is ~2.25x larger (in area) than B

























Answer: B is ~6.1x larger (in area) than A

















#### D. Koop, CSCI 627/490, Fall 2020



Northern Illinois University















### Cleveland & McGill Experiments



Figure 4. Graphs from position–length experiment.



Figure 3. Graphs from position-angle experiment.











### Heer & Bost



- Rerun Clevelan
- ... with more te



Figure 2: Area judgment stimuli. Top left: Bubble chart (T7), Bottom left: Center-aligned rectangles (T8), Right: Treemap (T9).













## Results Summary



#### D. Koop, CSCI 627/490, Fall 2020

[Munzner (ill. Maguire) based on Heer & Bostock, 2014]



Northern Illinois University









## Psychophysics

- How do we perceive changes in stimuli
- The Psychophysical Power Law [Stevens, 1975]: All sensory channels follow a power function based on stimulus intensity ( $S = I^n$ )
- Length is fairly accurate
- Magnified vs. compressed sensations

#### D. Koop, CSCI 627/490, Fall 2020



#### Steven's Psychophysical Power Law: S= I<sup>N</sup>









# Ranking Channels by Effectiveness



D. Koop, CSCI 627/490, Fall 2020







Northern Illinois University



Least



31

## Discriminability

- Width encodes count of number of networks with a particular link.
- What is problematic here?



D. Koop, CSCI 627/490, Fall 2020



#### [Koop et al., 2013]

Northern Illinois University 32





## Discriminability

- Can someone tell the difference?
- Example: Line width
  - Matching a particular width with a legend
  - Comparing two widths

#### How many values (bins) can be used so that a person can tell the difference?







## Separability

- Cannot treat all channels as independent!
- Separable means each individual channel can be distinguished
- Integral means the channels are perceived together



D. Koop, CSCI 627/490, Fall 2020

[Munzner (ill. Maguire) based on Ware, 2014]







## Separable or Integral?

#### **READING**, EARNING MONEY **ND**

The latest data from the U.S. Census's American Community Survey paints a fascinating picture of the United States at the county level. We've looked at the educational achievement and the median income of the entire nation, to see where people are going to school, where they're earning money, and if there is any correlation.





The map at right is a product of overlaying the three sets of data. The

variation in hue and value has been produced from the data shown above. In general, darker counties represent a more educated, better paid population while lighter areas represent communities with fewer

25° 40° 50° 65°

C MEDIAN HOUSEHOLD INCOME

graduates and lower incomes.

A collaboration between GDGD and Gregory Hubace SQUBCE US Census

- -

KING COUNTY, WA









## Separable or Integral?









### Visual Popout









### Visual Popout: Parallel Lines Require Search...









### Relative vs. Absolute Judgments

- Weber's Law:
  - We judge based on relative not absolute differences
  - The amount of perceived difference is relative to the object's magnitude!











### Luminance Perception



Edward H. Adelson











### Luminance Perception



Edward H. Adelson

#### D. Koop, CSCI 627/490, Fall 2020









40