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matplotlib
• Strengths: 
- Designed like Matlab 
- Many rendering backends 
- Can reproduce almost any plot 
- Proven, well-tested 

• Weaknesses: 
- API is imperative 
- Not originally designed for the web 
- Dated styles
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Anatomy of a Figure
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[B. Solomon & matplotlib]
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https://realpython.com/python-matplotlib-guide/
https://matplotlib.org/stable/gallery/showcase/anatomy.html


Figure and Axes Objects
• pyplot is stateful, functions affect the "current" figure and axes 

- plt.gcf(): gets current figure 
- plt.gca(): gets current axes 
- Creates one if it doesn't exist! 

• This is not aligned with object-based programming ideas 
• Most methods in pyplot are translated to methods on the current axes (gca) 
• We can instead call these directly, but first need to create them: 

- fig, ax = plt.subplots() # "constructor-like" method 
ax.scatter([1,3,4,6,10],[1,5,2,7,3])
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Multiple Figures
• subplots allows multiple axes in the same figure: 

- fig, ax = plt.subplots(2, 2, figsize=(10, 10)) # rows, then 
columns 

• ax is now a 2x2 numpy array 
• Can put any type of visualization on each pair of axes 
• ax[0,0].plot([1,3,4,6,10],[1,5,2,7,3]) 
ax[0,1].bar(['Apple','Banana','Orange'],[0.99,0.50,1.25]) 
ax[1,0].pcolormesh(x, y, Z) 
ax[1,1].pie([20,40,30,10], 
            labels=['Apple','Banana','Orange','Pear'])
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Grammar of Graphics & Altair
• "Grammar of Graphics", L. Wilkinson 
• "A Layered Grammar of Graphics" + ggplot, H. Wickham 
• Vega: "Declarative language for creating, saving, and sharing interactive 

visualization designs" 
• Vega-Lite: higher-level language than Vega, carefully crafted rules for defaults 
• Altair: Python interface to Vega-Lite 
- "spend more time understanding your data and its meaning" 
- Specify the what, minimize the amount of code directing the how 
- Python can write JSON specification just as well as any other language 
- Bindings make it more Python-friendly, integrate with pandas, add support 

for Jupyter, etc.
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Altair Example
• import altair as alt 
import pandas as pd 
data = pd.DataFrame({'x': [1,3,4,6,10],'y': [1,5,2,7,3]}) 
alt.Chart(data).mark_line().encode(x='x', y='y') 

• Easiest to use data from a pandas data frame 
- Another option is a csv or json file 
- Can support geo_interface, too 

• Chart is the basic unit 
• Mark: .mark_*() indicates the geometry created for each data item 
• Encode: .encode() allows visual properties to be set to data attributes
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Visual Marks
• Marks are the basic graphical elements in a visualization 
• Marks classified by dimensionality: 

• Also can have surfaces, volumes 
• Think of marks as a mathematical definition, or if familiar with tools like Adobe 

Illustrator or Inkscape, the path & point definitions 
• Altair: area, bar, circle, geoshape, image, line, point, rect, rule, square, text, tick 
- Also compound marks: boxplot, errorband, errorbar 
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Data Attributes and Altair Types
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Data Attributes and Altair Types

• Categorical data = Nominal (N) 
• Ordinal data = Ordinal (O) 
• Quantitative data = Quantitative (Q) 
• Temporal data = Temporal (T)
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Magnitude Channels: Ordered Attributes Identity Channels: Categorical Attributes

Spatial region

Color hue

Motion

Shape

Position on common scale

Position on unaligned scale

Length (1D size)

Tilt/angle

Area (2D size)

Depth (3D position)

Color luminance

Color saturation

Curvature

Volume (3D size)

Channels: Expressiveness Types and Effectiveness Ranks
Different Channels for Different Attribute Types
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Altair will use its rules to pick 
whether to use color hue or 
saturation based on the type



Assignment 8
• Due Friday, May 2 
• Last Assignment 
• Data and Visualization 
• Use polars or pandas 
• Must use matplotlib or altair where directed
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https://faculty.cs.niu.edu/~dakoop/cs503-2025sp/assignment8.html


Final Exam
• Monday, May 5, 12:00-1:50pm in PM 103 
• More comprehensive than Test 2 
• Expect questions from topics covered on Test 1 and 2 
• Expect questions from the last few weeks of class (data, visualization, 

machine learning) 
• Similar format
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Visualization
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https://research.google/blog/explore-the-history-of-pop-and-punk-jazz-and-folk-with-the-music-timeline/


Interaction
• Grammar of Graphics, why not Grammar of Interaction? 
• Vega-Lite/Altair is about interactive graphics 
• Types of Interactions: 
- Selection 
- Zoom 
- Brushing
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Selection
• Selection is often used to initiate other changes 
• User needs to select something to drive the next change 
• What can be a selection target? 
- Items, links, attributes, (views) 

• How? 
- mouse click, mouse hover, touch 
- keyboard modifiers, right/left mouse click, force 

• Selection modes: 
- Single, multiple 
- Contiguous?
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Highlighting
• Selection is the user action 
• Feedback is important! 
• How? Change selected item's visual encoding 
- Change color: want to achieve visual popout 
- Add outline mark: allows original color to be preserved 
- Change size (line width) 
- Add motion: marching ants
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Altair's Interactive Charts
• https://altair-viz.github.io/gallery/index.html#interactive-charts
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https://altair-viz.github.io/gallery/index.html#interactive-charts
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Machine Learning in Python
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Tasks Machine Learning can Help With
• Identifying the zip code from handwritten digits on an envelope  

