
Programming Principles in Python (CSCI 503/490)

Sequences

Dr. David Koop

(some slides adapted from Dr. Reva Freedman)

D. Koop, CSCI 503/490, Spring 2026

2

Quiz

D. Koop, CSCI 503/490, Spring 2026

Quiz
1. Which of the following is not a valid string?

(a) "My toaster whispered, \"dance now\""
(b) '''My toaster whispered, "dance now"'''
(c) '''My toaster whispered, \"dance now\""""
(d) 'My toaster whispered, "dance now"'

3D. Koop, CSCI 503/490, Spring 2026

Quiz
2. Which expression executes without any errors?

(a) a, b = 3, 4, 5
(b) a := 3
(c) b = (a = 3) * 4 + a ** 2
(d) b = (a := 3) ** 2

4D. Koop, CSCI 503/490, Spring 2026

Quiz
3. Which is not a valid python identifier?

(a) 2nd_int
(b) _int
(c) int
(d) firstInt

5D. Koop, CSCI 503/490, Spring 2026

Quiz
4. What does 3 - 3 // 2 * 4 evaluate to?

(a) -1
(b) -3.0
(c) 0.0
(d) 0

6D. Koop, CSCI 503/490, Spring 2026

Quiz
5. When does the else block run in a while-else loop?

(a) when there is a continue
(b) when the loop condition is False
(c) when the loop condition is True
(d) when there is a break

7D. Koop, CSCI 503/490, Spring 2026

if, else, elif, pass
• if a < 10:
 print("Small")
else:
 if a < 100:
 print("Medium")
 else:
 if a < 1000:
 print("Large")
 else:
 print("X-Large")

• if a < 10:
 print("Small")
elif a < 100:
 print("Medium")
elif a < 1000:
 print("Large")
else:
 print("X-Large")

8D. Koop, CSCI 503/490, Spring 2026

• Indentation is critical so else-if branches can become unwieldy (elif helps)
• Remember colons and indentation
• pass can be used for an empty block

while, break, continue
• while <boolean expression>:
 <loop-block>

• Condition is checked at the beginning and before each repeat
• break: immediately exit the current loop
• continue: stop loop execution and go back to the top of the loop, checking

the condition again
• while d > 0:
 a = get_next_input()
 if a > 100:
 break
 if a < 10:
 continue
 d -= a

9D. Koop, CSCI 503/490, Spring 2026

Edgar Dijkstra: Go To Statement Considered Harmful

1

Edgar Dijkstra: Go To Statement Considered Harmful

The Go To Statement Debate

10

[Dijkstra, 1968]
D. Koop, CSCI 503/490, Spring 2026

"…I became convinced that the go to statement should be abolished from all
'higher level' programming languages… The go to statement as it stands is

just too primitive; it is too much an invitation to make a mess of one's
program."

Loop Styles
• Loop-and-a-Half
d = get_data() # priming rd
while check(d):
 # do stuff
 d = get_data()

• Infinite-Loop-Break
while True:
 d = get_data()
 if check(d):
 break
 # do stuff

• Assignment Expression (Walrus)
while check(d := get_data()):
 # do stuff

11D. Koop, CSCI 503/490, Spring 2026

For Loop
• for loops in Python are really for-each loops
• Always an element that is the current element
- Can be used to iterate through iterables (containers, generators, strings)
- Can be used for counting

• for i in range(5):
 print(i) # 0 1 2 3 4

• range(5) generates the numbers 0,1,2,3,4

12D. Koop, CSCI 503/490, Spring 2026

Range
• Different method signatures

- range(n) → 0, 1, …, n-1
- range(start, end) → start, start + 1, …, end - 1

- range(start, end, step)
 → start, start + step, … < end

• Negative steps:
- range(0,4,-1) # <nothing>

- range(4,0,-1) # 4 3 2 1

• Floating-point arguments are not allowed

13D. Koop, CSCI 503/490, Spring 2026

Assignment 2
• FRACTRAN
• Control Flow and Functions
• Do not use sequences, other collections, or comprehensions for this

assignment (except extra credit)

14D. Koop, CSCI 503/490, Spring 2026

https://faculty.cs.niu.edu/~dakoop/cs503-2026sp/assignment2.html

Looping Errors
• # for loop - summing the numbers 1 to 10
n = 10
cur_sum = 0
for i in range(n):
 cur_sum += i

print("The sum of the numbers from 1 to", n, "is ", cur_sum)

15D. Koop, CSCI 503/490, Spring 2026

Looping Errors
• # for loop - summing the numbers 1 to 10
n = 10
cur_sum = 0
for i in range(n+1):
 cur_sum += i

print("The sum of the numbers from 1 to", n, "is ", cur_sum)

16D. Koop, CSCI 503/490, Spring 2026

Looping Errors
• # for loop - summing the numbers 1 to 10
n = 10
cur_sum = 0
for i in range(1, n+1):
 cur_sum += i

print("The sum of the numbers from 1 to", n, "is ", cur_sum)

