
Programming Principles in Python (CSCI 503/490)

Data

Dr. David Koop

D. Koop, CSCI 627/490, Spring 2025

2

Quiz

D. Koop, CSCI 627/490, Spring 2025

Quiz
1. Evaluate pd.Series([1,2,3]) + pd.Series([3,2,1],[2,1,0]).

(a) pd.Series([2,4,6],[0,1,2])
(b) pd.Series([4,4,4],[0,1,2])
(c) pd.Series([1,2,3],[0,1,2])
(d) There is an error.

3D. Koop, CSCI 627/490, Spring 2025

Quiz
2. Given the array arr = np.array([[1,2,3],[4,5,6]]), what is

arr[:,1].shape?
(a) (2,)
(b) (1,3)
(c) (2,1)
(d) (1,2)

4D. Koop, CSCI 627/490, Spring 2025

Quiz
3. Which of the following is not a difference between numpy arrays and python

lists?
(a) Arrays are mutable; lists are not
(b) Arrays require that all elements have the same type; lists do not
(c) Array slices are views over the original array; list slices are not views
(d) Arrays are faster to access than lists

5D. Koop, CSCI 627/490, Spring 2025

Quiz
4. Which is not a valid case in a match statement?

(a) case ("abc" & "def")
(b) case ("abc" | "def")
(c) case {"abc": v}
(d) case [_, "ab", *fnames]

6D. Koop, CSCI 627/490, Spring 2025

Quiz
5. Which of the following is not a Python library used for manipulating data?

(a) numpy
(b) pandas
(c) polars
(d) grizzlies

7D. Koop, CSCI 627/490, Spring 2025

pandas
• Contains high-level data structures and manipulation tools designed to make

data analysis fast and easy in Python
• Originally built on top of NumPy
• Built with the following requirements:
- Data structures with labeled axes (aligning data)
- Support time series data
- Do arithmetic operations that include metadata (labels)
- Handle missing data
- Add merge and relational operations

8D. Koop, CSCI 627/490, Spring 2025

polars
• Contains high-level data structures and manipulation tools designed to make

data analysis "lightning" fast and easy in Python
- Built using Apache Arrow
- Written from scratch using Rust but with a Python API
- Parallelized (uses multiple cores)
- Intuitive API

9D. Koop, CSCI 627/490, Spring 2025

Series
• A one-dimensional data structure (with a type)

- s = pl.Series([1,2,3])

- t = pd.Series([1,2,3])
• May also have a name and dtype

- s = pl.Series('name',['a','b','c'],dtype=pl.Float)

- t = pd.Series([1,2,3], name='num',dtype='float')

• In pandas, a series has an index
- ti = pd.Series([1,2,3],['a','b','c']) # index ['a','b','c']

- ti = pd.Series({'a': 1, 'b': 2, 'c': 3}) # same index

• Indexing: s[0], t[0], ti['a'], ti.iloc[0], ti.loc['a']

10D. Koop, CSCI 627/490, Spring 2025

Series Operations
• Like numpy: elementwise / broadcasting

- Series([1,2,3]) + Series([1,2,3]) # Series([2,4,6])

- Series([1,2,3]) + 4 # Series([5,6,7])
• …but for pandas, with custom indexes, the operations align on the index:

- pd.Series([1,2,3],index=list('abc') +
pd.Series([1,2,3],index=list('cba')
 # pd.Series([4,4,4], index=['a','b','c'])

- also have .add, .subtract, … with fill_value argument

11

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 627/490, Spring 2025

DataFrame
• A collection of Series (uniquely named)
- Similar to a table in a database
- Similar to a sheet in a spreadsheet

• df = DataFrame({'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada'],
 'year': [2000, 2001, 2002, 2001],
 'pop': [1.5, 1.7, 3.6, 2.4]})

• In pandas:
- Has an index shared with each series
- Index is automatically assigned just as with a series but can be passed in as

well via index kwarg

12D. Koop, CSCI 627/490, Spring 2025

pandas DataFrame

13D. Koop, CSCI 627/490, Spring 2025

pandas DataFrame

13D. Koop, CSCI 627/490, Spring 2025

Column Names

pandas DataFrame

13D. Koop, CSCI 627/490, Spring 2025

Column Names

Index

pandas DataFrame

13D. Koop, CSCI 627/490, Spring 2025

Column Names

Index

Column: df['Island']

pandas DataFrame

13D. Koop, CSCI 627/490, Spring 2025

Column Names

Index

Column: df['Island']

Row: df.loc[2]

pandas DataFrame

13D. Koop, CSCI 627/490, Spring 2025

Column Names

Index

Column: df['Island']

Cell: df.loc[341,'Species']

Row: df.loc[2]

pandas DataFrame

13D. Koop, CSCI 627/490, Spring 2025

Column Names

Index

Column: df['Island']

Cell: df.loc[341,'Species']

