Programming Principles in Python (CSCI 503/490)

Control Statements

Dr. David Koop

(some slides adapted from Dr. Reva Freedman)

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University

|dentifiers

e A sequence of letters, digits, or underscores, but...
e Also includes unicode “letters”, spacing marks, and decimals (e.g. =)

e Must begin with a letter or underscore ()

e \\Vhy not a number”?
e Case sensitive (a is different from 2)

e Conventions:
- |dentifiers beginning with an underscore () are reserved for system use

- Use underscores (a 1ong variable), not camel-case (aLongVariable)

- Keep Identifier names less than 80 characters
e Cannot be reserved words

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 2

lypes

e Don't worry about types, but think about types
e \/ariables can "change types"

-a = 0
a = "abc"
a = 3.14159

o Actually, the name is being moved to a different value
e You can find out the type of the value stored at a variable v using type (v)

e Some literal types are determined by subtle differences
- 1vs 1. (Integer vs. float)

- 1.43 VS 1.435 (float vs. imaginary)

e Can do explicit type conversion (int, str, float)

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 3

Assignment

e Python variables are actually pointers to objects (names for values)

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 4

Simultaneous Assignment

® |[n Most languages, this requires another variable
- X old = X
X =Yy
y = x old
e Simultaneous assignment leaves less room for error:
- X, Y = Y,X
e Also usetul for unpacking a collection of values:

- dateStr = "03/08/2014"
monthStr, dayStr, yearStr

dateStr.split ("/")

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 5

Assignment Expressions

o AKA the "walrus” operator : =

e Names a value that can be used but also referenced In the rest of the
expression

e (my pi := 3.14159) * r ** 2 + a ** 0.5/my pil
e Use cases: if/while statement check than use, comprehensions
e Supported in Python 3.8+

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 6

Assignment 2

e FRACTRAN
e Control Flow and Functions

e Do not use sequences, other collections, or comprehensions for this
assignment

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 7

https://faculty.cs.niu.edu/~dakoop/cs503-2026sp/assignment2.html

Quiz Wednesday

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 8

Control Statements

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 9

Boolean EXPressions

e [ype bool: True Of False

e Note capitalization!
e Comparison Operators: <, <=, >, >=, ==, |=
- Double equals (==) checks for equal values,
- Assignment (=) assigns values to variables
e Boolean operators: not, and, or
- Different from many other languages (!, &s&, 1)
e \More:
- is: exact same object (usually a variable is None)
- in: checks if a value is in a collection (34 in my list)

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 10

T and else

e Blocks (suites) only executed if the

condition Is satisfied e if a < 34:
e if <boolean expression>: b = 5
<then-block> else:
. b = a - 34

e 1f <boolean expression>:
<then-block>
else:
<else-block>

e Remember colon (:)
e Remember indentation

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 11

elif IS a shortcut

e 1f a < 10: e 1f a < 10:
print ("Small") print ("Small")
else: elif a < 100:

if a < 100: print ("Medium")
print ("Medium") elif a < 1000:

else: print ("Large")
1f a < 1000: else:

print ("Large") print ("X-Large™)

else:

print ("X-Large")

¢ |ndentation is critical so else-if branches can become unwieldy (elif helps)

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 12

NDASS

® DASS IS a N0-0P
e Python doesn't allow an empty block so pass helps with this
e Used when commenting out code blocks

—~

e 1f a < 10:
print ("Small™)
elif a < 100:
print ("Medium")
elif a < 1000:
print ("Large") <- block would be empty (comments don't count)
pass
else:
print ("X-Large")

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 13

while

e While repeats the execution of the block

e while <boolean expression>:
<loop-block>

e Condition is checked at the beginning and before each repeat
e |[f condition IS False, loop will never execute

e Don't use a while loop to iterate (use for loop Instead)

e Example:

- d = 100
while d > O:
a = get next input ()
d -= a

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 14

oreak and continue

e break: Immediately exit the current loop

e continue: Stop loop execution and go back to the top of the loop, checking
the condition again
e while d > O0O:

a = get next 1nput ()
1if a > 100:
break
1f a < 10:
continue
d —= a

® [hese are similar to goto statements in that they can jump from one
statement to another part of the code but scoped to the current loop