17D. Koop, CSCI 503/490, Spring 2026

18

Functions

D. Koop, CSCI 503/490, Spring 2026

Functions
• Call a function f: f(3) or f(3,4) or … depending on number of parameters
• def <function-name>(<parameter-names>):
 """Optional docstring documenting the function"""
 <function-body>

• def stands for function definition
• docstring is convention used for documentation
• Remember the colon and indentation
• Parameter list can be empty: def f(): …

19D. Koop, CSCI 503/490, Spring 2026

Functions
• Use return to return a value
• def <function-name>(<parameter-names>):
 # do stuff
 return res

• Can return more than one value using commas
• def <function-name>(<parameter-names>):
 # do stuff
 return res1, res2

• Use simultaneous assignment when calling:
- a, b = do_something(1,2,5)

• If there is no return value, the function returns None (a special value)

20D. Koop, CSCI 503/490, Spring 2026

Default Values & Keyword Arguments
• Can add =<value> to parameters
• def rectangle_area(width=30, height=20):
 return width * height

• All of these work:
- rectangle_area() # 600

- rectangle_area(10) # 200

- rectangle_area(10,50) # 500
• If the user does not pass an argument for that parameter, the parameter is

set to the default value
• Can also pass parameters using <name>=<value> (keyword arguments):

- rectangle_area(height=50) # 1500

21D. Koop, CSCI 503/490, Spring 2026

Return
• As many return statements as you want
• Always end the function and go back to the calling code
• Returns do not need to match one type/structure (generally not a good idea)
• def f(a,b):
 if a < 0:
 return -1
 while b > 10:
 b -= a
 if b < 0:
 return "BAD"
 return b

22D. Koop, CSCI 503/490, Spring 2026

23

Functions

D. Koop, CSCI 503/490, Spring 2026

Functions
• Call a function f: f(3) or f(3,4) or … depending on number of parameters
• def <function-name>(<parameter-names>):
 """Optional docstring documenting the function"""
 <function-body>

• def stands for function definition
• docstring is convention used for documentation
• Remember the colon and indentation
• Parameter list can be empty: def f(): …

24D. Koop, CSCI 503/490, Spring 2026

Functions
• Use return to return a value
• def <function-name>(<parameter-names>):
 # do stuff
 return res

• Can return more than one value using commas
• def <function-name>(<parameter-names>):
 # do stuff
 return res1, res2

• Use simultaneous assignment when calling:
- a, b = do_something(1,2,5)

• If there is no return value, the function returns None (a special value)

25D. Koop, CSCI 503/490, Spring 2026

Default Values & Keyword Arguments
• Can add =<value> to parameters
• def rectangle_area(width=30, height=20):
 return width * height

• All of these work:
- rectangle_area() # 600

- rectangle_area(10) # 200

- rectangle_area(10,50) # 500
• If the user does not pass an argument for that parameter, the parameter is

set to the default value
• Can also pass parameters using <name>=<value> (keyword arguments):

- rectangle_area(height=50) # 1500

26D. Koop, CSCI 503/490, Spring 2026

Return
• As many return statements as you want
• Always end the function and go back to the calling code
• Returns do not need to match one type/structure (generally not a good idea)
• def f(a,b):
 if a < 0:
 return -1
 while b > 10:
 b -= a
 if b < 0:
 return "BAD"
 return b

27D. Koop, CSCI 503/490, Spring 2026

28

Sequences

D. Koop, CSCI 503/490, Spring 2026

Sequences
• Strings are sequences of characters: "abcde"
• Lists are also sequences: [1, 2, 3, 4, 5]
• + Tuples: (1, 2, 3, 4, 5)

29D. Koop, CSCI 503/490, Spring 2026

Lists
• Defining a list: my_list = [0, 1, 2, 3, 4]
• But lists can store different types:

- my_list = [0, "a", 1.34]
• Including other lists:

- my_list = [0, "a", 1.34, [1, 2, 3]]

30D. Koop, CSCI 503/490, Spring 2026

Lists Tuples
• Defining a tuple: my_tuple = (0, 1, 2, 3, 4)
• But tuples can store different types:

- my_tuple = (0, "a", 1.34)

• Including other tuples:
- my_tuple = (0, "a", 1.34, (1, 2, 3))

• How do you define a tuple with one element?

31D. Koop, CSCI 503/490, Spring 2026

Lists Tuples
• Defining a tuple: my_tuple = (0, 1, 2, 3, 4)
• But tuples can store different types:

- my_tuple = (0, "a", 1.34)

• Including other tuples:
- my_tuple = (0, "a", 1.34, (1, 2, 3))

• How do you define a tuple with one element?
- my_tuple = (1) # doesn't work

- my_tuple = (1,) # add trailing comma

32D. Koop, CSCI 503/490, Spring 2026

List Operations
• Not like vectors or matrices!
• Concatenate: [1, 2] + [3, 4] # [1,2,3,4]
• Repeat: [1,2] * 3 # [1,2,1,2,1,2]
• Length: my_list = [1,2]; len(my_list) # 2

