Programming Principles in Python (CSCI 503/490)

Dictionaries & Sets

Dr. David Koop

(some slides adapted from Dr. Reva Freedman)

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University

s Python pass-by-value or pass-by-reference’

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 2

Pass by Value or Pass by Reference”?

e def change(inner list): e def change(inner 1list):
inner list = [9,8,7] inner list.append(3)
outer list = [0,1,2] outer list = [0,1,2]
change list (outer list) change 1list (outer list)
outer list (0,1, 2] outer list [(0,1,2, 3]
e | ooks like pass by value! e | ooks like pass by reference!

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 3

Pass Dy object reference

o AKA passing object references by value
e Python doesn't allocate space for a variable, it just links identifier to a value

e Mutability of the object determines whether other references see the change

o Any iImmutable object will act like pass by value

e Any mutable object acts like pass by reference unless it Is reassigned to a
new value

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 4

Don't use mutable values as defaults!

—

o def

append to(element, to=[]):
to.append (element)
return to

emy list = append to(l2)
my list [12]

e my other list = append to(42)
my other 1list (12, 42]

[K. Reitz and T. Schlusser]

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 5

https://docs.python-guide.org/writing/gotchas/

Use None as a detfault insteaa

o def append to(element, to=None):

—

1f to 1s None:

to = []
to.append (element)
return to

oemy 1lis
my lis

= append to(1l2)

[12]

e my other list = append to(42)
my other 1list (42]

N
N

e |f you're not mutating, this isn't an issue

[K. Reitz and T. Schlusser]

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 6

https://docs.python-guide.org/writing/gotchas/

Dictionary

o AKA associative array or map

e Collection of key-value pairs
- Keys are unigue (repeats clobber existing)
- Values need not be unigue

* Syntax:
- Curly brackets {} delineate start and end

- Colons separate keys from values, commas separate pairs
-d = {'DeKalb': 783, 'Kane': 134, 'Cook': 1274, '"Will': 5406}

e NO type constraints
- d = {'abc': 25, 12: 'abc', ('Kane', 'IL'): 123.54}

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 7

Collections

e A dictionary Is not a sequence

® Seqguences are ordered

e Conceptually, dictionaries need no order

e A dictionary Is a collection

® Seguences are also collections

o All collections have length (1en), membership (in), and iteration (loop over values)

e | ength for dictionaries counts number of key-value pairs

- Pass dictionary to the 1en function

-d = {'abc': 25, 12: Tabc', ('Kane', "'IL'): 123.54}
len (d) 3

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 8

Mutability

o Dictionaries are mutable, key-value pairs can be added, removed, updated
¢ (Each key must be immutable)
e Accessing elements parallels lists but with different "indices” possible

® |[Nndex — Key
e d = {'DeKalb': 783, 'Kane': 134, 'Cook': 1274, '"Will': 5406}

e d['"Winnebago'] = 1023 add a new key-value pair

e d['"Kane'] = 347 update an existing key-value pair
e d.pop('W1ll") remove an existing key-value pair
e del d['Winnebago'] remove an existing key-value pailr

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 9

Assignment 3

e Senate Stock Trading Data
e [Jse dictionaries, lists, sets, and iteration
e Due next Monday

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 10

https://faculty.cs.niu.edu/~dakoop/cs503-2026sp/assignment3.html

lest 1

e CSCI 490/503-1
- In-Class, paper/pen & pencill
- Wednesday, Feb. 18, 9:30-10:45am
o CSCI 503-2:
- Online
e Covers material through this week
e Format:
- Multiple Choice & Free Response
- Extra questions for CSCI 503 Students
® |nfo on the course webpage

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 11

https://faculty.cs.niu.edu/~dakoop/cs503-2026sp/test1.html

Quiz Wednesday

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 12

Key Restrictions

e Many types can be keys... including tuples
-d = {"abc': 25, 12: 'abc', ('Kane', 'IL'): 123.54}
o . .butthe type must be immutable*—lists cannot be keys

- d—HH Kane'—FH " H+—2348- 35— F+—2—3++—"appte S

e “technically, the type must be hashable, but having a mutable and still hashable type almost always causes problems
o \\Vhy"/

- Dictionaries are fast in Python because are implemented as hash tables

- No matter how long the key, python hashes it stores values by hash

- Given a key to lookup, Python hashes it and finds the value quickly (O(1))

- It the key can mutate, the hash will not match the key!

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 13

Principle

e Be careful using floats for keys
e \\Vhy"/

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 14

Principle

e Be careful using floats for keys

e a0 = 0.123450
b = 0.5067890

values = [a, b, (a / b) * b, (b / a) * a]
found = {}
for d 1n values:

found|[d] = True

len (found) 3 '
found. kevys () [0.1234506, 0.5606789, 0.12345599999999998]

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 15

Accessing Values by Key

e [0 get a value, we start with a key

® [hings work as expected
- d['"Kane'] + d['Cook']

o [f a value does not exist, get KeyError
- d['Boone'] > 172 KevError

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 16

Viembership

e [The membership operator (in) applies to keys

- 'Boone' 1n d False
- 'Cook!" 1n d True
e [0 check the negation (if a key doesn't exist), use not in
- 'Boone' not 1in d True
- not 'Boone' 1n d True (equivalent but less readable)

* \embership testing is much faster than for a list

e Checking and accessing at once
- d.get ('Boone') no error, evaluates to None

- d.get ('Boone', 0) no error, evaluates to 0 (default)

