Programming Principles in Python (CSCI 503/490)

SEeqUENCES

Dr. David Koop

(some slides adapted from Dr. Reva Freedman)

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 2

Quiz

1. Which of the following is not a valid string”

a) "My toaster whispered, \"dance now\""
D) '' "My toaster whispered, "dance now"'''
C)

d)

'''"My toaster whispered, \"dance now\""""

(
(
(
(

'My toaster whispered, "dance now"'

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 3

Quiz

2. Which expression executes without any errors”?

(a)a,b=3, 4, 5

o) a :=

(C)b=(a=3) x 4 4+ g ** 2
d) b = (a := 3) ** 2

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 4

Quiz

3. Which is not a valid python identifier®?
a) 2nd int
) int

)
)

=

C) 1nt

d

firstInt

(
(
(
(

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 5

Quiz

4. Whatdoes 3 - 3 // 2 * 4 evaluate to?
) -
D) -
c) O
d) O

(
(
(
(

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 6

Quiz
5. When does the else block run in a while-else loop”?
a) when there is a continue

(

(o) when the loop condition is False
(c) when the loop condition is True
(d)

e

d) when there Is a break

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 7

f, else, elif, pass

e 1f a < 10: e 1f a < 10:
print ("Small") print ("Small")
else: elif a < 100:

if a < 100: print ("Medium")
print ("Medium") elif a < 1000:

else: print ("Large")
1f a < 1000: else:

print ("Large") print ("X-Large™)

else:

print ("X-Large")

¢ [ndentation is critical so else-if branches can become unwieldy (elif helps)
e Remember colons and indentation
®* pass can be used for an empty block

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 8

while, break, continue

e while <boolean expression>:
<loop-block>

e Condition is checked at the beginning and before each repeat
* break: Immediately exit the current loop

* continue: Stop loop execution and go back to the top of the loop, checking
the condition again
e while d > O:

a = get next 1nput ()
1if a > 100:
break
1f a < 10:
continue
d —= a

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 9

The Go To Statement Debate

GG To Statement Cﬂnsldered Harmful L ~ dynamie progress is only characterized when we also give to which

- call of the procedure we refer. With the inclusion of pmcedures
3 Key Words and PhI'H.SEE go to statement; jump mstructmn we can characterize the pmgreas of the process via a sequence of
_-__ branch instruction, conditional clause, alternﬂ.twe clause, repet- . . indices, the length of this sequence being equal to the
~ itive clause, program 1nt3111g1b111t,y, program sequencing i dynamic depth of procedure-éalling. el -
- Ck Categnrles 4.22,5.23, 5.4 SRR e Let us now consider repetition clauses (like, while B repeat A
-j EDITOR: | SR A0 . . or repeat A untll B) Lugmally speakmg, such cla-.uses are now -
or 4 number of vears 14Ve Dhee] F¥eta at] ' o7t

[. :
1 I"‘ L} - 1l &

I became Convmced that the go to statement shou\d oe abohshed from all

'hlgher level’ programming languages... The go to statement as it stands is
just too primitive; 1t iIs too much an invitation to make a mess of one's

program

* been urged to do so. | | o N namic index,” inexorably counting the ordinal number of the

¢ My first remark is that, a]thmlgh the programmer’s aﬂtzwtx | LDrrESpDndlng current repetition. As repetltmn clauses (]ust. as

- ends when he has constructed a correct program, the process procedure calls) may be applied nestedly, we find that now the

- taking place under control of his program is- the true subject - progress of the process can always be uniquely characterlzed by a

~ matter of his activity, for if is this process that has to accomplish =~ (mixed) sequence of textual ﬂ,ud/t}l‘ dynamic indices. -

- the desired effect; it is this process that in its dynamic behavior =~ The main point is that the values of these indices are outside

~ has to satisfy the desired specifications. Yet, once the program has ~ programmer’s control; they are generated (either by the write- up -

~ been made, the “making’”’ of the currespundmg process is dele- of his program or by the dynamic evolution of the process) whether

gated to the machine. : S ~ he wishes or not. They provide independent coordinates in which

3 Mv genand ramarle ja that ane intallantiel mamrane ane meého tn dacawha tha meneeans ~f bha mesnnen | o [DIJkStra 1968]

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 10

| oop Styles

¢ | oop-and-a-Half

d = get data() priming rd
while check(d) :
do stuftf
d = get data () e Assignment Expression (Walrus)
e [nfinite-Loop-Break while check(d := get datal()):
do stuff

while True:
d = get data ()
1f check(d) :
break
do stutftt

I%I Northern Illinois University 11

D. Koop, CSCI 503/490, Spring 2026

~or Loop

o for loops In Python are really for-each l0ops
e Always an element that Is the current element
- Can be used to iterate through iterables (containers, generators, strings)

- Can be used for counting

e fOor 1 1n range(d):
print (1) 0 1 2 3 4

e range (5) generates the numbers 0,1,2,3,4

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 12

Range

o Different method signatures
- range(n) > 0, 1, .., n-1
- range (start, end) —™ start, start + 1, .., end - 1

