
Programming Principles in Python (CSCI 503/490)

Dictionaries & Sets

Dr. David Koop

(some slides adapted from Dr. Reva Freedman)

D. Koop, CSCI 503/490, Spring 2026

2

Is Python pass-by-value or pass-by-reference?

D. Koop, CSCI 503/490, Spring 2026

Pass by Value or Pass by Reference?
• def change(inner_list):
 inner_list = [9,8,7]

outer_list = [0,1,2]
change_list(outer_list)
outer_list # [0,1,2]

• Looks like pass by value!

• def change(inner_list):
 inner_list.append(3)

outer_list = [0,1,2]
change_list(outer_list)
outer_list # [0,1,2,3]

• Looks like pass by reference!

3D. Koop, CSCI 503/490, Spring 2026

Pass by object reference
• AKA passing object references by value
• Python doesn't allocate space for a variable, it just links identifier to a value
• Mutability of the object determines whether other references see the change
• Any immutable object will act like pass by value
• Any mutable object acts like pass by reference unless it is reassigned to a

new value

4D. Koop, CSCI 503/490, Spring 2026

Don't use mutable values as defaults!
• def append_to(element, to=[]):
 to.append(element)
 return to

• my_list = append_to(12)
my_list # [12]

• my_other_list = append_to(42)
my_other_list # [12, 42]

5

[K. Reitz and T. Schlusser]
D. Koop, CSCI 503/490, Spring 2026

https://docs.python-guide.org/writing/gotchas/

Use None as a default instead
• def append_to(element, to=None):
 if to is None:
 to = []
 to.append(element)
 return to

• my_list = append_to(12)
my_list # [12]

• my_other_list = append_to(42)
my_other_list # [42]

• If you're not mutating, this isn't an issue

6

[K. Reitz and T. Schlusser]
D. Koop, CSCI 503/490, Spring 2026

https://docs.python-guide.org/writing/gotchas/

Dictionary
• AKA associative array or map
• Collection of key-value pairs
- Keys are unique (repeats clobber existing)
- Values need not be unique

• Syntax:
- Curly brackets {} delineate start and end
- Colons separate keys from values, commas separate pairs
- d = {'DeKalb': 783, 'Kane': 134, 'Cook': 1274, 'Will': 546}

• No type constraints
- d = {'abc': 25, 12: 'abc', ('Kane', 'IL'): 123.54}

7D. Koop, CSCI 503/490, Spring 2026

Collections
• A dictionary is not a sequence
• Sequences are ordered
• Conceptually, dictionaries need no order
• A dictionary is a collection
• Sequences are also collections
• All collections have length (len), membership (in), and iteration (loop over values)
• Length for dictionaries counts number of key-value pairs
- Pass dictionary to the len function
- d = {'abc': 25, 12: 'abc', ('Kane', 'IL'): 123.54}
len(d) # 3

8D. Koop, CSCI 503/490, Spring 2026

Mutability
• Dictionaries are mutable, key-value pairs can be added, removed, updated
• (Each key must be immutable)
• Accessing elements parallels lists but with different "indices" possible
• Index → Key
• d = {'DeKalb': 783, 'Kane': 134, 'Cook': 1274, 'Will': 546}

• d['Winnebago'] = 1023 # add a new key-value pair

• d['Kane'] = 342 # update an existing key-value pair

• d.pop('Will') # remove an existing key-value pair

• del d['Winnebago'] # remove an existing key-value pair

9D. Koop, CSCI 503/490, Spring 2026

Assignment 3
• Senate Stock Trading Data
• Use dictionaries, lists, sets, and iteration
• Due next Monday

10D. Koop, CSCI 503/490, Spring 2026

https://faculty.cs.niu.edu/~dakoop/cs503-2026sp/assignment3.html

Test 1
• CSCI 490/503-1
- In-Class, paper/pen & pencil
- Wednesday, Feb. 18, 9:30-10:45am

