
Programming Principles in Python (CSCI 503/490)

Sequences & Functions

Dr. David Koop

(some slides adapted from Dr. Reva Freedman)

D. Koop, CSCI 503/490, Spring 2026

Sequences
• Strings "abcde", Lists [1, 2, 3, 4, 5], and Tuples (1, 2, 3, 4, 5)

• Defining a list: my_list = [0, 1, 2, 3, 4]
• But lists can store different types:

- my_list = [0, "a", 1.34]
• Including other lists:

- my_list = [0, "a", 1.34, [1, 2, 3]]

• Others are similar: tuples use parenthesis, strings are delineated by quotes
(single or double)

2D. Koop, CSCI 503/490, Spring 2026

Sequence Operations
• Concatenate: [1, 2] + [3, 4] # [1,2,3,4]
• Repeat: [1,2] * 3 # [1,2,1,2,1,2]
• Length: my_list = [1,2]; len(my_list) # 2

• Concatenate: (1, 2) + (3, 4) # (1,2,3,4)
• Repeat: (1,2) * 3 # (1,2,1,2,1,2)
• Length: my_tuple = (1,2); len(my_tuple) # 2

• Concatenate: "ab" + "cd" # "abcd"
• Repeat: "ab" * 3 # "ababab"
• Length: my_str = "ab"; len(my_str) # 2

3D. Koop, CSCI 503/490, Spring 2026

Indexing & Slicing Quiz

4D. Koop, CSCI 503/490, Spring 2026

a b c d e

a b c d e

a b c d e

a b c d e

my_list = ['a', 'b', 'c', 'd', 'e']

Indexing & Slicing Quiz

4D. Koop, CSCI 503/490, Spring 2026

a b c d e

a b c d e

a b c d e

a b c d e

my_list[3]; my_list[-2]; my_list[3:4]

my_list = ['a', 'b', 'c', 'd', 'e']

Indexing & Slicing Quiz

4D. Koop, CSCI 503/490, Spring 2026

a b c d e

a b c d e

a b c d e

a b c d e

my_list[3]; my_list[-2]; my_list[3:4]

my_list[1:3]; my_list[-4:-2];
my_list[1:-2]

my_list = ['a', 'b', 'c', 'd', 'e']

Indexing & Slicing Quiz

4D. Koop, CSCI 503/490, Spring 2026

a b c d e

a b c d e

a b c d e

a b c d e

my_list[3]; my_list[-2]; my_list[3:4]

my_list[1:3]; my_list[-4:-2];
my_list[1:-2]

my_list[0:4]; my_list[:4];
my_list[-5:-1]

my_list = ['a', 'b', 'c', 'd', 'e']

Indexing & Slicing Quiz

4D. Koop, CSCI 503/490, Spring 2026

a b c d e

a b c d e

a b c d e

a b c d e

my_list[3]; my_list[-2]; my_list[3:4]

my_list[1:3]; my_list[-4:-2];
my_list[1:-2]

my_list[0:4]; my_list[:4];
my_list[-5:-1]

my_list[3:]; my_list[-2:]

my_list = ['a', 'b', 'c', 'd', 'e']

Indexing (Positive and Negative)
• Positive indices start at zero, negative at -1
• my_str = "abcde"; my_str[1] # "b"

• my_list = [1,2,3,4,5]; my_list[-3] # 3

• my_tuple = (1,2,3,4,5); my_tuple[-5] # 1

5D. Koop, CSCI 503/490, Spring 2026

a b c d e

0 1 2 3 4

-5 -4 -3 -2 -1

Slicing
• Positive or negative indices can be used at any step
• my_str = "abcde"; my_str[1:3] # ["b", c"]

• my_list = [1,2,3,4,5]; my_list[3:-1] # [4]

• Implicit indices
- my_tuple = (1,2,3,4,5); my_tuple[-2:] # (4,5)

- my_tuple[:3] # (1,2,3)

6D. Koop, CSCI 503/490, Spring 2026

[1:3] a b c d e

0 1 2 3 4

-5 -4 -3 -2 -1

[-4:-2]

Iteration
• for d in sequence:
 # do stuff

• Important: d is a data item, not an index!
• sequence = "abcdef"
for d in sequence:
 print(d, end=" ") # a b c d e f

