Programming Principles in Python (CSCI 503/490)

Principles & Notebooks

Dr. David Koop

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University

Why Python?

e High-level, readable
e Productivity
e | arge standard library
o | [braries, Libraries, Libraries
e Open-source, large community using and building for it
e \What about Speed”
- What speed are we measuring”
- Time to code vs. time to execute

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 2

Administrivia
e Course Web Site
o [A: Dalla Khaizaran
e Syllabus
- Academic Integrity
- Accommodations
® Assignments
e Jests: 2 (Feb. 18, Apr. 1) and Final (May 6)

o Course Is offered to both undergraduates (CS 490) and graduates (CS 503)
- Grad students have extra topics, exam guestions, assignment tasks

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 3

http://faculty.cs.niu.edu/~dakoop/cs503-2026sp

Office Hours & Emall

o [A office hours will be held in person in PM 362
- Tu Th 9:00am-12:00pm
e Prof. Koop's office hours will be held in person in PM 461
- M: 1:45-3:00pm, W: 10:45am-12:00pm, or by appointment
- You do not need an appointment to stop by during scheduled office hours,
- It you wish to meet virtually, please email me so | can send meeting Info

- |f you need a different appointment, please email me with details about
what you wish to discuss and times that would work for you

* Many questions can be answered via email. Please consider writing an
email before scheduling a meeting.

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 4

Course Material

o [extbook: & DEITEL DEVELOPER SERIES
A pgthon

- Recommended: Python for Programmers

- Good overview + data science examples
e \any other resources are available:
with introductory .

- https://wiki.python.org/moin/ with introduct
BeginnersGuide

» Data Mining Twitter”

» IBM* Watson™

- https://wiki.python.org/moin/ e ,

» Deep Learning with Keras -

» Big Data with Hadoop”®,

| n t rO d u Ct O ry B O O kS Spark™ NoSQL and the Cloud

» Internet of Things (loT)

» Python Standard Library

- http://www.pythontutor.com g oores

NLTK, TextBlob, Tweepy,

Matplotlib, Seaborn,

- https://www.python-course.eu e \
- https://software-carpentry.org/lessons/ L

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 5

http://www.apple.com
https://wiki.python.org/moin/BeginnersGuide
https://wiki.python.org/moin/BeginnersGuide
https://wiki.python.org/moin/IntroductoryBooks
https://wiki.python.org/moin/IntroductoryBooks
http://www.pythontutor.com
https://www.python-course.eu
https://software-carpentry.org/lessons/

Course Material

e Software:

p pgth()ﬂ - Jupyter Notebook: Web-based interface for
interactively writing & executing Python

;;:) code
gt - JupyterLab: An updated web-based
ANACONDA INnterface that includes the notebook anad
other cool features
@ - JupyterHub: Access everything through a
O .
/ \ server
JU pyter - Install using conda/mamba, pixi, uv
@ -

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 6

Syllabus Questions?

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 7

Assignment 1

¢ Released today, due next week
e (Goal: Become acquainted with Python using notebooks
e \ake sure to follow instructions
- Name the submitted file al.ijpynb
- Put your name and z-id In the first cell
- Label each part of the assignment using markdown
- Make sure to produce output according to specifications

