
Programming Principles in Python (CSCI 503/490)

Control Statements 

Dr. David Koop 

(some slides adapted from Dr. Reva Freedman)

D. Koop, CSCI 503/490, Spring 2026



Identifiers
• A sequence of letters, digits, or underscores, but… 
• Also includes unicode "letters", spacing marks, and decimals (e.g. Σ) 
• Must begin with a letter or underscore (_) 
• Why not a number? 
• Case sensitive (a is different from A) 
• Conventions: 
- Identifiers beginning with an underscore (_) are reserved for system use 
- Use underscores (a_long_variable), not camel-case (aLongVariable) 
- Keep identifier names less than 80 characters 

• Cannot be reserved words

2D. Koop, CSCI 503/490, Spring 2026



Types
• Don't worry about types, but think about types 
• Variables can "change types" 

- a = 0 
a = "abc" 
a = 3.14159 

• Actually, the name is being moved to a different value 
• You can find out the type of the value stored at a variable v using type(v) 
• Some literal types are determined by subtle differences 

- 1 vs 1. (integer vs. float) 
- 1.43 vs 1.43j (float vs. imaginary) 

• Can do explicit type conversion (int, str, float)
3D. Koop, CSCI 503/490, Spring 2026



Assignment
• Python variables are actually pointers to objects (names for values)

4D. Koop, CSCI 503/490, Spring 2026

x 42

x 42

43

y

x = 42 x = x + 1 
y = x



Simultaneous Assignment
• In most languages, this requires another variable 

- x_old = x 
x = y 
y = x_old 

• Simultaneous assignment leaves less room for error: 
- x,y = y,x 

• Also useful for unpacking a collection of values: 
- dateStr = "03/08/2014" 
monthStr, dayStr, yearStr = dateStr.split("/")

5D. Koop, CSCI 503/490, Spring 2026



Assignment Expressions
• AKA the "walrus" operator := 
• Names a value that can be used but also referenced in the rest of the 

expression 
• (my_pi := 3.14159) * r ** 2 + a ** 0.5/my_pi 

• Use cases: if/while statement check than use, comprehensions 
• Supported in Python 3.8+

6D. Koop, CSCI 503/490, Spring 2026



Assignment 2
• FRACTRAN 
• Control Flow and Functions 
• Do not use sequences, other collections, or comprehensions for this 

assignment

7D. Koop, CSCI 503/490, Spring 2026

https://faculty.cs.niu.edu/~dakoop/cs503-2026sp/assignment2.html


8

Quiz Wednesday

D. Koop, CSCI 503/490, Spring 2026



9

Control Statements

D. Koop, CSCI 503/490, Spring 2026



Boolean Expressions
• Type bool: True or False 
• Note capitalization! 
• Comparison Operators: <, <=, >, >=, ==, != 
- Double equals (==) checks for equal values, 
- Assignment (=) assigns values to variables 

• Boolean operators: not, and, or 
- Different from many other languages (!, &&, ||) 

• More: 
- is: exact same object (usually a_variable is None) 
- in: checks if a value is in a collection (34 in my_list)

10D. Koop, CSCI 503/490, Spring 2026



if and else
• Blocks (suites) only executed if the 

condition is satisfied 
• if <boolean expression>: 
    <then-block> 

• if <boolean expression>: 
    <then-block> 
else: 
    <else-block> 

• Remember colon (:) 
• Remember indentation 

• if a < 34: 
    b = 5 
else: 
    b = a - 34

11D. Koop, CSCI 503/490, Spring 2026



elif is a shortcut
• if a < 10: 
    print("Small") 
else: 
    if a < 100: 
        print("Medium") 
    else: 
        if a < 1000: 
            print("Large") 
        else: 
            print("X-Large") 

• if a < 10: 
    print("Small") 
elif a < 100: 
    print("Medium") 
elif a < 1000: 
    print("Large") 
else: 
    print("X-Large")

12D. Koop, CSCI 503/490, Spring 2026

• Indentation is critical so else-if branches can become unwieldy (elif helps) 



pass
• pass is a no-op 
• Python doesn't allow an empty block so pass helps with this 
• Used when commenting out code blocks 
• if a < 10: 
    print("Small") 
elif a < 100: 
    print("Medium") 
elif a < 1000: 
    # print("Large") 
    pass 
else: 
    print("X-Large")

