Programming Principles in Python (CSCI 503/490)

Syntax & Types

Dr. David Koop

(some slides adapted from Dr. Reva Freedman)

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University

Administrivia
e Course Web Site
o [A: Dalla Khaizaran
e Syllabus
- Academic Integrity
- Accommodations
® Assignments
e Jests: 2 (Feb. 18, Apr. 1) and Final (May 6)

o Course Is offered to both undergraduates (CS 490) and graduates (CS 503)
- Grad students have extra topics, exam guestions, assignment tasks

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 2

http://faculty.cs.niu.edu/~dakoop/cs503-2026sp

Office Hours & Emall

o [A office hours will be held in person in PM 362
- Tu Th 9:00am-12:00pm
e Prof. Koop's office hours will be held in person in PM 461
- M: 1:45-3:00pm, W: 10:45am-12:00pm, or by appointment
- You do not need an appointment to stop by during scheduled office hours,
- It you wish to meet virtually, please email me so | can send meeting Info

- |f you need a different appointment, please email me with details about
what you wish to discuss and times that would work for you

* Many questions can be answered via email. Please consider writing an
email before scheduling a meeting.

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 3

Using Python & JupyterLalb on Course Server

e Nitps://tiger.cs.niu.edu/jupyter/
* | ogin with you Z-ID (lowercase z)
® You should have received an emall with your password
e Advanced:
- Can add your own conda environments in your user directory

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 4

https://tiger.cs.niu.edu/jupyter/

Using Python & JupyterLab Locally

e Use Python 3.14

e Conda Is a tried and tested solution
- Miniforge or Anaconda

e Anaconda includes Navigator
- GUI application for managing environment
- Can install packages & start JupyterlLab

N
Can a the shell to do this: @
‘- snciii)i;siensfaslle <;)kgo_nalie> ANACON DA
e Other tools:
- Pixi and uv

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 5

https://github.com/conda-forge/miniforge
https://www.anaconda.com/download
https://pixi.prefix.dev/latest/installation/
https://docs.astral.sh/uv/getting-started/

Zen of Python

o \Written In 1999 by 1. Peters in a message to Python mailing list

o Attempt to channel Guido van Rossum's design principles

e 20 aphorisms, 19 written, 1 left for Guido to complete (never done)
e Archived as PEP 20

e Added as an easter egg to python (import this)

 Much to be deciphered, in no way a legal document
e Jokes embedded
e Commentary by A.-R. Janhangeer

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 6

https://www.python.org/dev/peps/pep-0020/
https://www.codementor.io/@abdurrahmaanj/the-zen-of-python-as-related-by-masters-1adi3kuiwy

Explicit Code

e (Goes along with complexity

e Bad:
def make complex (*args) :
X, Y = args
return dict (**locals())
e (Good

B

def make complex(x, Vy):
return {'x': x, 'yv': v}

[The Hitchhiker's Guide to Python]

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 7

https://docs.python-guide.org/writing/style/#zen-of-python

Don't Repeat Yourself

e "Two or more, use a for" [Dikstra]

e Rule of Three: [Roberts]
- Don't copy-and-paste more than once
- Refactor into methods

e Repeated code Is harder to maintain

e Bad e Good
f1 = load file('fl.dat"') for i in range(1,4):
rl = get cost (fl) f = load file(f'f{i}.dat")
f2 = load file('f2.dat"') r = get cost (f)

r2 = get cost (f2)
£f3 = load file('f3.dat')
r3 = get cost (f£3)

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 8

Object-Oriented Programming

e Encapsulation (Cohesion): Put things together than go together
e Abstraction: Hide implementation details (API)
® |nheritance: Reuse existing work

e Polymorphism: Method reuse and strategies for calling and overloading

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 9

Multiple Types of Output

a =12
for i in range(3):

print("Some output")
plt.bar(I[1,2,3,4],[20,30,15,40])
plt.show()
a+ 3

Some output

StdOUt Some output

Some output

ZeroDivisionError Traceback (most recent call last)
<ipython-input-3-bc757c3fda29> in <module>
_—> 11/ 0

ZeroDivisionError: division by zero

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 10

Assignment 1

e Due Friday
e (Goal: Become acquainted with Python using notebooks
e \ake sure to follow instructions
- Name the submitted file al.ijpynb
- Put your name and z-id In the first cell
- Label each part of the assignment using markdown
- Make sure to produce output according to specifications

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 11

https://faculty.cs.niu.edu/~dakoop/cs503-2026sp/assignment1.html

Python Variables and lypes

e NO type declaration necessary
e \/ariables are names, not memory locations

a = 0
a = "abc"
a = 3.14159

e Don't worry about types, but think about types

e Strings are a type

® [ntegers are as big as you want them

e Foats can hold large numbers, too (double-precision)

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 12

Python Strings

e Strings can be delimited by single or double quotes
- "abc" and 'abc' are exactly the same thing
- Easier use of quotes In strings: "Joe's" Or 'He said "Stop!"'
¢ [riple quotes allow content to go across lines and preserves linebreaks

- """Thi1s 18 another
String" mww

e String concatenation: "abc" + "def"

e Repetition: "abc" * 3
e Special characters: \n \t like Java/C++

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 13

Python Math and String "Math”

e Standard Operators: +, -, *, /, %

e Division "does what you want" (new in v3)
-5/ 2 = 2.5

- 5 // 2 =2 use // for integer division

e Shortcuts: +=, -=, *=

e NO ++, —--

e Exponentiation (Power): **

e Order of operations and parentheses: (4 - 3 - 1 vS. 4 - (3 - 1))

P "abC" _|_ "de:f"

P "abc" % 3

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 14

Comments in Python

e 4 for single-line comments

- everything after # is ignored

- a = 3 this 1s 1gnored

- this 1s all 1gnored

* [riple-quoted strings also used for comments (technically, any string can be)
- A literal string without assignment, etc. is basically a no-op

- """Thls 1s a string, often used as a comment"""

- """This string
has multiple
lineS" mw

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 15

|dentifiers

e A sequence of letters, digits, or underscores, but...
e Also includes unicode "letters”, spacing marks, and decimals (e.g. %)

e Must begin with a letter or underscore ()

e \\Vhy not a number”?