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 8

https://faculty.cs.niu.edu/~dakoop/cs503-2026sp/assignment1.html

JupyterLab and Jupyter Notebooks

File Edit View Run Kernel Tabs Settings Help

(@}

¢ + + C ®| Lorenz.ipynb X A Terminal 1 X ™ Console 1 X | W Data.ipynb X M README.md X
u # > notebooks a -+ 3([_D D > O C Code v Python 3 O
Name - Last Modified In this Notebook we explore the Lorenz system of differential equations:
o
£ | [W Data.ipynb an hour ago .
= W) Fasta.ipynb a day ago .
& Py y ag y=px—y—xz
= ia.i .
W Julia.ipynb a day ago 7= —Pz+xy
@ M Lorenz.ipynb seconds ago
é ™ R.ipynb a day ago Let's call the function once to view the solutions. For this set of parameters, we see the trajectories swirling around two points,
§ [iris.csv a day ago called attractors.
{:} lightning.json 9 days ago
& | 3 minut from lorenz import solve_lorenz
P RSP MINHOS By t, x_t = solve_lorenz(N=10)
o
=
§ » Qutput View X M lorenz.py X
' 9 def solve_lorenz(N=10, max_time=4.0, sigma=10.0, beta=8./3, rho=28.0):
- SEga 10.00 10 "iplot a solution to the Lorenz differential equations."""
0 . .
@ 11 fig = plt.figure()
= beta 2.67 12 ax = fig.add_axes([©, 0, 1, 1], projection='3d")
chen 28.00 13 ax.axis('off')
' 14
15 # prepare the axes limits
16 ax.set_xLlim((-25, 25))
17 ax.set_ylim((-35, 35))
18 ax.set_zlim((5, 55))
19
20 def lorenz_deriv(x_y_z, t0O, sigma=sigma, beta=beta, rho=rho):
21 """Compute the time-derivative of a Lorenz system."""
22 X, Yy, Z = X_Yy_2Z
23 return [sigma * (y - x), X * (rho - z) -y, X * y - beta * z]
24
25 # Choose random starting points, uniformly distributed from -15 to 15
26 np.random.seed (1)
27 X0 = =15 + 30 * np.random.random((N, 3))
28

[JupyterLab Documentation]

D. Koop, CSCI 503/490, Spring 2026 @ Northern Illinois University 9

https://jupyterlab.readthedocs.io/en/stable/getting_started/overview.html

Jupyter Notebooks

e Display rich representations and text
® US@S Web teCh nO|Ogy . .':' Jupyter Lorenz Differential Equations s (ot

File Edit View Insert Cell Kernel Help Python3 O
B+ 2 @B 42+ v > B C Code ? Cell Toolbar: None
' 00
e - ase Exploring the Lorenz System

o In this Notebook we explore the Lorenz system of differential equations:
— Jupyter weicometoP .
x=o(y—x)

. BUi‘t_in editOr S —l y=px—y=-xz
B ¢+ x g 8B + v » 1 = —fz+xy

This is one of the classic systems in non-linear differential equations. It exhibits a range of
complex behaviors as the parameters (0, fJ, p) are varied, including what are known as chaotic

e GitHub displays notebooks ~ Jupyter e e e i

In [7): interact(Lorenz, N=fixed(10), angle=(0.,360.),
o=(0.0,50.0),B=(0.,5), P=(0.0,50.0));

Welcome to the
angle 308.2
This Notebook Server wa
max_time 12
WARNING o 10
Don‘t rely on this sen
p 26
Your server is hosted thar P 28

Run some Python «

To run the code below:

1. Click on the cell to s¢
2. Press SHIFT+ENTER

A full tutorial for using the

In [): %matplotlib inline

import pandas as pd
import numpy as np
import matplotlib

[Jupyter]
D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 10

http://jupyter.org

Using Python & JupyterLab Locally

e Use Python 3.14

e Conda Is a tried and tested solution
- Miniforge or Anaconda

e Anaconda includes Navigator
- GUI application for managing environment
- Can install packages & start JupyterlLab

N
Can a the shell to do this: @
‘- snciii)i;siensfaslle <;)kgo_nalie> ANACON DA
e Other tools:
- Pixi and uv

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 11

https://github.com/conda-forge/miniforge
https://www.anaconda.com/download
https://pixi.prefix.dev/latest/installation/
https://docs.astral.sh/uv/getting-started/

Using Python & JupyterLalb on Course Server

e Nitps://tiger.cs.niu.edu/jupyter/
e | ogin with you Z-ID (lowercase z)
® You should have received an emall with your password
e \Natch out for "1" vs. "' (lowercase "L")
o Advanced:
- Can add your own conda environments in your user directory

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 12

https://tiger.cs.niu.edu/jupyter/

Modes of Computation

e Python Is interpreted: you can run one line at a line without compiling
¢ |nterpreter in the Shell

- Execute line by line

- Hard to structure loops

- Usually execute whole files (called scripts) and edit those files
e Notebook

- Richer results (e.g. images, tables)