13D. Koop, CSCI 503/490, Spring 2026

<- block would be empty (comments don't count)



while
• while repeats the execution of the block 
• while <boolean expression>: 
    <loop-block> 

• Condition is checked at the beginning and before each repeat 
• If condition is False, loop will never execute 
• Don't use a while loop to iterate (use for loop instead) 
• Example: 

- d = 100 
while d > 0: 
    a = get_next_input() 
    d -= a

14D. Koop, CSCI 503/490, Spring 2026



break and continue
• break: immediately exit the current loop 
• continue: stop loop execution and go back to the top of the loop, checking 

the condition again 
• while d > 0: 
    a = get_next_input() 
    if a > 100: 
        break 
    if a < 10: 
        continue 
    d -= a 

• These are similar to goto statements in that they can jump from one 
statement to another part of the code but scoped to the current loop

15D. Koop, CSCI 503/490, Spring 2026



while-else
• In python, while statements can have an else clause 
• Only runs if the loop ended because the condition was False 
• If it ends due to a break, the else clause is not executed 
• while d > 0: 
    a = get_next_input() 
    if a > 100: 
        break 
    d -= a 
else: 
    d = 0 

16D. Koop, CSCI 503/490, Spring 2026



Edgar Dijkstra: Go To Statement Considered Harmful 
 

1 

Edgar Dijkstra: Go To Statement Considered Harmful 
 

 

 

The Go To Statement Debate

17

[Dijkstra, 1968]
D. Koop, CSCI 503/490, Spring 2026

"…I became convinced that the go to statement should be abolished from all 
'higher level' programming languages… The go to statement as it stands is 

just too primitive; it is too much an invitation to make a mess of one's 
program."



The Go To Statement Debate

18

[Rubin, 1987]
D. Koop, CSCI 503/490, Spring 2026

Forum 

harm to the field of programming, 
which has lost an efficacious tool. 
It is like butchers banning knives 
because workers sometimes cut 
themselves. Programmers must 
devise eIaborate workarounds, 
use extra flags, nest statements 
excessively, or use gratuitous sub- 
routines. The result is that GOTO- 
less programs are harder and cost- 
lier to create, test, and modi.fy. 
The cost to business has already 
been hundreds of millions of dol- 
lars in excess development and 
maintenance costs, plus the hid- 
den cost of programs never devel- 
oped due to insufficient resources. 

I have yet to see a single study 
that supported the supposition 
that GOTOs are harmful (I pre- 
sume this is not because nobody 
has tried). Nonetheless, people 
seem to need to believe that 
avoiding GOTOs will automati- 
cally make programs cheap and 
reliable. They will accept any 
statement affirming that belief, 
and dismiss any statement oppos- 
ing it. 

It has gone so far that some peo- 
ple have devised program com- 
plexity metrics penalizing GOTOs 
so heavily that any program with 
a GOT0 is ipso facto rated more 
complex than even the clumsiest 
GOTO-less program. Then they 
turn around and say, “See, the 
program with GOTOs is more 
complex.” In short, the belief that 
GOTOs are harmful appears to 
have become a religious doctrine, 
unassailable by evidence. 

I do not know if I can do any- 
thing that will dislodge such 
deeply entrenched dogma. At least 
I can attempt to reopen the discus- 
sion by showing ,a clearcut in- 
stance where GOTOs significantly 
reduce program complexity. 

I posed the following problem to 
a group of expert computer pro- 
grammers: “Let X be an N x N ma- 
lrix of integers. Write a program 
that will print the number of the 
first all-zero row of X, if any.” 

