
Programming Principles in Python (CSCI 503/490)

Functions & Dictionaries

Dr. David Koop

(some slides adapted from Dr. Reva Freedman)

D. Koop, CSCI 503/490, Spring 2026

Sequences and Mutability
• Lists are mutable: you can modify them after creating them

- my_list = [1,2,3]
my_list[2] = 200

• Tuples and strings are immutable
- my_tuple = (1,2,3)
my_tuple[2] = 200 # Error

2D. Koop, CSCI 503/490, Spring 2026

List methods

3D. Koop, CSCI 503/490, Spring 2026

Method Meaning
<list>.append(d) Add element d to end of list.
<list>.extend(s) Add all elements in s to end of list.
<list>.insert(i, d) Insert d into list at index i.
<list>.pop(i) Deletes ith element of the list and returns its value.
<list>.sort() Sort the list.
<list>.reverse() Reverse the list.
<list>.remove(d) Deletes first occurrence of d in list.
<list>.index(d) Returns index of first occurrence of d.
<list>.count(d) Returns the number of occurrences of d in list.

List methods

3D. Koop, CSCI 503/490, Spring 2026

Method Meaning
<list>.append(d) Add element d to end of list.
<list>.extend(s) Add all elements in s to end of list.
<list>.insert(i, d) Insert d into list at index i.
<list>.pop(i) Deletes ith element of the list and returns its value.
<list>.sort() Sort the list.
<list>.reverse() Reverse the list.
<list>.remove(d) Deletes first occurrence of d in list.
<list>.index(d) Returns index of first occurrence of d.
<list>.count(d) Returns the number of occurrences of d in list.

Mutate

Updating collections
• There are three ways to deal with operations that update collections:
- Returns an updated copy of the collection
- Updates the collection in place
- Updates the collection in place and returns it

• list.sort and list.reverse work in place and don't return it
• sorted returns an updated copy, reversed returns an iterator

- reversed actually returns an iterator
- these also work for immutable sequences like strings and tuples

4D. Koop, CSCI 503/490, Spring 2026

enumerate
• Often you do not need the index when iterating through a sequence
• If you need an index while looping through a sequence, use enumerate
• for i, d in enumerate(my_list):
 print("index:", i, "element:", d)

• Each time through the loop, it yields two items, the index i & the element d
• i, d is actually a tuple
• Automatically unpacked above, can manually do this, but don't!
• for t in enumerate(my_list):
 i = t[0]
 d = t[1]
 print("index:", i, "element:", d)

5D. Koop, CSCI 503/490, Spring 2026

enumerate
• Often you do not need the index when iterating through a sequence
• If you need an index while looping through a sequence, use enumerate
• for i, d in enumerate(my_list):
 print("index:", i, "element:", d)

• Each time through the loop, it yields two items, the index i & the element d
• i, d is actually a tuple
• Automatically unpacked above, can manually do this, but don't!
• for t in enumerate(my_list):
 i = t[0]
 d = t[1]
 print("index:", i, "element:", d)

5D. Koop, CSCI 503/490, Spring 2026

Tuple Packing and Unpacking
• def f(a, b):
 if a > 3:
 return a, b-a # tuple packing
 return a+b, b # tuple packing

• c, d = f(4, 3) # tuple unpacking

• Make sure to unpack the correct number of variables!
• c, d = a+b, a-b, 2*a # ValueError: too many values to unpack

• Sometimes, check return value before unpacking:
- retval = f(42)
if retval is not None:
 c, d = retval

6D. Koop, CSCI 503/490, Spring 2026

Tuple Packing and Unpacking
• def f(a, b):
 if a > 3:
 return a, b-a # tuple packing
 return a+b, b # tuple packing

• c, d = f(4, 3) # tuple unpacking

• Make sure to unpack the correct number of variables!
• c, d = a+b, a-b, 2*a # ValueError: too many values to unpack

• Sometimes, check return value before unpacking:
- retval = f(42)
if retval is not None:
 c, d = retval

6D. Koop, CSCI 503/490, Spring 2026

t = (a, b-a)
return t

Tuple Packing and Unpacking
• def f(a, b):
 if a > 3:
 return a, b-a # tuple packing
 return a+b, b # tuple packing

• c, d = f(4, 3) # tuple unpacking

• Make sure to unpack the correct number of variables!
• c, d = a+b, a-b, 2*a # ValueError: too many values to unpack

• Sometimes, check return value before unpacking:
- retval = f(42)
if retval is not None:
 c, d = retval

6D. Koop, CSCI 503/490, Spring 2026

t = (a, b-a)
return t

t = f(4, 3)
(c, d) = t

Scope
• The scope of a variable refers to where in a program it can be referenced
• Python has three scopes:
- global: defined outside a function
- local: in a function, only valid in the function
- nonlocal: can be used with nested functions

• Python allows variables in different scopes to have the same name

7D. Koop, CSCI 503/490, Spring 2026

Scope
• Global Read

- def f():
 print(x) # x is global
x = 1
f()
print(x) # x is 1

• Local Read/Write
- def f():
 x = 2
 print(x) # x is local
x = 1
f()
print(x) # x is 1

• Global Read/Write
- def f():
 global x
 x = 2
 print(x) # x is global
x = 1
f()
print(x) # x is 2

8D. Koop, CSCI 503/490, Spring 2026

Assignment 3
• Out Soon

9D. Koop, CSCI 503/490, Spring 2026

10

What is the scope of a parameter of a function?