33D. Koop, CSCI 503/490, Spring 2026

List Sequence Operations
• Concatenate: [1, 2] + [3, 4] # [1,2,3,4]
• Repeat: [1,2] * 3 # [1,2,1,2,1,2]
• Length: my_list = [1,2]; len(my_list) # 2

• Concatenate: (1, 2) + (3, 4) # (1,2,3,4)
• Repeat: (1,2) * 3 # (1,2,1,2,1,2)
• Length: my_tuple = (1,2); len(my_tuple) # 2

• Concatenate: "ab" + "cd" # "abcd"
• Repeat: "ab" * 3 # "ababab"
• Length: my_str = "ab"; len(my_str) # 2

34D. Koop, CSCI 503/490, Spring 2026

Sequence Indexing
• Square brackets are used to pull out an element of a sequence
• We always start counting at zero!
• my_str = "abcde"; my_str[0] # "a"

• my_list = [1,2,3,4,5]; my_list[2] # 3

• my_tuple = (1,2,3,4,5); my_tuple[5] # IndexError

35D. Koop, CSCI 503/490, Spring 2026

a b c d e

0 1 2 3 4

Negative Indexing
• Subtract from the end of the sequence to the beginning
• We always start counting at zero -1 (zero would be ambiguous!)
• my_str = "abcde"; my_str[-1] # "e"

• my_list = [1,2,3,4,5]; my_list[-3] # 3

• my_tuple = (1,2,3,4,5); my_tuple[-5] # 1

36D. Koop, CSCI 503/490, Spring 2026

a b c d e

0 1 2 3 4

-5 -4 -3 -2 -1

Slicing
• Want a subsequence of the given sequence
• Specify the start and the first index not included
• Returns the same type of sequence
• my_str = "abcde"; my_str[1:3] # "bc"

• my_list = [1,2,3,4,5]; my_list[3:4] # [4]

• my_tuple = (1,2,3,4,5); my_tuple[2:99] # (3,4,5)

37D. Koop, CSCI 503/490, Spring 2026

a b c d e

0 1 2 3 4

[1:3]

Negative Indices with Slices
• Negative indices can be used instead or with non-negative indices
• my_str = "abcde"; my_str[-4:-2] # "bc"

• my_list = [1,2,3,4,5]; my_list[3:-1] # [4]

• How do we include the last element?
• my_tuple = (1,2,3,4,5); my_tuple[-2:?]

38D. Koop, CSCI 503/490, Spring 2026

[-4:-2] a b c d e

0 1 2 3 4

-5 -4 -3 -2 -1

Negative Indices with Slices
• Negative indices can be used instead or with non-negative indices
• my_str = "abcde"; my_str[-4:-2] # "bc"

• my_list = [1,2,3,4,5]; my_list[3:-1] # [4]

• How do we include the last element?
• my_tuple = (1,2,3,4,5); my_tuple[-2:?]

38D. Koop, CSCI 503/490, Spring 2026

[-4:-2] a b c d e

0 1 2 3 4

-5 -4 -3 -2 -1

Implicit Indices
• Don't need to write indices for the beginning or end of a sequence
• Omitting the first number of a slice means start from the beginning
• Omitting the last number of a slice means go through the end
• my_tuple = (1,2,3,4,5); my_tuple[-2:len(my_tuple)]

• my_tuple = (1,2,3,4,5); my_tuple[-2:] # (4,5)

• Can create a copy of a sequence by omitting both
• my_list = [1,2,3,4,5]; my_list[:] # [1,2,3,4,5]

39D. Koop, CSCI 503/490, Spring 2026

Iteration
• for d in sequence:
 # do stuff

• Important: d is a data item, not an index!
• sequence = "abcdef"
for d in sequence:
 print(d, end=" ") # a b c d e f

• sequence = [1,2,3,4,5]
for d in sequence:
 print(d, end=" ") # 1 2 3 4 5

• sequence = (1,2,3,4,5)
for d in sequence:
 print(d, end=" ") # 1 2 3 4 5

40D. Koop, CSCI 503/490, Spring 2026

Membership
• <expr> in <seq>

• Returns True if the expression is in the sequence, False otherwise
• "a" in "abcde" # True

• 0 in [1,2,3,4,5] # False
• 3 in (3, 3, 3, 3) # True

41D. Koop, CSCI 503/490, Spring 2026

Sequence Operations

42D. Koop, CSCI 503/490, Spring 2026

Operator Meaning
<seq> + <seq> Concatenation
<seq> * <int-expr> Repetition
<seq>[<int-expr>] Indexing
len(<seq>) Length
<seq>[<int-expr?>:<int-expr?>] Slicing
for <var> in <seq>: Iteration
<expr> in <seq> Membership (Boolean)

Sequence Operations

42D. Koop, CSCI 503/490, Spring 2026

Operator Meaning
<seq> + <seq> Concatenation
<seq> * <int-expr> Repetition
<seq>[<int-expr>] Indexing
len(<seq>) Length
<seq>[<int-expr?>:<int-expr?>] Slicing
for <var> in <seq>: Iteration
<expr> in <seq> Membership (Boolean)

<int-expr?>: may be <int-expr> but also can be empty