- range (start, end, step)
— start, start + step, .. < end

e Negative steps:
- range (0,4,-1) <nothing>
- range (4,0, -1) 4 3 2 1

e Hoating-point arguments are not allowed

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 13

Assignment 2

e FRACTRAN
e Control Flow and Functions

e Do not use sequences, other collections, or comprehensions for this
assignment (except extra credit)

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 14

https://faculty.cs.niu.edu/~dakoop/cs503-2026sp/assignment2.html

| ooping Errors

o for loop - summing the numbers 1 to 10
n = 10
cur sum = 0

for 1 1n range(n):
cCur sum += 1

—

print ("The sum of the numbers from 1 to", n, "1is ", cur sum)

. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 15

| ooping Errors

o for loop - summing the numbers 1 to 10
n = 10
cur sum = 0

for 1 1n range(nt+l):
cCur sum += 1

—

print ("The sum of the numbers from 1 to", n, "1is ", cur sum)

. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 16

| ooping Errors

o for loop - summing the numbers 1 to 10
n = 10
cur sum = 0

for 1 1n range(l, n+1l):
cCur sum += 1

—

print ("The sum of the numbers from 1 to", n, "1is ", cur sum)

. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 17

Functions

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 18

Functions

e Call a function £: £ (3) or £(3,4) or ... depending on number of parameters

e def <function—-name> (<parameter-names>) :
"""Optional docstring documenting the function"""
<function-body>

e Jdef sStands for function definition

e docstring is convention used for documentation
e Remember the colon and indentation
e Parameter list can be empty: def £ () :

Hh

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 19

Functions

e Use return to return a value

e def <function—-name> (<parameter-names>) :
do stuftf
return res

e Can return more than one value using commas

e def <functilon-name> (<parameter-names>) :
do stu
return resl, res?

o~

e Use simultaneous assignment when calling:
- a, b = do something(l,?2,5)

e |f there Is no return value, the function returns None (a special value)

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 20

Default Values & Keyword Arguments

e Can add =<value> to parameters

—

e def rectangle area(width=30, height=20):
return width * height

o All of these work:

- rectangle area () 000
- rectangle area(10) 200
- rectangle area (10, 50) 200

¢ |f the user does not pass an argument for that parameter, the parameter Is
set to the default value

e Can also pass parameters using <name>=<value> (keyword arguments):
- rectangle area (height=50) 1500

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 21

Return

e As many return statements as you want
e Always end the function and go back to the calling code

e Returns do not need to match one type/structure (generally not a good idea)
e def f(a,b):
1f a < 0:
return -1
while b > 10:

return "BAD"
return b

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 22

Functions

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 23

Functions

e Call a function £: £ (3) or £(3,4) or ... depending on number of parameters

e def <function—-name> (<parameter-names>) :
"""Optional docstring documenting the function"""
<function-body>

e Jdef sStands for function definition

e docstring is convention used for documentation
e Remember the colon and indentation
e Parameter list can be empty: def £ () :

Hh

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University =~ 24

Functions

e Use return to return a value

e def <function—-name> (<parameter-names>) :
do stuftf
return res

e Can return more than one value using commas

e def <functilon-name> (<parameter-names>) :
do stu
return resl, res?

o~

e Use simultaneous assignment when calling:
- a, b = do something(l,?2,5)

e |f there Is no return value, the function returns None (a special value)

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 25

Default Values & Keyword Arguments

e Can add =<value> to parameters

—

e def rectangle area(width=30, height=20):
return width * height

o All of these work:

- rectangle area () 000
- rectangle area(10) 200
- rectangle area (10, 50) 200

¢ |f the user does not pass an argument for that parameter, the parameter Is
set to the default value

e Can also pass parameters using <name>=<value> (keyword arguments):
- rectangle area (height=50) 1500

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 26

Return

e As many return statements as you want
e Always end the function and go back to the calling code

e Returns do not need to match one type/structure (generally not a good idea)
e def f(a,b):
1f a < 0:
return -1
while b > 10:

return "BAD"
return b

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 27

SEqUENCES

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University =~ 28

SEqUENCES

e Strings are sequences of characters: "abcde™
e | ists are also sequences: [1, 2, 3, 4, 5]
e + [uples: (1, 2, 3, 4, 5)

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 29

| IStS

e Definingalist: my 1ist = [0, 1, 2, 3, 4]

e But lists can store different types:
- my list = [0, "a", 1.34]

* |ncluding other lists:
- my list = [0, "a", 1.34, [1, 2, 3]]

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 30

Hsts Tuples

e Defining a tuple: my tuple = (0, 1, 2, 3, 4)

e But tuples can store different types:
- my tuple = (0, "a", 1.34)

* |ncluding other tuples:
- my tuple = (0, "a", 1.34, (1, 2, 3))

e How do you define a tuple with one element”/

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 31

Hsts Tuples

e Defining a tuple: my tuple = (0, 1, 2, 3, 4)

e But tuples can store different types:
- my tuple = (0, "a", 1.34)