     
• Detecting fraudulent activity in credit card transactions  
• Identifying topics in a set of blog posts  
• Grouping customers with similar preferences
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When to Use Machine Learning?
• ML is used when: 
- Human expertise does not exist (navigating on Mars) 
- Humans can’t explain their expertise (speech recognition) 
- Models must be customized (personalized medicine) 
- Models are based on huge amounts of data (genomics) 

• ML isn’t always useful: 
- Calculating payroll…
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[E. Alpaydin via E. Eaton]
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https://www.seas.upenn.edu/~cis519/fall2017/lectures/01_introduction.pdf


Questions when building a machine learning solution
• What question(s) am I trying to answer? Do I think the data collected can 

answer that question? 
• What is the best way to phrase my question(s) as a machine learning 

problem?  
• Have I collected enough data to represent the problem I want to solve?  
• What features of the data did I extract, and will these enable the right 

predictions?  
• How will I measure success in my application?
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Machine Learning Workflow Overview
1. Should I use ML on this problem? 

- Is there a pattern to detect? Can I solve it analytically? Do I have data? 
2. Gather and organize data.  
- Preprocessing, cleaning, visualizing. 

3. Establishing a baseline. 
4. Choosing a model, loss, regularization, … 
5. Optimization (could be simple, could be a Phd…). 
6. Hyperparameter search. 
7. Analyze performance & mistakes, and iterate back to step 4 (or 2).
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https://www.cs.toronto.edu/~rgrosse/courses/csc311_f20/slides/lec01.pdf


Machine Learning
• Traditional Programming 

• Machine Learning
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Machine Learning
• Every machine learning algorithm has three components: 
- Representation 
- Evaluation 
- Optimization
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Representation
• Decision trees 
• Sets of rules / Logic programs 
• Instances 
• Graphical models (Bayes/Markov nets) 
• Neural networks 
• Support vector machines 
• Model ensembles 
• Etc.
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Evaluation
• Accuracy 
• Precision and recall 
• Squared error 
• Likelihood 
• Posterior probability 
• Cost / Utility 
• Margin 
• Entropy 
• K-L divergence 
• Etc.
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Optimization
• Combinatorial optimization 
- E.g.: Greedy search 

• Convex optimization 
- E.g.: Gradient descent 

• Constrained optimization 
- E.g.: Linear programming
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Types of Learning
• Supervised (inductive) learning 
- Training data includes desired outputs 

• Unsupervised learning 
- Training data does not include desired outputs 

• Semi-supervised learning 
- Training data includes a few desired outputs 

• Reinforcement learning 
- Rewards from sequence of actions
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Areas of Machine Learning
• Supervised learning 
- Decision tree induction 
- Rule induction 
- Instance-based learning 
- Bayesian learning 
- Neural networks 
- Support vector machines 
- Model ensembles 
- Learning theory 

• Unsupervised learning 
- Clustering 
- Dimensionality reduction
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Supervised & Unsupervised Tasks
• Identifying the zip code from handwritten digits on an envelope (supervised) 

     
• Detecting fraudulent activity in credit card transactions (supervised) 
• Identifying topics in a set of blog posts (unsupervised) 
• Grouping customers with similar preferences (unsupervised)
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Supervised Learning
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https://jakevdp.github.io/PythonDataScienceHandbook/06.00-figure-code.html


Supervised Learning: Learned Algorithm (Fit)
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Supervised Learning: Prediction
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Supervised Learning: Prediction
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Unsupervised Learning: Input
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Unsupervised Learning: Output
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Scikit-Learn
• Started as a Google Summer of Code project! (D. Cournapeau, 2007) 
• Rewritten by scientists at INRIA (France) in 2010 
• Written in Python using numpy, some optimizations using C (cython) 
• The "gold standard" for machine learning in python
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https://scikit-learn.org/stable/about.html


scikit-learn Principles
• Consistency: all objects share consistent, documented interface 
• Inspection: parameters and parameter values determined by learning 

algorithms are stored and exposed as public attributes 
• Non-proliferation of classes: only learning algs are classes, not datasets or 

parameters; easier to combine with other libraries   
• Composition: create and reuse building blocks 
• Sensible defaults: user-defined parameters should have meaningful defaults
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scikit-learn entities
• Data: numpy matrices (also pandas series, data frames), process batches 
• Estimators: all supervised & unsupervised algs implement common interface 
- estimator initialization does not do learning, only attaches parameters 
- fit does the learning, learned parameters exposed with trailing underscore 

• Predictor: extends estimator with predict method 
- also provides score method to return value indicating prediction quality 

• Transformer: help modify or filter data before learning 
- Preprocessing, feature selection, feature extraction, and dimensionality 

reduction vis transform method 
- Can combine fit and transform via fit_transform
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Penguin Example
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scikit-learn Template
1. Choose model class 
2. Instantiate model 
3. Fit model to data 
4. Predict on new data 

from sklearn.naive_bayes import GaussianNB  
model = GaussianNB() 
model.fit(Xtrain, ytrain) 
y_model = model.predict(Xtest) 

5. (Check accuracy) 
from sklearn.metrics import accuracy_score 
accuracy_score(ytest, y_model)
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Deep Learning
• Deep learning is tied to neural networks, attempting to mimic how human 

neurons work together 
• Hierarchical with multiple layers 
• Usually takes advantage of GPUs 
• Frameworks: 
- pytorch 
- TensorFlow 
- keras 
- theano
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