• sequence = [1,2,3,4,5]
for d in sequence:
 print(d, end=" ") # 1 2 3 4 5

• sequence = (1,2,3,4,5)
for d in sequence:
 print(d, end=" ") # 1 2 3 4 5

7D. Koop, CSCI 503/490, Spring 2026

Membership
• <expr> in <seq>

• Returns True if the expression is in the sequence, False otherwise
• "a" in "abcde" # True

• 0 in [1,2,3,4,5] # False
• 3 in (3, 3, 3, 3) # True

8D. Koop, CSCI 503/490, Spring 2026

Sequence Operations

9D. Koop, CSCI 503/490, Spring 2026

Operator Meaning
<seq> + <seq> Concatenation
<seq> * <int-expr> Repetition
<seq>[<int-expr>] Indexing
len(<seq>) Length
<seq>[<int-expr?>:<int-expr?>] Slicing
for <var> in <seq>: Iteration
<expr> in <seq> Membership (Boolean)

Sequence Operations

9D. Koop, CSCI 503/490, Spring 2026

Operator Meaning
<seq> + <seq> Concatenation
<seq> * <int-expr> Repetition
<seq>[<int-expr>] Indexing
len(<seq>) Length
<seq>[<int-expr?>:<int-expr?>] Slicing
for <var> in <seq>: Iteration
<expr> in <seq> Membership (Boolean)

<int-expr?>: may be <int-expr> but also can be empty

Assignment 2
• Due tonight
• FRACTRAN
• Control Flow and Functions
• Do not use sequences, other collections, or comprehensions for this

assignment (except extra credit)

10D. Koop, CSCI 503/490, Spring 2026

https://faculty.cs.niu.edu/~dakoop/cs503-2026sp/assignment2.html

Women in STEM Spring Lecture Series
• Thursday, Feb. 19
• Lecture Series hosted in collaboration with

the college and libraries
• All are welcome

11D. Koop, CSCI 503/490, Spring 2026

What's the difference between the sequences?
• Strings can only store characters, lists & tuples can store arbitrary values
• Mutability: strings and tuples are immutable, lists are mutable
• my_list = [1, 2, 3, 4]
my_list[2] = 300
my_list # [1, 2, 300, 4]

• my_tuple = (1, 2, 3, 4); my_tuple[2] = 300 # TypeError

• my_str = "abcdef"; my_str[0] = "z" # TypeError

12D. Koop, CSCI 503/490, Spring 2026

List methods

13D. Koop, CSCI 503/490, Spring 2026

Method Meaning
<list>.append(d) Add element d to end of list.
<list>.extend(s) Add all elements in s to end of list.
<list>.insert(i, d) Insert d into list at index i.
<list>.pop(i) Deletes ith element of the list and returns its value.
<list>.sort() Sort the list.
<list>.reverse() Reverse the list.
<list>.remove(d) Deletes first occurrence of d in list.
<list>.index(d) Returns index of first occurrence of d.
<list>.count(d) Returns the number of occurrences of d in list.

List methods

13D. Koop, CSCI 503/490, Spring 2026

Method Meaning
<list>.append(d) Add element d to end of list.
<list>.extend(s) Add all elements in s to end of list.
<list>.insert(i, d) Insert d into list at index i.
<list>.pop(i) Deletes ith element of the list and returns its value.
<list>.sort() Sort the list.
<list>.reverse() Reverse the list.
<list>.remove(d) Deletes first occurrence of d in list.
<list>.index(d) Returns index of first occurrence of d.
<list>.count(d) Returns the number of occurrences of d in list.

