Programming Principles in Python (CSCI 503/490)

Functions & Dictionaries

Dr. David Koop

(some slides adapted from Dr. Reva Freedman)

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University

Sequences and Mutabillity

¢ | ists are mutable: you can modify them after creating them

-my list = [1,2,3]
my list[2] = 200

e [uples and strings are immutable

- my tuple = (1,2, 3)
my tuplel[2] = 200 FError

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 2

LISt methods

Method Meaning

<list>.append (d) Add element 4 to end of list.

<list>.extend (s) Add all elements in s to end of list.
<list>.insert (i, d) |Insert d into list at index .

<list>.pop (i) Deletes ith element of the list and returns its value.
<list>.sort () Sort the list.

<list>.reverse () Reverse the list.

<list>.remove (d) Deletes first occurrence of 4 in list.

<list>.index (d) Returns index of first occurrence of d.
<list>.count (d) Returns the number of occurrences of d In list.

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 3

LISt methods

Method Meaninc Mutate
<list>.append (d) Add element d to end of list.

<list>.extend (s) Add all elements in s to end of list.

<list>.insert (i, d) |Insert d into list at index .

<list>.pop (i) Deletes ith element of the list and returns its value.
<list>.sort () Sort the list.

<list>.reverse () Reverse the list.

<list>.remove (d) Deletes first occurrence of 4 in list.

<list>.index (d) Returns index of first occurrence of d.
<list>.count (d) Returns the number of occurrences of d in list.

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 3

Updating collections

e [here are three ways to deal with operations that update collections:
- Returns an updated copy of the collection
- Updates the collection in place
- Updates the collection in place and returns it

e list.sort and list.reverse WOrK In place and don't return it

* sorted returns an updated copy, reversed returns an iterator
- reversed actually returns an iterator
- these also work for iIimmutable sequences like strings and tuples

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 4

enumerate

e Often you do not need the index when iterating through a sequence
e |f you need an index while looping through a sequence, use enumerate

e for 1, d 1n enumerate(my list):
print ("index:", 1, "element:", d)

e Fach time through the loop, It yields two items, the iIndex i & the element d

e i, d Isactually atuple

o Automatically unpacked above, can manually do this, but don't!
e for t 1n enumerate(my 1list):
1 = t[0]
d = t[l
print ("index:", 1, "element:", d)

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 5

enumerate

e Often you do not need the index when iterating through a sequence
e |f you need an index while looping through a sequence, use enumerate

e for 1, d 1n enumerate(my list):
print ("index:", 1, "element:", d)

e Fach time through the loop, It yields two items, the iIndex i & the element d

e i, d Isactually atuple

o Automatically unpacked above, can manually do this, but don't!
o = 1n enumerate (my list):

t | T

d = t|l
Oor1ntc

|_|.

("1ndex:", 1, "elementi—<

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 5

Tuple Packing and Unpacking

—

o def

b) :

f(a,
1f a > 3:
return a, b-a tuple packiling
return atb, Db tuple packiling
ecCc, d= 1t£((4, 3) tuple unpacking

¢ \lake sure to unpack the correct number of variables!

e Cc, d = atb, a-b, 2*a ValueError: too many values to unpack

e Sometimes, check return value before unpacking:

- retval = £(42)
1f retval 1s not None:
c, d = retval

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 6

Tuple Packing and Unpacking

—

o def

b) :

r(a,
1f a > 3:
return a, b-a tuple packing t = (a, b-a)
return a+b, b tuple packing return t
ecCc, d= 1t£((4, 3) tuple unpacking

¢ \lake sure to unpack the correct number of variables!

e Cc, d = atb, a-b, 2*a ValueError: too many values to unpack

e Sometimes, check return value before unpacking:

- retval = £(42)
1f retval 1s not None:
c, d = retval

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 6

Tuple Packing and Unpacking

—

o def

b) :

r(a,
1f a > 3:
return a, b-a tuple packing t = (a, b-a)
return a+b, b tuple packing return t
ecCc, d= 1t£((4, 3) tuple unpacking

¢ \lake sure to unpack the correct number of variables!

e Cc, d = atb, a-b, 2*a ValueError: too many values to unpack

e Sometimes, check return value before unpacking:

- retval = £(42)
1f retval 1s not None:
c, d = retval

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 6

Scope

® [he scope of a variable refers to where in a program it can be referenced
e Python has three scopes:

- global: defined outside a function
- local: in a function, only valid in the function
- nonlocal: can be used with nested functions
e Python allows variables in different scopes to have the same name

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 7

Scope

¢ Global Read e Global Read/Write
- def f£(): - def f£():
print (x) X 1s global global x
X = 1 X = Z
() print (x) X 1s global
print (x) X 1s 1 X = 1
e Local Read/Write Y .
print (x) X 18 Z
- def £():
X = Z
print (x) X 1s local
x = 1
£ ()
print (x) X 18 1

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 8

Assignment 3

e Out Soon

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 9

What is the scope of a parameter of a function®

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 10

Depends on whether Python Is
0ass-by-value or pass-by-reference

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 11

Pass by value

e Detour to C++ land:
- vold f(int x) {
X = 2
cout << "Value of x 1n f: " << x << endl;

B

main () {
int x = 1;

p—

f(x);
cout << "Value of X 1n main: " << x;

. Koop, CSCI 503/490, Spring 2026 Northern Illinois University =~ 12

Pass by value

e Detour to C++ land:
- vold f(int x) {
X = 2
cout << "Value of x 1n f: " << x << endl;

B

main () {
int x = 1;

p—

f(x);
cout << "Value of X 1n main: " << x;

}
Output:
Value of x 1in f£: 2
Value of x 1n main: 1

. Koop, CSCI 503/490, Spring 2026 H Northern Illinois University 12

Pass by reference

e Detour to C++ land:
- vold f(int & x) {
X = 2
cout << "Value of x 1n f: " << x << endl;

B

main () {
int x = 1;

p—

f(x);
cout << "Value of X 1n main: " << x;

. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 13

Pass by reference

e Detour to C++ land:

_ void f(inv %)

X = 2
cout << "Value of x 1n f: " << x << endl;

B

main () {
int x = 1;

p—

f(x);
cout << "Value of X 1n main: " << x;

. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 13

Pass by reference

e Detour to C++ land:

_ void f(inv %)

X = 2
cout << "Value of x 1n f: " << x << endl;

B

main () {
int x = 1;

p—

f(x);
cout << "Value of X 1n main: " << x;

}
Output:
Value of x 1in f£: 2
Value of x 1n main: 2

. Koop, CSCI 503/490, Spring 2026 H| Northern Illinois University 13

Pass by reference

e Detour to C++ land:

_ void f(inv %)

X = 2
cout << "Value of x 1n f: " << x << endl;

B

main () {
int x = 1;

p—

f(x);
cout << "Value of X 1n main: " << x;

}
Output:
Value of x 1in f£: 2
Value of X 1n main:

. Koop, CSCI 503/490, Spring 2026 H| Northern Illinois University 13

s Python pass-by-value or pass-by-reference’

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 14

Example 1

—

e def change list(inner list):
inner list = [10,9,8,7,0]

outer list = [0,1,2,3,4]
change list (outer list)
outer list (0,1,2,3,4]

¢ | 0Oks like pass by value!

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 15

Example 2

—

e def change list(inner list):

1nner list.append(5)

outer list = [0,1,2,3,4]
change list (outer list)
outer list (0,1,2,3,4,5]

® | 0OKS like pass by reference!

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 16

What's going on”

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 17

Think about how assignment works in Python
Different than C++

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 18

Example 1

—

e def change list(inner list):
inner list = [10,9,8,7,0]

outer list = [0,1,2,3,4]
change list (outer list)
outer list (0,1,2,3,4]

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 19

Example 1

e def change list(inner list):
inner list = [10,9,8,7,0]

outer list = [0,1,2,3,4]
change list (outer list)
outer list (0,1,2,3,4]

o] —

[0,1,2,3,4]

. Koop, CSCI 503/490, Spring 2026 Northern Illinois University =~ 20

Example 1

—

e def change list(inner list):
inner list [10,9,8,7,6]

outer list = [0,1,2,3,4]
change list (outer list)
outer list (0,1,2,3,4]

. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 21

Example 1

—

e def change list(inner list):
inner list = [10,9,8,7,0]

outer list = [0,1,2,3,4]
change list (outer list)
outer list # [0,1,2,3,4]