D. Koop, CSCI 503/490, Spring 2026

11

Depends on whether Python is
pass-by-value or pass-by-reference

D. Koop, CSCI 503/490, Spring 2026

Pass by value
• Detour to C++ land:

- void f(int x) {
 x = 2;
 cout << "Value of x in f: " << x << endl;
}

main() {
 int x = 1;
 f(x);
 cout << "Value of x in main: " << x;
}

12D. Koop, CSCI 503/490, Spring 2026

Pass by value
• Detour to C++ land:

- void f(int x) {
 x = 2;
 cout << "Value of x in f: " << x << endl;
}

main() {
 int x = 1;
 f(x);
 cout << "Value of x in main: " << x;
}

12D. Koop, CSCI 503/490, Spring 2026

Output:
Value of x in f: 2
Value of x in main: 1

Pass by reference
• Detour to C++ land:

- void f(int & x) {
 x = 2;
 cout << "Value of x in f: " << x << endl;
}

main() {
 int x = 1;
 f(x);
 cout << "Value of x in main: " << x;
}

13D. Koop, CSCI 503/490, Spring 2026

Pass by reference
• Detour to C++ land:

- void f(int & x) {
 x = 2;
 cout << "Value of x in f: " << x << endl;
}

main() {
 int x = 1;
 f(x);
 cout << "Value of x in main: " << x;
}

13D. Koop, CSCI 503/490, Spring 2026

Pass by reference
• Detour to C++ land:

- void f(int & x) {
 x = 2;
 cout << "Value of x in f: " << x << endl;
}

main() {
 int x = 1;
 f(x);
 cout << "Value of x in main: " << x;
}

13D. Koop, CSCI 503/490, Spring 2026

Output:
Value of x in f: 2
Value of x in main: 2

Pass by reference
• Detour to C++ land:

- void f(int & x) {
 x = 2;
 cout << "Value of x in f: " << x << endl;
}

main() {
 int x = 1;
 f(x);
 cout << "Value of x in main: " << x;
}

13D. Koop, CSCI 503/490, Spring 2026

Output:
Value of x in f: 2
Value of x in main: 2

14

Is Python pass-by-value or pass-by-reference?

D. Koop, CSCI 503/490, Spring 2026

Example 1
• def change_list(inner_list):
 inner_list = [10,9,8,7,6]

outer_list = [0,1,2,3,4]
change_list(outer_list)
outer_list # [0,1,2,3,4]

• Looks like pass by value!

15D. Koop, CSCI 503/490, Spring 2026

Example 2
• def change_list(inner_list):
 inner_list.append(5)

outer_list = [0,1,2,3,4]
change_list(outer_list)
outer_list # [0,1,2,3,4,5]

• Looks like pass by reference!

16D. Koop, CSCI 503/490, Spring 2026

17

What's going on?

D. Koop, CSCI 503/490, Spring 2026

18

Think about how assignment works in Python
Different than C++

D. Koop, CSCI 503/490, Spring 2026

Example 1
• def change_list(inner_list):
 inner_list = [10,9,8,7,6]

outer_list = [0,1,2,3,4]
change_list(outer_list)
outer_list # [0,1,2,3,4]

19D. Koop, CSCI 503/490, Spring 2026

outer_list [0,1,2,3,4]

Example 1
• def change_list(inner_list):
 inner_list = [10,9,8,7,6]

outer_list = [0,1,2,3,4]
change_list(outer_list)
outer_list # [0,1,2,3,4]

20D. Koop, CSCI 503/490, Spring 2026

outer_list [0,1,2,3,4]

inner_list

Example 1
• def change_list(inner_list):
 inner_list = [10,9,8,7,6]

outer_list = [0,1,2,3,4]
change_list(outer_list)
outer_list # [0,1,2,3,4]

21D. Koop, CSCI 503/490, Spring 2026

outer_list [0,1,2,3,4]

inner_list [10,9,8,7,6]

Example 1
• def change_list(inner_list):
 inner_list = [10,9,8,7,6]

outer_list = [0,1,2,3,4]
change_list(outer_list)
outer_list # [0,1,2,3,4]