Three of the group regularly 
used GOTOs in-their work. They 
produced seven-line programs 
nearly identical to this: 

for i :=I ton 
dobegin 

forj :=ltondo 
if x[i, j]<>O 

thengoto reject; 
writeln 

('The firstall-zero 
row is I, i 

break; 
reject: end; 

The other ten programmers nor- 
mally avoided GOTOs. Eight of 
them produced 13 or 14-line pro- 
grams using a flag to indicate 
when an all-zero row was found. 
(The other two programs were 
either incorrect or far more com- 
plex.) The following is typical of 
the programs produced: 

i :=I; 
repeat 

j :=I; 
allzero :=true; 
while (j<=n)andallzero 
dobegin 

if x[i, j]OO 
thenallzero := false; 

j :=j+l; 
end; 
i :=i+l; 

until (i>n) or allzero; 
ifi<=n 

thenwriteln 
('The firstall-zero 

rowis I, i-l); 

After reviewing the various 
GOTO-less versions, I was able to 
eliminate the flag, and reduce the 
program to nine lines: 

i:=l; 
repeat 

j := 1; 
while(j<=n) 
and (x[i, j] =0) do 

j := j+l; 
i :=i+l; 

until(i>n)or (j>n); 
ifj>n 

thenwriteln 
('The firstall-zero 

row is' , i-l); 

By any measure not intention- 
ally biased against GOTOs, the 
two GOTO-less programs are more 
complex than the program using 
GOTOs. Aside from fewer lines of 
code, the program with GOTOs 
has only 13 operators, compared to 
21 and 19 for the GOTO-less pro- 
grams, and only 41 total tokens, 
compared to 74 and 66 for the 
other programs. More impor- 
tantly, the programmers who used 
GOTOs took less time to arrive at 
their solutions. 

In recent years I have taken 
over a number of programs that 
were written without GOTOs. As 
I introduce GOTOs to untangle 
each deeply nested mess of code, 
I have found that the number 
of lines of code often drops by 
20-25 percent, with a small de- 
crease in the total number of vari- 
ables. I conclude that the matrix 
example here is not an odd case, 
but typical of the improvements 
that using GOTOs can accomplish. 

I am aware that some awful pro- 
grams have been written using 
GOTOs. This is often the fault of 
the language (because it lacks 
other constructs), or the text edi- 
tor (because it lacks a block 
move). With a proper language 
and editor, and adequate instruc- 
tion in the use of GOTO, this 
should not be a consideration. 

All of my experiences compel 
me to conclude that it is time to 
part from the dogma of GOTO-less 
programming. It has failed to 
prove its merit. 

Frank Rubin 
The Contest Center 
P.O. Box 1660 
Wappingers Falls, NY 22590 

REFERENCE 
1. Dijkstra, E.W. "Go to statement considered 

harmful." Commun. ACM 11, 3 (Mar. 1968), 
147-148. 

196 Communications of the ACM March 1987 Volume 30 Number 3 

Forum 

harm to the field of programming, 
which has lost an efficacious tool. 
It is like butchers banning knives 
because workers sometimes cut 
themselves. Programmers must 
devise eIaborate workarounds, 
use extra flags, nest statements 
excessively, or use gratuitous sub- 
routines. The result is that GOTO- 
less programs are harder and cost- 
lier to create, test, and modi.fy. 
The cost to business has already 
been hundreds of millions of dol- 
lars in excess development and 
maintenance costs, plus the hid- 
den cost of programs never devel- 
oped due to insufficient resources. 

I have yet to see a single study 
that supported the supposition 
that GOTOs are harmful (I pre- 
sume this is not because nobody 
has tried). Nonetheless, people 
seem to need to believe that 
avoiding GOTOs will automati- 
cally make programs cheap and 
reliable. They will accept any 
statement affirming that belief, 
and dismiss any statement oppos- 
ing it. 

It has gone so far that some peo- 
ple have devised program com- 
plexity metrics penalizing GOTOs 
so heavily that any program with 
a GOT0 is ipso facto rated more 
complex than even the clumsiest 
GOTO-less program. Then they 
turn around and say, “See, the 
program with GOTOs is more 
complex.” In short, the belief that 
GOTOs are harmful appears to 
have become a religious doctrine, 
unassailable by evidence. 

I do not know if I can do any- 
thing that will dislodge such 
deeply entrenched dogma. At least 
I can attempt to reopen the discus- 
sion by showing ,a clearcut in- 
stance where GOTOs significantly 
reduce program complexity. 

I posed the following problem to 
a group of expert computer pro- 
grammers: “Let X be an N x N ma- 
lrix of integers. Write a program 
that will print the number of the 
first all-zero row of X, if any.” 