- Can more easily edit past code

- Re-execute any cell, whenever

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 13

JupyterLab Notebooks

e Starts with a directory view
e Create new notebooks using the Launcher (+ icon on the left)
- New notebooks have the name "Untitled"
- File =& Rename Notebook... (or right-click) to change the name
e Save a notebook using the command under the File menu
e Shutting down the notebook requires quitting the kernel
- Web browser Is Interface to display code and results
- Kernel runs the code: may see messages in a console/terminal window
- Closing the browser window does not stop Jupyter
- Use File = Hub Control Panel = Stop My Server to reset on tiger

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 14

JupyterLab Notebooks

e Open a notebook using the left panel like you would in a desktop view
e Past results are displayed—does not mean they are loaded in memory
e Use "Run All" or "Run All Above" to re-execute past work

- It you shut down the kernel, all of the data and variables you defined need
to be redefined (so you need to re-run all)

- Watch Out—Order Matters: If you went back and re-executed cells in a
different order than they are shown, doing "Run All" may not produce the
same results!

e Edit mode (green) versus Command mode (blue == Be Careful)

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 15

JupyterLab Notebooks

e Can write code or plain text (can be styled Markdown)
- Choose the type of cell using the dropdown menu
o Cells break up your code, but all data is global
- Defining a variable a In one cell means it is available in any other cell

- This Includes cells above the cell a was defined In!

e Remember Shift+Enter to execute
e Enter just adds a new line
e Use ?<function name> for help

e Use Tab for auto-complete or suggestions
e [ab also indents, and Shift+ Tab unindents

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 16

JupyterLab Notebooks

® You can interrupt the kernel or restart if things seem stuck
e You can download your notebooks it working remotely
e Common Keyboard Shortcuts

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 17

https://gist.github.com/discdiver/9e00618756d120a8c9fa344ac1c375ac

Other JupyterLab Features

e [erminal

- Similar to what you see on turing/
hopper but for your local machine "~ .7

* Fle Viewers
- CSV
- Plugins available
e Console
- Can be linked to notebooks

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 18

Python Interpreter from the Shell

e On tiger, use conda init to make sure you are using the latest version of
oython (the same version used by the notebook environment)
- bash

- conda 1nit

- conda activate py3.14
e \\Ve will discuss this more later, but want to show how this works

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 19

Programming Principles

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 20

Zen of Python

o \Written In 1999 by 1. Peters in a message to Python mailing list

o Attempt to channel Guido van Rossum's design principles

e 20 aphorisms, 19 written, 1 left for Guido to complete (never done)
e Archived as PEP 20

e Added as an easter egg to python (import this)

 Much to be deciphered, in no way a legal document
e Jokes embedded
e Commentary by A.-R. Janhangeer

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 21

https://www.python.org/dev/peps/pep-0020/
https://www.codementor.io/@abdurrahmaanj/the-zen-of-python-as-related-by-masters-1adi3kuiwy

Zen of Python

>>> 1mport this

Beautiful Is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat Is better than nested.

Sparse Is better than dense.

Readability counts.

Special cases aren't special enough to break the rules.
. Although practicality beats purity.

=~ W h -

O

O 0N O

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 22

Zen of Python

10. Errors should never pass silently.

11. Unless explicitly silenced.

12.In the face of ambiguity, refuse the temptation to guess.

13. There should be one-- and preterably only one --obvious way to do It.
14. Although that way may not be obvious at first unless you 're Dutch.
15. Now Is better than never.

106. Although never Is often better than right now.

17.1f the iImplementation Is hard to explain, it's a bad idea.

18. If the iImplementation is easy to explain, it may be a good idea.

19. Namespaces are one honking great idea—let's do more of those!

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 23

Explicit Code

e (Goes along with complexity

e Bad:
def make complex (*args) :
X, Y = args
return dict (**locals())
e (Good

B

def make complex(x, Vy):
return {'x': x, 'yv': v}

[The Hitchhiker's Guide to Python]

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University =~ 24

https://docs.python-guide.org/writing/style/#zen-of-python

Avold the Magical WWand

® You can change almost anything Python does
- Modity almost any core function
- Change how objects are created/instantiated
- Change how modules are imported

e (G00d because No problem is impossible

e But know when not to use extraordinary measures

[The Hitchhiker's Guide to Python]