22D. Koop, CSCI 503/490, Spring 2026

outer_list [0,1,2,3,4]

Example 2
• def change_list(inner_list):
 inner_list.append(5)

outer_list = [0,1,2,3,4]
change_list(outer_list)
outer_list # [0,1,2,3,4,5]

23D. Koop, CSCI 503/490, Spring 2026

outer_list [0,1,2,3,4]

Example 2
• def change_list(inner_list):
 inner_list.append(5)

outer_list = [0,1,2,3,4]
change_list(outer_list)
outer_list # [0,1,2,3,4,5]

24D. Koop, CSCI 503/490, Spring 2026

outer_list [0,1,2,3,4]

inner_list

Example 2
• def change_list(inner_list):
 inner_list.append(5)

outer_list = [0,1,2,3,4]
change_list(outer_list)
outer_list # [0,1,2,3,4,5]

25D. Koop, CSCI 503/490, Spring 2026

outer_list [0,1,2,3,4,5]

inner_list

Example 2
• def change_list(inner_list):
 inner_list.append(5)

outer_list = [0,1,2,3,4]
change_list(outer_list)
outer_list # [0,1,2,3,4,5]

26D. Koop, CSCI 503/490, Spring 2026

outer_list [0,1,2,3,4,5]

Pass by object reference
• AKA passing object references by value
• Python doesn't allocate space for a variable, it just links identifier to a value
• Mutability of the object determines whether other references see the change
• Any immutable object will act like pass by value
• Any mutable object acts like pass by reference unless it is reassigned to a

new value

27D. Koop, CSCI 503/490, Spring 2026

Remember: global allows assignment in functions
• def change_list():
 global a_list
 a_list = [10,9,8,7,6]

a_list = [0,1,2,3,4]
change_list()
a_list # [10,9,8,7,6]

28D. Koop, CSCI 503/490, Spring 2026

Default Parameter Values
• Can add =<value> to parameters
• def rectangle_area(width=30, height=20):
 return width * height

• All of these work:
- rectangle_area() # 600

- rectangle_area(10) # 200

- rectangle_area(10,50) # 500
• If the user does not pass an argument for that parameter, the parameter is

set to the default value
• Cannot add non-default parameters after a defaulted parameter

- def rectangle_area(width=30, height)

29

[Deitel & Deitel]
D. Koop, CSCI 503/490, Spring 2026

Don't use mutable values as defaults!
• def append_to(element, to=[]):
 to.append(element)
 return to

• my_list = append_to(12)
my_list # [12]

• my_other_list = append_to(42)
my_other_list # [12, 42]

30

[K. Reitz and T. Schlusser]
D. Koop, CSCI 503/490, Spring 2026

https://docs.python-guide.org/writing/gotchas/

Use None as a default instead
• def append_to(element, to=None):
 if to is None:
 to = []
 to.append(element)
 return to

• my_list = append_to(12)
my_list # [12]

• my_other_list = append_to(42)
my_other_list # [42]

• If you're not mutating, this isn't an issue

31

[K. Reitz and T. Schlusser]
D. Koop, CSCI 503/490, Spring 2026

https://docs.python-guide.org/writing/gotchas/

Keyword Arguments
• Keyword arguments allow someone calling a function to specify exactly

which values they wish to specify without specifying all the values
• This helps with long parameter lists where the caller wants to only change a

few arguments from the defaults
• def f(alpha=3, beta=4, gamma=1, delta=7, epsilon=8, zeta=2,
 eta=0.3, theta=0.5, iota=0.24, kappa=0.134):
 # …

• f(beta=12, iota=0.7)

32D. Koop, CSCI 503/490, Spring 2026

Positional & Keyword Arguments
• Generally, any argument can be passed as a keyword argument
• def f(alpha, beta, gamma=1, delta=7, epsilon=8, zeta=2,
 eta=0.3, theta=0.5, iota=0.24, kappa=0.134):
 # …

• f(5,6)

• f(alpha=7, beta=12, iota=0.7)

33D. Koop, CSCI 503/490, Spring 2026

Position-Only Arguments
• PEP 570 introduced position-only arguments
• Sometimes it makes sense that certain arguments must be position-only
• Certain functions (those implemented in C) only allow position-only: pow
• Add a slash (/) to delineate where keyword arguments start
• def f(alpha, beta, /, gamma=1, delta=7, epsilon=8, zeta=2,
 eta=0.3, theta=0.5, iota=0.24, kappa=0.134):
 # …