Three of the group regularly 
used GOTOs in-their work. They 
produced seven-line programs 
nearly identical to this: 

for i :=I ton 
dobegin 

forj :=ltondo 
if x[i, j]<>O 

thengoto reject; 
writeln 

('The firstall-zero 
row is I, i 

break; 
reject: end; 

The other ten programmers nor- 
mally avoided GOTOs. Eight of 
them produced 13 or 14-line pro- 
grams using a flag to indicate 
when an all-zero row was found. 
(The other two programs were 
either incorrect or far more com- 
plex.) The following is typical of 
the programs produced: 

i :=I; 
repeat 

j :=I; 
allzero :=true; 
while (j<=n)andallzero 
dobegin 

if x[i, j]OO 
thenallzero := false; 

j :=j+l; 
end; 
i :=i+l; 

until (i>n) or allzero; 
ifi<=n 

thenwriteln 
('The firstall-zero 

rowis I, i-l); 

After reviewing the various 
GOTO-less versions, I was able to 
eliminate the flag, and reduce the 
program to nine lines: 

i:=l; 
repeat 

j := 1; 
while(j<=n) 
and (x[i, j] =0) do 

j := j+l; 
i :=i+l; 

until(i>n)or (j>n); 
ifj>n 

thenwriteln 
('The firstall-zero 

row is' , i-l); 

By any measure not intention- 
ally biased against GOTOs, the 
two GOTO-less programs are more 
complex than the program using 
GOTOs. Aside from fewer lines of 
code, the program with GOTOs 
has only 13 operators, compared to 
21 and 19 for the GOTO-less pro- 
grams, and only 41 total tokens, 
compared to 74 and 66 for the 
other programs. More impor- 
tantly, the programmers who used 
GOTOs took less time to arrive at 
their solutions. 

In recent years I have taken 
over a number of programs that 
were written without GOTOs. As 
I introduce GOTOs to untangle 
each deeply nested mess of code, 
I have found that the number 
of lines of code often drops by 
20-25 percent, with a small de- 
crease in the total number of vari- 
ables. I conclude that the matrix 
example here is not an odd case, 
but typical of the improvements 
that using GOTOs can accomplish. 

I am aware that some awful pro- 
grams have been written using 
GOTOs. This is often the fault of 
the language (because it lacks 
other constructs), or the text edi- 
tor (because it lacks a block 
move). With a proper language 
and editor, and adequate instruc- 
tion in the use of GOTO, this 
should not be a consideration. 

All of my experiences compel 
me to conclude that it is time to 
part from the dogma of GOTO-less 
programming. It has failed to 
prove its merit. 

Frank Rubin 
The Contest Center 
P.O. Box 1660 
Wappingers Falls, NY 22590 

REFERENCE 
1. Dijkstra, E.W. "Go to statement considered 

harmful." Commun. ACM 11, 3 (Mar. 1968), 
147-148. 

196 Communications of the ACM March 1987 Volume 30 Number 3 

Forum 

harm to the field of programming, 
which has lost an efficacious tool. 
It is like butchers banning knives 
because workers sometimes cut 
themselves. Programmers must 
devise eIaborate workarounds, 
use extra flags, nest statements 
excessively, or use gratuitous sub- 
routines. The result is that GOTO- 
less programs are harder and cost- 
lier to create, test, and modi.fy. 
The cost to business has already 
been hundreds of millions of dol- 
lars in excess development and 
maintenance costs, plus the hid- 
den cost of programs never devel- 
oped due to insufficient resources. 

I have yet to see a single study 
that supported the supposition 
that GOTOs are harmful (I pre- 
sume this is not because nobody 
has tried). Nonetheless, people 
seem to need to believe that 
avoiding GOTOs will automati- 
cally make programs cheap and 
reliable. They will accept any 
statement affirming that belief, 
and dismiss any statement oppos- 
ing it. 

It has gone so far that some peo- 
ple have devised program com- 
plexity metrics penalizing GOTOs 
so heavily that any program with 
a GOT0 is ipso facto rated more 
complex than even the clumsiest 
GOTO-less program. Then they 
turn around and say, “See, the 
program with GOTOs is more 
complex.” In short, the belief that 
GOTOs are harmful appears to 
have become a religious doctrine, 
unassailable by evidence. 