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 25

https://docs.python-guide.org/writing/style/#zen-of-python

One Statement per Line
e Bad:

- print ('one'); print('two')

—

- 1f <complex comparison> and <other complex comparilison>:
do something

e (500d:
- print ('one')
print ('two')

- condl = <complex comparison>
cond?2 = <other complex comparison>

1f condl and cond?2Z:
do somethiling

[The Hitchhiker's Guide to Python]

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 26

https://docs.python-guide.org/writing/style/#zen-of-python

Don't Repeat Yourself

e "Two or more, use a for" [Dikstra]

e Rule of Three: [Roberts]
- Don't copy-and-paste more than once
- Refactor into methods

e Repeated code Is harder to maintain

e Bad e Good
f1 = load file('fl.dat"') for i in range(1,4):
rl = get cost (fl) f = load file(f'f{i}.dat")
f2 = load file('f2.dat"') r = get cost (f)

r2 = get cost (f2)
£f3 = load file('f3.dat')
r3 = get cost (f£3)

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 27

Defensive Programming

e Consider corner cases
e \ake code auditable
® Process exceptions

e Problematic:

- def f£(1):
return 100 / 1

® |mproved:
- def f (1
1f

)
l p——

return 0O
return 100/1

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University ~ 28

Object-Oriented Programming

° 7/

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 29

Object-Oriented Programming

e Encapsulation (Cohesion): Put things together than go together
e Abstraction: Hide implementation details (API)
® |nheritance: Reuse existing work

e Polymorphism: Method reuse and strategies for calling and overloading

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 30

Programming Requires Practice

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 31

Print function

e Standard print statement:
print ("Welcome, Jane")

e Can also print variables:

name "Jane"
print ("Welcome, ", name) adds a space 1n between

e Does not matter what the type of the value is:

name = 123
print ("Welcome, ", name) converts value to a string

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University ~ 32

Multiple Types of Output

e stdout: where print commands go

e stderr: where error messages go

e display: special output channel used to show rich outputs

e output: same as display but used to display the value of the last line of a cell

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University ~ 33

Multiple Types of Output

a =12
for i in range(3):

print("Some output")
plt.bar(I[1,2,3,4],[20,30,15,40])
plt.show()
a+ 3

Some output

StdOUt Some output

Some output

ZeroDivisionError Traceback (most recent call last)
<ipython-input-3-bc757c3fda29> in <module>
_—> 11/ 0

ZeroDivisionError: division by zero

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 34

Python Variables and lypes

e NO type declaration necessary
e \/ariables are names, not memory locations

a = 0
a = "abc"
a = 3.14159

e Don't worry about types, but think about types

e Strings are a type

® [ntegers are as big as you want them

e Foats can hold large numbers, too (double-precision)

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University ~ 35

Python Strings

e Strings can be delimited by single or double quotes
- "abc" and 'abc' are exactly the same thing

- Easier use of quotes In strings: "Joe's" Or 'He said "Stop!"'
¢ [riple quotes allow content to go across lines and preserves linebreaks

- """Thi1s 18 another
String" mww

e Special characters: \n \t like Java/C++

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 36

Python Math

e Standard Operators: +, -, *, /, %

e Division "does what you want" (new in v3)
-5/ 2 = 2.5

- 5 // 2 =2 use // for integer division

e Shortcuts: +=, -=, *=

e NO ++, —-

e Exponentiation (Power): **

e Order of operations and parentheses: (4 - 3 - 1 vS. 4 - (3 - 1))

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 37

String "Math”

e Concatenation

_ A abC" _|_ A de T 1A

B

e Repetition
- "abc" * 3
e | ength

- len("abc") 3

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University ~ 38

Comments in Python

e 4 for single-line comments

- everything after # is ignored

- a = 3 this 1s 1gnored

- this 1s all 1gnored

* [riple-quoted strings also used for comments (technically, any string can be)
- A literal string without assignment, etc. is basically a no-op

- """Thls 1s a string, often used as a comment"""

- """This string
has multiple
lineS" mw

D. Koop, CSCI 503/490, Spring 2026 Northern Illinois University 39