• CSCI 503-2:
- Online

• Covers material through this week
• Format:
- Multiple Choice & Free Response
- Extra questions for CSCI 503 Students

• Info on the course webpage

11D. Koop, CSCI 503/490, Spring 2026

https://faculty.cs.niu.edu/~dakoop/cs503-2026sp/test1.html

12

Quiz Wednesday

D. Koop, CSCI 503/490, Spring 2026

Key Restrictions
• Many types can be keys… including tuples

- d = {'abc': 25, 12: 'abc', ('Kane', 'IL'): 123.54}
• …but the type must be immutable*—lists cannot be keys

- d = {['Kane', 'IL']: 2348.35, [1, 2, 3]: "apple"}
• *technically, the type must be hashable, but having a mutable and still hashable type almost always causes problems
• Why?
- Dictionaries are fast in Python because are implemented as hash tables
- No matter how long the key, python hashes it stores values by hash
- Given a key to lookup, Python hashes it and finds the value quickly (O(1))
- If the key can mutate, the hash will not match the key!

13D. Koop, CSCI 503/490, Spring 2026

Principle
• Be careful using floats for keys
• Why?

14D. Koop, CSCI 503/490, Spring 2026

Principle
• Be careful using floats for keys
• a = 0.123456
b = 0.567890

values = [a, b, (a / b) * b, (b / a) * a]
found = {}
for d in values:
 found[d] = True
len(found) # 3 !!!
found.keys() # [0.123456, 0.56789, 0.12345599999999998]

15D. Koop, CSCI 503/490, Spring 2026

Accessing Values by Key
• To get a value, we start with a key
• Things work as expected

- d['Kane'] + d['Cook']

• If a value does not exist, get KeyError
- d['Boone'] > 12 # KeyError

16D. Koop, CSCI 503/490, Spring 2026

Membership
• The membership operator (in) applies to keys

- 'Boone' in d # False

- 'Cook' in d # True

• To check the negation (if a key doesn't exist), use not in
- 'Boone' not in d # True

- not 'Boone' in d # True (equivalent but less readable)

• Membership testing is much faster than for a list
• Checking and accessing at once

- d.get('Boone') # no error, evaluates to None

- d.get('Boone', 0) # no error, evaluates to 0 (default)

17D. Koop, CSCI 503/490, Spring 2026

Updating multiple key-value pairs
• Update adds or replaces key-value pairs
• Update from another dictionary:

- d.update({'Winnebago': 1023, 'Kane': 324})

• Update from a list of key-value tuples
- d.update([('Winnebago', 1023), ('Kane', 324)])

• Update from keyword arguments
- d.update(Winnebago=1023, Kane=324)

- Only works for strings!
• Syntax for update also works for constructing a new dictionary

- d = dict([('Winnebago', 1023), ('Kane', 324)])

- d = dict(Winnebago=1023, Kane=324)

18D. Koop, CSCI 503/490, Spring 2026

Dictionary Methods

19D. Koop, CSCI 503/490, Spring 2026

Method Meaning
<dict>.clear() Remove all key-value pairs
<dict>.update(other) Updates the dictionary with values from other
<dict>.pop(k, d=None) Removes the pair with key k and returns value or

default d if no key
<dict>.get(k, d=None) Returns the value for the key k or default d if no

key
<dict>.items() Returns iterable view over all pairs as (key, value)

tuples
<dict>.keys() Returns iterable view over all keys
<dict>.values() Returns iterable view over all values

Dictionary Methods

19D. Koop, CSCI 503/490, Spring 2026

Method Meaning
<dict>.clear() Remove all key-value pairs
<dict>.update(other) Updates the dictionary with values from other
<dict>.pop(k, d=None) Removes the pair with key k and returns value or

default d if no key
<dict>.get(k, d=None) Returns the value for the key k or default d if no

key
<dict>.items() Returns iterable view over all pairs as (key, value)

tuples
<dict>.keys() Returns iterable view over all keys
<dict>.values() Returns iterable view over all values