I do not know if I can do any- 
thing that will dislodge such 
deeply entrenched dogma. At least 
I can attempt to reopen the discus- 
sion by showing ,a clearcut in- 
stance where GOTOs significantly 
reduce program complexity. 

I posed the following problem to 
a group of expert computer pro- 
grammers: “Let X be an N x N ma- 
lrix of integers. Write a program 
that will print the number of the 
first all-zero row of X, if any.” 

Three of the group regularly 
used GOTOs in-their work. They 
produced seven-line programs 
nearly identical to this: 

for i :=I ton 
dobegin 

forj :=ltondo 
if x[i, j]<>O 

thengoto reject; 
writeln 

('The firstall-zero 
row is I, i 

break; 
reject: end; 

The other ten programmers nor- 
mally avoided GOTOs. Eight of 
them produced 13 or 14-line pro- 
grams using a flag to indicate 
when an all-zero row was found. 
(The other two programs were 
either incorrect or far more com- 
plex.) The following is typical of 
the programs produced: 

i :=I; 
repeat 

j :=I; 
allzero :=true; 
while (j<=n)andallzero 
dobegin 

if x[i, j]OO 
thenallzero := false; 

j :=j+l; 
end; 
i :=i+l; 

until (i>n) or allzero; 
ifi<=n 

thenwriteln 
('The firstall-zero 

rowis I, i-l); 

After reviewing the various 
GOTO-less versions, I was able to 
eliminate the flag, and reduce the 
program to nine lines: 

i:=l; 
repeat 

j := 1; 
while(j<=n) 
and (x[i, j] =0) do 

j := j+l; 
i :=i+l; 

until(i>n)or (j>n); 
ifj>n 

thenwriteln 
('The firstall-zero 

row is' , i-l); 

By any measure not intention- 
ally biased against GOTOs, the 
two GOTO-less programs are more 
complex than the program using 
GOTOs. Aside from fewer lines of 
code, the program with GOTOs 
has only 13 operators, compared to 
21 and 19 for the GOTO-less pro- 
grams, and only 41 total tokens, 
compared to 74 and 66 for the 
other programs. More impor- 
tantly, the programmers who used 
GOTOs took less time to arrive at 
their solutions. 

In recent years I have taken 
over a number of programs that 
were written without GOTOs. As 
I introduce GOTOs to untangle 
each deeply nested mess of code, 
I have found that the number 
of lines of code often drops by 
20-25 percent, with a small de- 
crease in the total number of vari- 
ables. I conclude that the matrix 
example here is not an odd case, 
but typical of the improvements 
that using GOTOs can accomplish. 

I am aware that some awful pro- 
grams have been written using 
GOTOs. This is often the fault of 
the language (because it lacks 
other constructs), or the text edi- 
tor (because it lacks a block 
move). With a proper language 
and editor, and adequate instruc- 
tion in the use of GOTO, this 
should not be a consideration. 

All of my experiences compel 
me to conclude that it is time to 
part from the dogma of GOTO-less 
programming. It has failed to 
prove its merit. 

Frank Rubin 
The Contest Center 
P.O. Box 1660 
Wappingers Falls, NY 22590 

REFERENCE 
1. Dijkstra, E.W. "Go to statement considered 

harmful." Commun. ACM 11, 3 (Mar. 1968), 
147-148. 

196 Communications of the ACM March 1987 Volume 30 Number 3 

"All of my experiences compel me to conclude that it is time to part from the 
dogma of GOTO-less programming. It has failed to prove its merit"



Programming Principles: break, continue, goto
• ACM the published a number of critiques of Rubin's letter, Dijkstra also wrote 

some notes on this: bugs, maybe the language is bad… 
• Most computer scientists agree that the problem was over-use, not that the 

statement is never useful 
• Break and continue are more structured gotos because they apply only to the 

current block 
• Breaks and continues at the top of a loop are better  
• Multi-level breaks are annoying (compare with return statements in functions)

19D. Koop, CSCI 503/490, Spring 2026



Continue at the beginning of a loop
• Like elif, can help with indentation 
• while d >= 0: 
    d = get_data() 
    if d is not None: 
        # do stuff 

• while d >= 0: 
    d = get_data() 
    if d is None: 
        continue 
    # do stuff

20D. Koop, CSCI 503/490, Spring 2026



Read and Check Data Loop
• Suppose I have two functions: 

- get_data(): returns the next data item d 
- check(d): checks whether the data item is valid 

• Want to build a loop that reads and prints data items until check(d) fails

21D. Koop, CSCI 503/490, Spring 2026



Loop Styles
• Loop-and-a-Half 
d = get_data() # priming rd 
while check(d): 
    # do stuff 
    d = get_data() 

• Infinite-Loop-Break 
while True: 
    d = get_data() 
    if not check(d): 
        break 
    # do stuff 

• Better way?