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 22

Example 2

—

e def change list(inner list):

1nner list.append(5)

outer list = [0,1,2,3,4]
change list (outer list)
outer list (0,1,2,3,4,5]

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 23

Example 2

e def change list(inner list):
1nner list.append(5)

outer list = [0,1,2,3,4]
change list (outer list)
outer list (0,1,2,3,4,5]

o] —

[0,1,2,3,4]

. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 24

Example 2

—

e def change list(inner list):
inner list.append(5)

outer list = [0,1,2,3,4]
change list (outer list)
outer list (0,1,2,3,4,5]

o] —

[011/2/31415]

. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 25

Example 2

—

e def change list(inner list):

1nner list.append(5)

outer list = [0,1,2,3,4]
change list (outer list)
outer list # [0,1,2,3,4,5]

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 26

Pass Dy object reference

o AKA passing object references by value
e Python doesn't allocate space for a variable, it just links identifier to a value

e Mutability of the object determines whether other references see the change

o Any iImmutable object will act like pass by value

e Any mutable object acts like pass by reference unless it Is reassigned to a
new value

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 27

Remember: global allows assignment In functions

e def change list():
global a list
a list = [10,9,8,7,0]

a list = [0,1,2,3,4]
change 1list ()
a list (10,9,8,7, 0]

Northern Illinois University 28

D. Koop, CSCI 503/490, Spring 2026

Detault Parameter Values

e Can add =<value> to parameters

—

e def rectangle area(width=30, height=20):
return width * height

o All of these work:

- rectangle area () 000
- rectangle area(10) 200
- rectangle area (10, 50) 200

¢ |f the user does not pass an argument for that parameter, the parameter Is
set to the default value

e Cannot add non-default parameters after a defaulted parameter
Annf o4 N

- def—rectanglte area{wradth=30—height)

[Deitel & Deitel]

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 29

Don't use mutable values as defaults!

—

o def

append to(element, to=[]):
to.append (element)
return to

emy list = append to(l2)
my list [12]

e my other list = append to(42)
my other 1list (12, 42]

[K. Reitz and T. Schlusser]

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 30

https://docs.python-guide.org/writing/gotchas/

Use None as a detfault insteaa

o def append to(element, to=None):

—

1f to 1s None:

to = []
to.append (element)
return to

oemy 1lis
my lis

= append to(1l2)

[12]

e my other list = append to(42)
my other 1list (42]

N
N

e |f you're not mutating, this isn't an issue

[K. Reitz and T. Schlusser]

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 31

https://docs.python-guide.org/writing/gotchas/

Keyword Arguments

o Keyword arguments allow someone calling a function to specify exactly
which values they wish to specity without specifying all the values

* [his helps with long parameter lists where the caller wants to only change a
few arguments from the defaults

e def f (alpha=3, beta=4, gamma=1, delta=7, epsilon=38, zeta=2Z,
eta=0.3, theta=0.5, 10ta=0.24, kappa=0.134) :

o f (beta=12, 1o0ta=0.7)

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University = 32

Positional & Keyword Arguments

e (Generally, any argument can be passed as a keyword argument

—

e def f (alpha, beta, gamma=1l, delta=7/, epsilon=8, zeta=2,
eta=0.3, theta=0.5, 10ta=0.24, kappa=0.134) :

e £ (5, 0)
e f (alpha=7, beta=12, 1ota=0.7)

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University ~ 33

Position-Only Arguments

e PEP 5/0 Iintroduced position-only arguments
e Sometimes it makes sense that certain arguments must be position-only

e Certain functions (those implemented in C) only allow position-only: pow

e Add a slash (/) to delineate where keyword arguments start

e def f (alpha, beta, /, gamma=1l, delta=7, epsilon=8, zeta=2,
eta=0.3, theta=0.5, 10ta=0.24, kappa=0.134) :

- f (alpha=7, beta=12, 1ota=0.7) L RROR
£(7, 12, 10ta=0.7) WORKS

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 34

https://www.python.org/dev/peps/pep-0570/

Arbitrary Argument Containers

e def f (*args, **kwargs) :