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 16

|dentifiers

e A sequence of letters, digits, or underscores, but...
e Also includes unicode “letters”, spacing marks, and decimals (e.g. =)

e Must begin with a letter or underscore ()

e \Why not a number? Ambiguity, 85 is a complex number, 8e27 is a float
e Case sensitive (a is different from 2)

e Conventions:
- |dentifiers beginning with an underscore () are reserved for system use

- Use underscores (a 1long variable), not camel-case (aL.ongvVariable)

- Keep Identifier names less than 80 characters
e Cannot be reserved words

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 17

Reserved Words and Reassigning builtins

e Some words cannot serve as identifiers (called keywords in Python)

- 1mport keyword
keyword.kwlist

- ['False', 'None', 'True', 'and', 'as', 'assert', 'async',
'await', 'break', 'class', 'continue', 'def', 'del',
'elif', 'else', 'except', 'finally', 'for', 'from',
'global', 'if', 'import', 'in', 'is', 'lambda', 'nonlocal',
'not', 'or', 'pass', 'raise', 'return', 'try', 'while',
'with', 'vyield']

- False = True SyntaxkError

e Some other words (python's builtins) can, but this can cause problems

- 1nt = 34
int ("12") TypeError

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 18

Programming Principle: Use Meaningtul Identitiers

e Show intention:
- Bad: var34

- Good: time difference
e Easy pronunciation: Not egészségedre (perhaps ok if you're Hungarian)

e SImple but technical:

- Bad: in order list of jobs
- Good: job queue

e Be consistent:
- Bad: user list and groups

- Good: user list and group list

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 19

lypes

e Don't worry about types, but think about types
e \/ariables can "change types"

-a = 0
a = "abc"
a = 3.14159

o Actually, the name is being moved to a different value
e You can find out the type of the value stored at a variable v using type (v)

e Some literal types are determined by subtle differences
- 1vs 1. (integer vs. float)

- 1.43VvS 1.435 (float vs. imaginary)
- '234' VS Db'234" (string vs. byte string)

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 20

Type Conversion

e Python converts integers to floats when types are mixed
-1 + 3.4 evaluates to 4.4 (float)

e Functions can return different types than inputs

- round (3.9) evaluates to 4 (1int)

e Can do explicit type conversion
- 1nt (3.9) evaluates to 3 (1int)
- float (123) evaluates to 123. (float)
- 1nt("123") evaluates to 123 (1nt)
- Str(123) evaluates to "123" (string)

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 21

Numeric Precision

® |ntegers have infinite precision and are as big as you want them

- 93326062154439441520681099238656266700490715906382043581621468592
90389521759999322991560894146397615651828625369792082722375
3251185210916864000000000000000000000000

e Floats do not have infinite precision but still hold large numbers (double-precision)
- 9.33262154439441e+157

- Python keeps 17 significant digits
- Python by default only prints up to 12 (many times less)
e Python has support for infinite precision (Decimal)

e How might this work; how could you store a floating point number with
infinite precision using python"?

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 22

EXpression Rules

* |nvolve
- Literals (1, "abc"),
- Variables (a, my height), and
- Operators (+,-*,/,//, **)

e Spaces are irrelevant within an expression
- a + 34 ok

e Standard precedence rules
- Parentheses, exponentiation, mult/div, add/sub

- Left to right at each level
e AlSO boolean expressions

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 23

Assignment

® [he = operator
e Can assign a literal, another variable, or any expression

- a = 34
- b = a
- c = (a + b) ** 2

e Cannot use this operator in the middle of an expression, like in C++
e However, Python 3.8 added a new operator (the "walrus") that allows this

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University =~ 24

Assignment

e Other languages: set aside memory space for value and give that space a
name; space can be updated with a new value

int x = 42; % = L
int v = Xy
X

x
y

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 25

Assignment

e Python variables are actually pointers to objects (names for values)

X = x + 1

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 26

Augmented Assignment

e Shorthand for mutation of a variable's value stored back in the same variable

e 1 += 1 same thing as 1 = 1 + 1

® +=, —=, *:1 /:, //:1 xR =

e Python does not have ++ or —-

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 27

Simultaneous Assignment

e Feature that doesn't appear in many other languages

o Allows multiple expressions to be assigned to different variables with one
assignment

- a, b =34 ** 2, 400 / 24
e Commas separate the variables and expressions

e Jseful for swapping variables
- a, b = Db, a

e How does this usually work"?

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University ~ 28

Simultaneous Assignment

® |[n Most languages, this requires another variable
- X old = X
X =Yy
y = x old
e Simultaneous assignment leaves less room for error:
- X, Y = Y,X
e Also usetul for unpacking a collection of values:

- dateStr = "03/08/2014"
monthStr, dayStr, yearStr

dateStr.split ("/")

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 29

Assignment Expressions

o AKA the "walrus” operator : =

e Names a value that can be used but also referenced In the rest of the
expression

e (my pi := 3.14159) * r ** 2 + a ** 0.5/my pil
e Use cases: if/while statement check than use, comprehensions
e Supported in Python 3.8+

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 30

Assignment Expressions

e Contentious discussion on adding to the language
- "There should be one-- and preferably only one --obvious way to do it"
- Leads to different coding styles

e Adopted, and community moving on to best practices

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 31