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 15

while-else

e |n python, while statements can have an else clause

e Only runs if the loop ended because the condition was False

¢ |[f [t ends due to a break, the else clause I1s not executed
e while d > O0:

a = get next 1nput ()
1f a > 100:
break
d —= a
else:
d = 0

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 16

The Go To Statement Debate

GG To Statement Cﬂnsldered Harmful L ~ dynamie progress is only characterized when we also give to which

- call of the procedure we refer. With the inclusion of pmcedures
3 Key Words and PhI'H.SEE go to statement; jump mstructmn we can characterize the pmgreas of the process via a sequence of
_-__ branch instruction, conditional clause, alternﬂ.twe clause, repet- . . indices, the length of this sequence being equal to the
~ itive clause, program 1nt3111g1b111t,y, program sequencing i dynamic depth of procedure-éalling. el -
- Ck Categnrles 4.22,5.23, 5.4 SRR e Let us now consider repetition clauses (like, while B repeat A
-j EDITOR: | SR A0 . . or repeat A untll B) Lugmally speakmg, such cla-.uses are now -
or 4 number of vears 14Ve Dhee] F¥eta at] ' o7t

[. :
1 I"‘ L} - 1l &

I became Convmced that the go to statement shou\d oe abohshed from all

'hlgher level’ programming languages... The go to statement as it stands is
just too primitive; 1t iIs too much an invitation to make a mess of one's

program

* been urged to do so. | | o N namic index,” inexorably counting the ordinal number of the

¢ My first remark is that, a]thmlgh the programmer’s aﬂtzwtx | LDrrESpDndlng current repetition. As repetltmn clauses (]ust. as

- ends when he has constructed a correct program, the process procedure calls) may be applied nestedly, we find that now the

- taking place under control of his program is- the true subject - progress of the process can always be uniquely characterlzed by a

~ matter of his activity, for if is this process that has to accomplish =~ (mixed) sequence of textual ﬂ,ud/t}l‘ dynamic indices. -

- the desired effect; it is this process that in its dynamic behavior =~ The main point is that the values of these indices are outside

~ has to satisfy the desired specifications. Yet, once the program has ~ programmer’s control; they are generated (either by the write- up -

~ been made, the “making’”’ of the currespundmg process is dele- of his program or by the dynamic evolution of the process) whether

gated to the machine. : S ~ he wishes or not. They provide independent coordinates in which

3 Mv genand ramarle ja that ane intallantiel mamrane ane meého tn dacawha tha meneeans ~f bha mesnnen | o [DIJkStra 1968]

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 17

The Go To Statement Debate

fori:=1ton
do begin
for j :=1tondo
ifx[i, j]<>0
then goto reject;
writeln
('The first all-zero

rowis ', 1);

break;
reject: end;

1:=1;
repeat
7 :=1;
allzero := true;
while (j<=n) and allzero
do begin
if x[1, j)]<>0
thenallzero := false;
J:=74+1;
end;
1 :=141;
until (i>n) or allzero;
i1f 1 <<=n
then writeln
('The first all-zero

yowls ', 1i—1);

1:=1;
repeat
J o= 1;
while (Jj<<=n)
and (x[i, j] =0) do
J:=3+1;
i:=1+41;
until (i1 >n)or (jJ>n);
if J>n
thenwriteln
('The first all-zero
rowis', i — 1);

"All of my experiences compel me to conclude that it is time to part from the
dogma of GOTO-less programming. It has failed to prove its merit"

[Rubin, 1987]

Northern Illinois University 18

D. Koop, CSCI 503/490, Spring 2026

Programming Principles: break, continue, goto

e ACM the published a number of critigues of Rubin's letter, Dijkstra also wrote
some notes on this: bugs, maybe the language Is bad...