* |ncluding other tuples:
- my tuple = (0, "a", 1.34, (1, 2, 3))

e How do you define a tuple with one element”
- my tuple = (1) doesn't work

- my tuple = (1,) add trailing comma

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University ~ 32

List Operations

® Not like vectors or matrices!

e Concatenate: [1, 2] + [3, 4] (1,2,3,4]
e Repeat: [1,2] * 3 (1,2,1,2,1,2]

e length:my list = [1,2]; len(my list) 2

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University ~ 33

Hst Sequence Operations

e Concatenate: [1, 21 + [3, 4] [(1,2,3,4]
e Repeat: [1,2] * 3 (1,2,1,2,1,2]

® Length: my list = [1,2]; len(my list) %

e Concatenate: (1, 2) + (3, 4) (1,2,3,4)
e Repeat: (1,2) * 3 (1,2,1,2,1,2)

e [ength: my tuple = (1,2); len(my tuple) 2

e Concatenate: "ab" + "cd" # "abcd"
e Repeat: "ab" * 3 "ababab"
e length: my str = "ab"; len(my str) 2

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 34

Seqguence Indexing

e Square brackets are used to pull out an element of a sequence
e \Ve always start counting at zero!

e my str = "abcde"; my str[0] "an
enmy list = [1,2,3,4,5]; my list[2Z. 3
e my tuple = (1,2,3,4,5); my tuple[5] IndexError

o 1 2 3 4
HEEEE

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University ~ 35

Negative Indexing

e Subtract from the end of the sequence to the beginning
e \\Ve always start counting at zere -1 (zero would be ambiguous!)

e my str = "abcde"; my str[-1] "e
emy list = [1,2,3,4,5]; my list[-3] 3
e my tuple = (1,2,3,4,5); my tuple[-5] 1

0 2 3 4
HEEEE

-5 -4 -3 -2 -1

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 36

Slicing

e \Vant a subsequence of the given sequence
e Specify the start and the first index not included

e Returns the same type of sequence

e my str = "abcde"; my str[l:3] "bc"

enmy list = [1,2,3,4,5]; my list[3:4] [4]

e my tuple = (1,2,3,4,5); my tuple[2:99] (3,4,5)

0 1 % 3 4
1o e felefa]e

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 37

Negative Indices with Slices

e Negative Indices can be used instead or with non-negative indices
e my str = "abcde"; my str[-4:-2. "bc"

emy list = [1,2,3,4,5]; my list[3:-1] (4]

e How do we include the last element”

e my tuple = (1,2,3,4,5); my tuple[-2:7]

0 1 % 3 4
ez (e pleld]e

-5 -4 -3 -2 -1

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University ~ 38

Negative Indices with Slices

e Negative Indices can be used instead or with non-negative indices
e my str = "abcde"; my str[-4:-2. "bc"

emy list = [1,2,3,4,5]; my list[3:-1] (4]

e How do we include the last element”

e my tuple = (1,2,3,4,5); my tuple[-2 :]

0 1 % 3 4
ez (e pleld]e

-5 -4 -3 -2 -1

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University ~ 38

Implicit Indices

 Don't need to write indices for the beginning or end of a sequence
o Omitting the first number of a slice means start from the beginning
e Omitting the last number of a slice means go through the end

e my tuple = (1,2,3,4,9); my—tuptet—2tenitmy—tupie]
(=2] (4,5)

e Can create a copy of a sequence by omitting both

emy list = [1,2,3,4,5]; my list[:] (1,2,3,4,5]

e my tuple = (1,2,3,4,5); my tuple

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 39

lteration

e for d 1n sequence:

do stutftf
e Important: d is a data item, not an index!
e sequence = "abcdet"
for d 1n sequence:
print (d, end=" ") a b c de £
e sequence = [1,2,3,4,95]
for d 1n sequence:
print (d, end=" ") 1 2 3 4 5
e sequence = (1,2,3,4,5)
for d 1n sequence:
print (d, end=" ") 1 2 3 4 5

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 40

Viembership

e <expr> 1n <seqg>
e Returns True If the expression is in the sequence, False otherwise

e "a" 1n "abcde" True
e O 1n [1,2,3,4,5] False
e 3 1n (3, 3, 3, 3) True

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 41

Seqguence Operations

Operator Meaning

<seg> + <seqg> Concatenation

<seg> * <int-expr> Repetition
<seg>[<int-expr>] Indexing

len (<seq>) Length
<seq>[<int-expr?>:<int-expr?>] Slicing

for <var> in <seg>: 'teration

<expr> in <seg> Membership (Boolean)

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University =~ 42

Seqguence Operations

Operator Meaning

<seg> + <seqg> Concatenation

<seg> * <int-expr> Repetition
<seg>[<int-expr>] Indexing

len (<seq>) Length

<seq> [Slicing

for <var> in <seg>: 'teration

<expr> in <seg> Membership (Boolean)

<int-expr?>: may be <int-expr> but also can be empty

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University =~ 42