Mutate

The del statement
• pop works well for removing an element by index plus it returns the element
• Can also remove an element at index i using

- del my_list[i]

• Note this is very different syntax so I prefer pop
• But del can delete slices

- del my_list[i:j]

• Also, can delete identifier names completely
- a = 32
del a
a # NameError

• This is different than a = None

14D. Koop, CSCI 503/490, Spring 2026

Updating collections
• There are three ways to deal with operations that update collections:
- Returns an updated copy of the list
- Updates the collection in place
- Updates the collection in place and returns it

• list.sort and list.reverse work in place and don't return the list
• Common error:

- sorted_list = my_list.sort() # sorted_list = None

• Instead:
- sorted_list = sorted(my_list)

15D. Koop, CSCI 503/490, Spring 2026

sorted and reversed
• For both sort and reverse, have sorted & reversed which are not in place
• Called with the sequence as the argument
• my_list = [7, 3, 2, 5, 1]
for d in sorted(my_list):
 print(d, end=" ") # 1 2 3 5 7

• my_list = [7, 3, 2, 5, 1]
for d in reversed(my_list):
 print(d, end=" ") # 1 5 2 3 7

• But this doesn't work:
- reversed_list = reversed(my_list)

• If you need a new list (same as with range):
- reversed_list = list(reversed(my_list))

16D. Koop, CSCI 503/490, Spring 2026

Reversed sort
• Both sort and sorted have a boolean parameter reverse that will sort the list

in reverse
• my_list = [7, 3, 2, 5, 1]
my_list.sort(reverse=True) # my_list now [7, 5, 3, 2, 1]

• for i in sorted(my_list, reverse=True):
 print(i, end = " ") # prints 7 5 3 2 1

• There is also a key parameter that should be a function that will be called on
each element before comparisons—the outputs will be used to sort

- Example: convert to lowercase

17D. Koop, CSCI 503/490, Spring 2026

Nested Sort
• By default, sorts by comparing inner elements in order
• sorted([[4,2],[1,5],[1,3],[3,5]])

- 1st element: 1 == 1 < 3 < 4
- 2nd element for equal: 3 < 5
- Result: [[1,3],[1,5],[3,5],[4,2]]

• Longer lists after shorter lists:
- sorted([[1,2],[1]]) # [[1],[1,2]]

18D. Koop, CSCI 503/490, Spring 2026

enumerate
• Often you do not need the index when iterating through a sequence
• If you need an index while looping through a sequence, use enumerate
• for i, d in enumerate(my_list):
 print("index:", i, "element:", d)

• Each time through the loop, it yields two items, the index i & the element d
• i, d is actually a tuple
• Automatically unpacked above, can manually do this, but don't!
• for t in enumerate(my_list):
 i = t[0]
 d = t[1]
 print("index:", i, "element:", d)

19D. Koop, CSCI 503/490, Spring 2026

enumerate
• Often you do not need the index when iterating through a sequence
• If you need an index while looping through a sequence, use enumerate
• for i, d in enumerate(my_list):
 print("index:", i, "element:", d)

• Each time through the loop, it yields two items, the index i & the element d
• i, d is actually a tuple
• Automatically unpacked above, can manually do this, but don't!
• for t in enumerate(my_list):
 i = t[0]
 d = t[1]
 print("index:", i, "element:", d)

19D. Koop, CSCI 503/490, Spring 2026

Tuples
• Tuples are immutable sequences
• We've actually seen tuples a couple of times already
- Simultaneous Assignment
- Returning Multiple Values from a Function

• Python allows us to omit parentheses when it's clear
- b, a = a, b # same as (b, a) = (a, b)

- t1 = a, b # don't normally do this

- c, d = f(2, 5, 8) # same as (c, d) = f(2, 5, 8)

- t2 = f(2, 5, 8) # don't normally do this

20D. Koop, CSCI 503/490, Spring 2026

Tuple Packing and Unpacking
• def f(a, b):
 if a > 3:
 return a, b-a # tuple packing
 return a+b, b # tuple packing

• c, d = f(4, 3) # tuple unpacking

• Make sure to unpack the correct number of variables!
• c, d = a+b, a-b, 2*a # ValueError: too many values to unpack

• Sometimes, check return value before unpacking:
- retval = f(42)
if retval is not None:
 c, d = retval

21D. Koop, CSCI 503/490, Spring 2026

Tuple Packing and Unpacking
• def f(a, b):
 if a > 3:
 return a, b-a # tuple packing
 return a+b, b # tuple packing

• c, d = f(4, 3) # tuple unpacking

• Make sure to unpack the correct number of variables!
• c, d = a+b, a-b, 2*a # ValueError: too many values to unpack

• Sometimes, check return value before unpacking:
- retval = f(42)
if retval is not None:
 c, d = retval