e \Most computer scientists agree that the problem was over-use, not that the
statement is never useful

e Break and continue are more structured gotos because they apply only to the
current block

e Breaks and continues at the top of a loop are better
o Multi-level breaks are annoying (compare with return statements in functions)

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 19

Continue at the beginning of a loop

¢ | ke elif, can help with indentation

e while d >= O0: e while d >= O0:
d = get data() d = get data ()
1f d 1s not None: 1f d 1s None:
do stutff continue
do stuft

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 20

Read and Check Data Loop

e Suppose | have two functions:
- get data (): returns the next data item d

- check (d) : checks whether the data item Is valid
e \Want to build a loop that reads and prints data items until check (d) fails

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 21

| oop Styles

¢ | oop-and-a-Half

d = get data() priming rd
while check(d) :
do stuftf
d = get data () o Better way?

¢ |Infinite-Loop-Break

while True:
d = get data()
1f not check (d) :
break
do stutfttf

Northern Illinois University 22

D. Koop, CSCI 503/490, Spring 2026

| oop Styles

¢ | oop-and-a-Half

d = get data() priming rd
while check(d) :
do stuftf
d = get data () e Assignment Expression (Walrus)
e [nfinite-Loop-Break while check(d := get datal()):
do stuff

while True:
d = get data ()
1f not check (d) :
break
do stutftt

Northern Illinois University 23

D. Koop, CSCI 503/490, Spring 2026

do-while

e do-while loops always execute at least once

® [here is no do-while loop construct in Python

® SO...
- can set the condition so that it is always True first time through the loop
- ...0r create an if-break at the end of the loop (infinite-loop-break)

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University =~ 24

| ooping Errors

o while loop - summing the numbers 1 to 10
n = 10
cur sum = 0
sum of n numbers

1 =0
while 1 <= n:

1 =1 + 1

Cur sum = Ccur sum + 1

print ("The sum of the numbers from 1 to", n, "1is ", cur sum)

[The Carpentries, CC-BY 4.0]

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 25

https://datacarpentry.org/python-socialsci/03-control-structures/index.html

| ooping Errors

o while loop - summing the numbers 1 to 10
n = 10
cur sum = 0
sum of n numbers
1 =0

while 1 <= n:
cur sum = cur sum + 1
1 =1 4+ 1

print ("The sum of the numbers from 1 to", n, "1is ", cur sum)

[The Carpentries, CC-BY 4.0]

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 26

https://datacarpentry.org/python-socialsci/03-control-structures/index.html

| ooping Errors

o while loop - summing the numbers 1 to 10
n = 10
cur sum = 0
sum of n numbers
1 =0
while 1 < n:

cur sum
1 =1 + 1

cur sum + 1

print ("The sum of the numbers from 1 to", n, "1is ", cur sum)

[The Carpentries, CC-BY 4.0]

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 27

https://datacarpentry.org/python-socialsci/03-control-structures/index.html

~or Loop

o for loops In Python are really for-each l0ops
e Always an element that Is the current element
- Can be used to iterate through iterables (containers, generators, strings)

- Can be used for counting

e fOor 1 1n range(d):
print (1) 0 1 2 3 4

e range (5) generates the numbers 0,1,2,3,4

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University ~ 28

Range

e Python has lists which allow enumeration of all possibllities: [0,1,2,3,4]

e Can use these Iin for loops

.':Or l ln [01’12/314]:
print (i) 01 2 3 4

* but this is less efficient than range (which is a generator)

e fOr 1 1n range(d):
print (1) 0 1 2 3 4

e | ist must be stored, range doesn't require storage

e Printing a range doesn't work as expected:
- print (range (5)) prints "range (0, 5)"

- print (list (range (5)) prints "[0, 1, 2, 3, 41"

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 29

Range

o Different method signatures
- range(n) > 0, 1, .., n-1
- range (start, end) —™ start, start + 1, .., end - 1

- range (start, end, step)
— start, start + step, .. < end

e Negative steps:
- range (0,4,-1) <nothing>
- range (4,0, -1) 4 3 2 1

e Hoating-point arguments are not allowed

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 30