- f(alpha=7, beta=12, iota=0.7) # ERROR
- f(7, 12, iota=0.7) # WORKS

34D. Koop, CSCI 503/490, Spring 2026

https://www.python.org/dev/peps/pep-0570/

Arbitrary Argument Containers
• def f(*args, **kwargs):
 # …

• args: a tuple of arguments
• kwargs: a key-value dictionary of arguments
• Stars in function signature, not in use
• Can have named arguments before these arbitrary containers
• Any values set by position will not be in kwargs:
• def f(a, *args, **kwargs):
 print(args)
 print(kwargs)
f(a=3, b=5) # args is empty, kwargs has only b

35D. Koop, CSCI 503/490, Spring 2026

Keyword-Only Arguments
• Can also force arguments to be keyword-only
• Uses a * (star) without a variable name
• All arguments following the star must be keyword-only

- def compare(a, b, *, key=None)

• Arguments do not need to have a default value
- def compare(a, b, *, key)

36D. Koop, CSCI 503/490, Spring 2026

Programming Principles: Defining Functions
• List arguments in an order that makes sense
- May be convention => pow(x,y) means xy

- May be in order of expected frequency used
• Use default parameters when meaningful defaults are known
• Use position-only arguments when there is no meaningful name or the syntax

might change in the future

37D. Koop, CSCI 503/490, Spring 2026

Calling module functions
• Some functions exist in modules (we will discuss these more later)
• Import module
• Call functions by prepending the module name plus a dot
• import math
math.log10(100)
math.sqrt(196)

38D. Koop, CSCI 503/490, Spring 2026

Calling object methods
• Some functions are defined for objects like strings
• These are instance methods
• Call these using a similar dot-notation
• Can take arguments
• s = 'Mary'
s.upper() # 'MARY'

• t = ' extra spaces '
t.strip() # 'extra spaces'

• u = '1+2+3+4'
u.split(sep='+') # ['1','2','3','4']

39D. Koop, CSCI 503/490, Spring 2026

40

Dictionaries

D. Koop, CSCI 503/490, Spring 2026

Dictionary
• AKA associative array or map
• Collection of key-value pairs
- Keys are unique (repeats clobber existing)
- Values need not be unique

• Syntax:
- Curly brackets {} delineate start and end
- Colons separate keys from values, commas separate pairs
- d = {'DeKalb': 783, 'Kane': 134, 'Cook': 1274, 'Will': 546}

• No type constraints
- d = {'abc': 25, 12: 'abc', ('Kane', 'IL'): 123.54}

41D. Koop, CSCI 503/490, Spring 2026

Dictionary Examples

42

[Deitel & Deitel]
D. Koop, CSCI 503/490, Spring 2026

Keys Key type Values Value type
Country names str Internet country

codes
str

Decimal numbers int Roman numerals str

States str Agricultural
products

list of str

Hospital patients str Vital signs tuple of floats

Baseball players str Batting averages float

Metric
measurements

str Abbreviations str

Inventory codes str Quantity in stock int

Collections
• A dictionary is not a sequence
• Sequences are ordered
• Conceptually, dictionaries need no order
• A dictionary is a collection
• Sequences are also collections
• All collections have length (len), membership (in), and iteration (loop over values)
• Length for dictionaries counts number of key-value pairs
- Pass dictionary to the len function
- d = {'abc': 25, 12: 'abc', ('Kane', 'IL'): 123.54}
len(d) # 3

43D. Koop, CSCI 503/490, Spring 2026

Mutability
• Dictionaries are mutable, key-value pairs can be added, removed, updated
• (Each key must be immutable)
• Accessing elements parallels lists but with different "indices" possible
• Index → Key
• d = {'DeKalb': 783, 'Kane': 134, 'Cook': 1274, 'Will': 546}

• d['Winnebago'] = 1023 # add a new key-value pair

• d['Kane'] = 342 # update an existing key-value pair

• d.pop('Will') # remove an existing key-value pair

• del d['Winnebago'] # remove an existing key-value pair

44D. Koop, CSCI 503/490, Spring 2026

Key Restrictions
• Many types can be keys… including tuples

- d = {'abc': 25, 12: 'abc', ('Kane', 'IL'): 123.54}
• …but the type must be immutable—lists cannot be keys

- d = {['Kane', 'IL']: 2348.35, [1, 2, 3]: "apple"}

• Why?

45D. Koop, CSCI 503/490, Spring 2026

Key Restrictions
• Many types can be keys… including tuples

- d = {'abc': 25, 12: 'abc', ('Kane', 'IL'): 123.54}
• …but the type must be immutable*—lists cannot be keys

- d = {['Kane', 'IL']: 2348.35, [1, 2, 3]: "apple"}
• *technically, the type must be hashable, but having a mutable and still hashable type almost always causes problems
• Why?
- Dictionaries are fast in Python because are implemented as hash tables
- No matter how long the key, python hashes it stores values by hash
- Given a key to lookup, Python hashes it and finds the value quickly (O(1))
- If the key can mutate, the hash will not match the key!

46D. Koop, CSCI 503/490, Spring 2026