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 17

Updating multiple key-value pairs

e Update adds or replaces key-value pairs

e Update from another dictionary:
- d.update ({ '"Wilnnebago': 1023, 'Kane': 324})

e Update from a list of key-value tuples
- d.update ([('Wilnnebago', 1023), ('Kane', 324)1])

e Update from keyword arguments
- d.update (Winnebago=1023, Kane=324)

- Only works for strings!

e Syntax for update also works for constructing a new dictionary
- d = dict ([('"Wilnnebago', 1023), ('Kane', 324)1])
- d = dict (Winnebago=1023, Kane=324)

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 18

Dictionary Methods

Method Meaning
<dict>.clear () Remove all key-value pairs

<dict>.update (other) |Updates the dictionary with values from other

<dict>.pop (k, d=None) Removes the pair with key k and returns value or
default 4 If no key

<dict>.get (k, d=None) |Returns the value for the key k or default d if no

key
<dict>.items () Returns iterable view over all pairs as (key, value)
tuples
<dict>.keys () Returns iterable view over all keys
<dict>.values () Returns iterable view over all values

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 19

Dictionary Methods

Method Meaninc Mutate
<dict>.clear () Remove all key-value pairs

<dict>.update (other) |Updates the dictionary with values from other

<dict>.pop (k, d=None) Removes the pair with key k and returns value or
default 4 If no key

<dict>.get (k, d=None) |Returns the value for the key k or default d if no
key

<dict>.items () Returns iterable view over all pairs as (key, value)
tuples

<dict>.keys () Returns iterable view over all keys

<dict>.values () Returns iterable view over all values

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 19

lteration

e Fven though dictionaries are not sequences, we can still iterate through them
e Principle: Don't depend on order

e for k 1n d:
print (k, end=" ")

e [his only iterates through the keys!
e \Ve could get the values:

e for k 1n d:
print ('key:', k, 'value:', d[k], end=" ")

e ..butthisis kind of like counting through a sequence (not pythonic)

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 20

Dictionary Views

e for k 1n d.keys () : lterate through keys
print ('key:', k)

e for v 1n d.values{() : lterate through values
print ('value:', v)

e for k, v 1n d.i1tems{(): lterate through key-value pailrs
print ('key:', k, 'value:', v)

* keys () IS superfluous but is a bit clearer
e items () IS the enumerate-like method

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 21

Exercise: Count Letters

e \\Vrite code to take a string and return the count of each letter that occurs in a
dictionary

e count letters('i1llinois')
returns {'2': 3, '1': 2, 'n': 1, 'o': 1, 's': 1}

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 22

Sorting

e Order doesn't really mean anything in a dictionary
e [hereisnota .sort Or .reverse method

e e can iterate through items In sorted order using sorted

o d count letters('i1llinois')
for k, v 1n sorted(d.items()) :
print(k, ':', v)

e reversed also works on dictionary views
e sorted and reversed Work on any iterable (thus all collections)

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 23

Sets

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University =~ 24

Sets

e Sets are dictionaries but without the values

e Same curly braces, no pairs
e s = {'DeKalb', 'Kane', 'Cook', '"Will'}

e Only one instance of a value is in a set—sets eliminate duplicates

e Adding multiple instances of the same value to a set doesn't do anything
e s = {'DeKalb', 'DeKalb', 'DeKalb', 'Kane', 'Cook', 'Will'}
{'Cook', 'DeKalb', 'Kane', '"Will'}

e \Watch out for the empty set

- s = {} not a set!

- 3 = set () an empty set

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 25

Sets are Mutable Collections

e Sets are mutable like dictionaries: we can add, and delete
e Again, no type constraints

- s = {12, 'DeKalb', 22.34}
e | (ke a dictionary, a set is a collection but not a sequence
e Q: What three things can we do for any collection?

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 26

Collection Operations on Sets

e s = {'DeKalb', 'Kane', 'Cook', '"Will'}

e | ength
- len(s) 4
e Membership: fast just like dictionaries
- 'Kane' 1n s True
- '"Winnebago' not 1in s True
e |[teration

- for county 1n s:
print (county)

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 27

Mathematical Set Operations

e s = {'DeKalb', 'Kane', 'Cook', '"Will'}
t = {'DeKalb', 'Winnebago', '"Will'}

e Union: s | t {'DeKalb', 'Kane', 'Cook', 'Will', 'Winnebago'}
- Unlike dictionaries, is commutative for sets (s | == | s)

e [Nntersection: s & t {'DeKalb', '"Will'}

e Difference: s - t {'Kane', 'Cook'}

e Symmetric Difference: s ~ t {'"Kane', 'Cook', 'Winnebago')}
e Object method variants: s.union(t), s.intersection(t),

—

s.difference(t), s.symmetric difference (t)

e Disjoint: s.isdisjoint (t) False

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University ~ 28

Mutation Operations

e add: s.add ('Winnebago"')
e discard: s.discard ('Will")

—

® [emove. s.remove ('W1ll") generates KevError 1f not exist

e Clear: s.clear () removes all elements
e \/ariants of the mathematical set operations (have augmented assignments)
- update (UNioON): | =

- Intersection update: &=

- difference update: -=

—

VAN

“erence update: 7=

- symmetric di

e \ethods take any iterable, operators require sets

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 29