22D. Koop, CSCI 503/490, Spring 2026



Loop Styles
• Loop-and-a-Half 
d = get_data() # priming rd 
while check(d): 
    # do stuff 
    d = get_data() 

• Infinite-Loop-Break 
while True: 
    d = get_data() 
    if not check(d): 
        break 
    # do stuff 

• Assignment Expression (Walrus) 
while check(d := get_data()): 
    # do stuff

23D. Koop, CSCI 503/490, Spring 2026



do-while
• do-while loops always execute at least once 
• There is no do-while loop construct in Python 
• So… 
- can set the condition so that it is always True first time through the loop 
- …or create an if-break at the end of the loop (infinite-loop-break)

24D. Koop, CSCI 503/490, Spring 2026



Looping Errors
• # while loop - summing the numbers 1 to 10 
n = 10 
cur_sum = 0 
# sum of n numbers 
i = 0 
while  i <= n: 
    i = i + 1 
    cur_sum = cur_sum + i 
     
print("The sum of the numbers from 1 to", n, "is ", cur_sum)

25

[The Carpentries, CC-BY 4.0]
D. Koop, CSCI 503/490, Spring 2026

https://datacarpentry.org/python-socialsci/03-control-structures/index.html


Looping Errors
• # while loop - summing the numbers 1 to 10 
n = 10 
cur_sum = 0 
# sum of n numbers 
i = 0 
while  i <= n: 
    cur_sum = cur_sum + i  
    i = i + 1 
     
print("The sum of the numbers from 1 to", n, "is ", cur_sum)

26

[The Carpentries, CC-BY 4.0]
D. Koop, CSCI 503/490, Spring 2026

https://datacarpentry.org/python-socialsci/03-control-structures/index.html


Looping Errors
• # while loop - summing the numbers 1 to 10 
n = 10 
cur_sum = 0 
# sum of n numbers 
i = 0 
while  i < n: 
    cur_sum = cur_sum + i 
    i = i + 1 
 
print("The sum of the numbers from 1 to", n, "is ", cur_sum)

27

[The Carpentries, CC-BY 4.0]
D. Koop, CSCI 503/490, Spring 2026

https://datacarpentry.org/python-socialsci/03-control-structures/index.html


For Loop
• for loops in Python are really for-each loops 
• Always an element that is the current element 
- Can be used to iterate through iterables (containers, generators, strings) 
- Can be used for counting 

• for i in range(5): 
    print(i) # 0 1 2 3 4 

• range(5) generates the numbers 0,1,2,3,4

28D. Koop, CSCI 503/490, Spring 2026



Range
• Python has lists which allow enumeration of all possibilities: [0,1,2,3,4] 
• Can use these in for loops 
• for i in [0,1,2,3,4]: 
    print(i) # 0 1 2 3 4 

• but this is less efficient than range (which is a generator) 
• for i in range(5): 
    print(i) # 0 1 2 3 4 

• List must be stored, range doesn't require storage 
• Printing a range doesn't work as expected: 

- print(range(5)) # prints "range(0, 5)" 

- print(list(range(5)) # prints "[0, 1, 2, 3, 4]"

29D. Koop, CSCI 503/490, Spring 2026



Range
• Different method signatures 

- range(n) → 0, 1, …, n-1 
- range(start, end) → start, start + 1, …, end - 1 

- range(start, end, step)  
                 → start, start + step, … < end 

• Negative steps: 
- range(0,4,-1) # <nothing> 

- range(4,0,-1) # 4 3 2 1 

• Floating-point arguments are not allowed

30D. Koop, CSCI 503/490, Spring 2026