21D. Koop, CSCI 503/490, Spring 2026

t = (a, b-a)
return t

Tuple Packing and Unpacking
• def f(a, b):
 if a > 3:
 return a, b-a # tuple packing
 return a+b, b # tuple packing

• c, d = f(4, 3) # tuple unpacking

• Make sure to unpack the correct number of variables!
• c, d = a+b, a-b, 2*a # ValueError: too many values to unpack

• Sometimes, check return value before unpacking:
- retval = f(42)
if retval is not None:
 c, d = retval

21D. Koop, CSCI 503/490, Spring 2026

t = (a, b-a)
return t

t = f(4, 3)
(c, d) = t

Unpacking other sequences
• You can unpack other sequences, too

- a, b = 'ab'

- a, b = ['a', 'b']

• Why is list unpacking rare?

22D. Koop, CSCI 503/490, Spring 2026

Unpacking other sequences
• You can unpack other sequences, too

- a, b = 'ab'

- a, b = ['a', 'b']

• Why is list unpacking rare?
- Lists are mutable, assignment is generally static
- But can use a star to capture a variable number of values

• a, *b, c = ['a', 'b', …, 'y', 'z'] # b is ['b', …, 'y']

23D. Koop, CSCI 503/490, Spring 2026

Other sequence methods
• my_list = [7, 2, 1, 12]

• Math methods:
- max(my_list) # 12

- min(my_list) # 1

- sum(my_list) # 22

• zip: combine two sequences into a single sequence of tuples
- zip_list = list(zip(my_list, "abcd"))
zip_list # [(7, 'a'), (2, 'b'), (1, 'c'), (12, 'd')]

- Use this instead of using indices to count through both

24D. Koop, CSCI 503/490, Spring 2026

25

Functions

D. Koop, CSCI 503/490, Spring 2026

Functions
• Call a function f: f(3) or f(3,4) or … depending on number of parameters
• def <function-name>(<parameter-names>):
 """Optional docstring documenting the function"""
 <function-body>

• def stands for function definition
• docstring is convention used for documentation
• Remember the colon and indentation
• Parameter list can be empty: def f(): …

26D. Koop, CSCI 503/490, Spring 2026

Functions
• Use return to return a value
• def <function-name>(<parameter-names>):
 # do stuff
 return res

• Can return more than one value using commas
• def <function-name>(<parameter-names>):
 # do stuff
 return res1, res2

• Use simultaneous assignment when calling:
- a, b = do_something(1,2,5)

• If there is no return value, the function returns None (a special value)

27D. Koop, CSCI 503/490, Spring 2026

Return
• As many return statements as you want
• Always end the function and go back to the calling code
• Returns do not need to match one type/structure (generally not a good idea)
• def f(a,b):
 if a < 0:
 return -1
 while b > 10:
 b -= a
 if b < 0:
 return "BAD"
 return b

28D. Koop, CSCI 503/490, Spring 2026

Scope
• The scope of a variable refers to where in a program it can be referenced
• Python has three scopes:
- global: defined outside a function
- local: in a function, only valid in the function
- nonlocal: can be used with nested functions

• Python allows variables in different scopes to have the same name

29D. Koop, CSCI 503/490, Spring 2026

Global read
• def f(): # no arguments
 print("x in function:", x)

x = 1
f()
print("x in main:", x)

• Output:
- x in function: 1
x in main: 1

• Here, the x in f is read from the global scope

30D. Koop, CSCI 503/490, Spring 2026

Try to modify global?
• def f(): # no arguments
 x = 2
 print("x in function:", x)

x = 1
f()
print("x in main:", x)

• Output:
- x in function: 2
x in main: 1

• Here, the x in f is in the local scope

31D. Koop, CSCI 503/490, Spring 2026

Global keyword
• def f(): # no arguments
 global x
 x = 2
 print("x in function:", x)

x = 1
f()
print("x in main:", x)

• Output:
- x in function: 2
x in main: 2

• Here, the x in f is in the global scope because of the global declaration

32D. Koop, CSCI 503/490, Spring 2026

33

What is the scope of a parameter of a function?

D. Koop, CSCI 503/490, Spring 2026