Mutate

Iteration
• Even though dictionaries are not sequences, we can still iterate through them
• Principle: Don't depend on order
• for k in d:
 print(k, end=" ")

• This only iterates through the keys!
• We could get the values:
• for k in d:
 print('key:', k, 'value:', d[k], end=" ")

• …but this is kind of like counting through a sequence (not pythonic)

20D. Koop, CSCI 503/490, Spring 2026

Dictionary Views
• for k in d.keys(): # iterate through keys
 print('key:', k)

• for v in d.values(): # iterate through values
 print('value:', v)

• for k, v in d.items(): # iterate through key-value pairs
 print('key:', k, 'value:', v)

• keys() is superfluous but is a bit clearer
• items() is the enumerate-like method

21D. Koop, CSCI 503/490, Spring 2026

Exercise: Count Letters
• Write code to take a string and return the count of each letter that occurs in a

dictionary
• count_letters('illinois')
returns {'i': 3, 'l': 2, 'n': 1, 'o': 1, 's': 1}

22D. Koop, CSCI 503/490, Spring 2026

Sorting
• Order doesn't really mean anything in a dictionary
• There is not a .sort or .reverse method
• We can iterate through items in sorted order using sorted
• d = count_letters('illinois')
for k, v in sorted(d.items()):
 print(k, ':', v)

• reversed also works on dictionary views
• sorted and reversed work on any iterable (thus all collections)

23D. Koop, CSCI 503/490, Spring 2026

24

Sets

D. Koop, CSCI 503/490, Spring 2026

Sets
• Sets are dictionaries but without the values
• Same curly braces, no pairs
• s = {'DeKalb', 'Kane', 'Cook', 'Will'}

• Only one instance of a value is in a set—sets eliminate duplicates
• Adding multiple instances of the same value to a set doesn't do anything
• s = {'DeKalb', 'DeKalb', 'DeKalb', 'Kane', 'Cook', 'Will'}
 # {'Cook', 'DeKalb', 'Kane', 'Will'}

• Watch out for the empty set
- s = {} # not a set!

- s = set() # an empty set

25D. Koop, CSCI 503/490, Spring 2026

Sets are Mutable Collections
• Sets are mutable like dictionaries: we can add, and delete
• Again, no type constraints

- s = {12, 'DeKalb', 22.34}

• Like a dictionary, a set is a collection but not a sequence
• Q: What three things can we do for any collection?

26D. Koop, CSCI 503/490, Spring 2026

Collection Operations on Sets
• s = {'DeKalb', 'Kane', 'Cook', 'Will'}
• Length

- len(s) # 4

• Membership: fast just like dictionaries
- 'Kane' in s # True

- 'Winnebago' not in s # True

• Iteration
- for county in s:
 print(county)

27D. Koop, CSCI 503/490, Spring 2026

Mathematical Set Operations
• s = {'DeKalb', 'Kane', 'Cook', 'Will'}
t = {'DeKalb', 'Winnebago', 'Will'}

• Union: s | t # {'DeKalb', 'Kane', 'Cook', 'Will', 'Winnebago'}
- Unlike dictionaries, is commutative for sets (s | t == t | s)

• Intersection: s & t # {'DeKalb', 'Will'}
• Difference: s - t # {'Kane', 'Cook'}
• Symmetric Difference: s ^ t # {'Kane', 'Cook', 'Winnebago'}
• Object method variants: s.union(t), s.intersection(t),
s.difference(t), s.symmetric_difference(t)

• Disjoint: s.isdisjoint(t) # False

28D. Koop, CSCI 503/490, Spring 2026

Mutation Operations
• add: s.add('Winnebago')
• discard: s.discard('Will')
• remove: s.remove('Will') # generates KeyError if not exist
• clear: s.clear() # removes all elements
• Variants of the mathematical set operations (have augmented assignments)

- update (union): |=
- intersection_update: &=

- difference_update: -=

- symmetric_difference_update: ^=

• Methods take any iterable, operators require sets

29D. Koop, CSCI 503/490, Spring 2026