* args: a tuple of arguments
* kwargs: a Key-value dictionary of arguments

e Stars in function signature, not in use
e Can have named arguments before these arbitrary containers
e Any values set by position will not be in kwargs:

e def f (a, *args, **kwargs):
print (args)
print (kwargs)
f (a=3, b=5) args 1s empty, kwargs has only Db

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University ~ 35

Keyword-Only Arguments

e Can also force arguments to be keyword-only
e Uses a * (star) without a variable name

o All arguments following the star must be keyword-only

- def compare(a, b, *, key=None)

e Arguments do not need to have a detault value

- def compare(a, b, *, key)

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 36

Programming Principles: Defining Functions

e | st arguments in an order that makes sense
- May be convention => pow (x, y) means xY
- May be In order of expected frequency used
e Use default parameters when meaningful defaults are known

e Use position-only arguments when there is no meaningful name or the syntax
mignht change In the future

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University = 37

Calling module functions

e Some functions exist in modules (we will discuss these more later)
e Import module

e Call functions by prepending the module name plus a dot

e 1mport math
math.logl0O (100)
math.sgrt (196)

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University ~ 38

Calling object methods

e Some functions are defined for objects like strings
® [hese are instance methods
o Call these using a similar dot-notation

e Can take arguments

e s = '"Mary'
S .upper () '"MARY '

= ! extra spaces
.Strip () 'extra spaces'

= "1+2+3+4"
.split (sep="+") [tttz 3,14

Coa

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 39

Dictionaries

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University ~ 40

Dictionary

o AKA associative array or map

e Collection of key-value pairs
- Keys are unigue (repeats clobber existing)
- Values need not be unigue

* Syntax:
- Curly brackets {} delineate start and end

- Colons separate keys from values, commas separate pairs
-d = {'DeKalb': 783, 'Kane': 134, 'Cook': 1274, '"Will': 5406}

e NO type constraints
- d = {'abc': 25, 12: 'abc', ('Kane', 'IL'): 123.54}

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 41

Dictionary Examples

Keys Key type Values Value type
Country names |str Internet country |str

Decimal numbers |1nt Roman numerals |str

States str Agricultural list of str
Hospital patients |str Vital signs tuple of floats
Baseball players |str Batting averages |float

Metric str Abbreviations str

Inventory codes |str Quantity in stock |int

[Deitel & Deitel]

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University =~ 42

Collections

e A dictionary Is not a sequence

® Seqguences are ordered

e Conceptually, dictionaries need no order

e A dictionary Is a collection

® Seguences are also collections

o All collections have length (1en), membership (in), and iteration (loop over values)

e | ength for dictionaries counts number of key-value pairs

- Pass dictionary to the 1en function

-d = {'abc': 25, 12: Tabc', ('Kane', "'IL'): 123.54}
len (d) 3

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University ~ 43

Mutability

o Dictionaries are mutable, key-value pairs can be added, removed, updated
¢ (Each key must be immutable)
e Accessing elements parallels lists but with different "indices” possible

® |[Nndex — Key
e d = {'DeKalb': 783, 'Kane': 134, 'Cook': 1274, '"Will': 5406}

e d['"Winnebago'] = 1023 add a new key-value pair

e d['"Kane'] = 347 update an existing key-value pair
e d.pop('W1ll") remove an existing key-value pair
e del d['Winnebago'] remove an existing key-value pailr

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 44

Key Restrictions

e Many types can be keys... including tuples
-d = {"abc': 25, 12: 'abc', ('Kane', 'IL'): 123.54}

e . .butthe type must be immutable—lists cannot be keys

- d—FHH Kape ' — " H+—2348-35+—H+—2+—3+}++—"oppte

I T U e TIyg L L 7 7
e \\Vhy"/

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 45

Key Restrictions

e Many types can be keys... including tuples
-d = {"abc': 25, 12: 'abc', ('Kane', 'IL'): 123.54}
o . .butthe type must be immutable*—lists cannot be keys

- d—HH Kane'—FH " H+—2348- 35— F+—2—3++—"appte S

e “technically, the type must be hashable, but having a mutable and still hashable type almost always causes problems
o \\Vhy"/

- Dictionaries are fast in Python because are implemented as hash tables

- No matter how long the key, python hashes it stores values by hash

- Given a key to lookup, Python hashes it and finds the value quickly (O(1))

- It the key can mutate, the hash will not match the key!

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University ~ 46