Missing Data

Row: df.loc[2]

polars DataFrame

14D. Koop, CSCI 627/490, Spring 2025

polars DataFrame

14D. Koop, CSCI 627/490, Spring 2025

Column Names
& Types

polars DataFrame

14D. Koop, CSCI 627/490, Spring 2025

Column Names
& Types

Column: df['Island']

polars DataFrame

14D. Koop, CSCI 627/490, Spring 2025

Column Names
& Types

Column: df['Island']

Row: df[2]

polars DataFrame

14D. Koop, CSCI 627/490, Spring 2025

Column Names
& Types

Column: df['Island']

Cell: df['Species'][341]

Row: df[2]

polars DataFrame

14D. Koop, CSCI 627/490, Spring 2025

Column Names
& Types

Column: df['Island']

Cell: df['Species'][341]

Missing Data

Row: df[2]

Filtering
• polars: df.filter(pl.col('Culmen Length (mm)') > 40)
• pandas: dfa[dfa['Culmen Length (mm)'] > 40]

15D. Koop, CSCI 627/490, Spring 2025

Assignment 7
• Downloading and uncompressing files
• Finding files using OS libraries
• Use a match statement to process data
• Can use polars or pandas
• Store per-year dataframes, each in a csv file

16D. Koop, CSCI 627/490, Spring 2025

https://faculty.cs.niu.edu/~dakoop/cs503-2025sp/assignment7.html

Sorting
• polars: df.sort('pop')
• pandas: dfa.sort_values('pop')
• Can sort by multiple columns, too
• pandas also has a sort_index method to sort by the index

- dfa.sort_index()

17D. Koop, CSCI 627/490, Spring 2025

Statistics
• Many common statistical methods can be used (min, max, median, etc.)
• describe: shortcut for easy stats!

18D. Koop, CSCI 627/490, Spring 2025

 one two
a 1.40 NaN
b 8.50 -4.5
c NaN NaN
d 9.25 -5.8

Another type of method is neither a reduction nor an accumulation. describe is one
such example, producing multiple summary statistics in one shot:

In [204]: df.describe()
Out[204]:
 one two
count 3.000000 2.000000
mean 3.083333 -2.900000
std 3.493685 2.262742
min 0.750000 -4.500000
25% 1.075000 -3.700000
50% 1.400000 -2.900000
75% 4.250000 -2.100000
max 7.100000 -1.300000

On non-numeric data, describe produces alternate summary statistics:

In [205]: obj = Series(['a', 'a', 'b', 'c'] * 4)

In [206]: obj.describe()
Out[206]:
count 16
unique 3
top a
freq 8
dtype: object

See Table 5-10 for a full list of summary statistics and related methods.

Table 5-10. Descriptive and summary statistics

Method Description

count Number of non-NA values

describe Compute set of summary statistics for Series or each DataFrame column

min, max Compute minimum and maximum values

argmin, argmax Compute index locations (integers) at which minimum or maximum value obtained, respectively

idxmin, idxmax Compute index values at which minimum or maximum value obtained, respectively

quantile Compute sample quantile ranging from 0 to 1

sum Sum of values

mean Mean of values

median Arithmetic median (50% quantile) of values

mad Mean absolute deviation from mean value

var Sample variance of values

std Sample standard deviation of values

Summarizing and Computing Descriptive Statistics | 135

 one two
a 1.40 NaN
b 8.50 -4.5
c NaN NaN
d 9.25 -5.8

Another type of method is neither a reduction nor an accumulation. describe is one
such example, producing multiple summary statistics in one shot:

In [204]: df.describe()
Out[204]:
 one two
count 3.000000 2.000000
mean 3.083333 -2.900000
std 3.493685 2.262742
min 0.750000 -4.500000
25% 1.075000 -3.700000
50% 1.400000 -2.900000
75% 4.250000 -2.100000
max 7.100000 -1.300000

On non-numeric data, describe produces alternate summary statistics:

In [205]: obj = Series(['a', 'a', 'b', 'c'] * 4)

In [206]: obj.describe()
Out[206]:
count 16
unique 3
top a
freq 8
dtype: object

See Table 5-10 for a full list of summary statistics and related methods.

Table 5-10. Descriptive and summary statistics

Method Description

count Number of non-NA values

describe Compute set of summary statistics for Series or each DataFrame column

min, max Compute minimum and maximum values

argmin, argmax Compute index locations (integers) at which minimum or maximum value obtained, respectively

idxmin, idxmax Compute index values at which minimum or maximum value obtained, respectively

quantile Compute sample quantile ranging from 0 to 1

sum Sum of values

mean Mean of values

median Arithmetic median (50% quantile) of values

mad Mean absolute deviation from mean value

var Sample variance of values

std Sample standard deviation of values

Summarizing and Computing Descriptive Statistics | 135

Unique Values and Value Counts
• polars: unique() returns a Series/DataFrame with duplicates dropped
• pandas is more complicated
- Series unique() returns an array with only the unique values (no index)

• s = Series(['c','a','d','a','a','b','b','c','c'])
s.unique() # array(['c', 'a', 'd', 'b'])

- Data Frame drop_duplicates returns a DataFrame with duplicates
dropped

• Also nunique()/n_unique() to count number of unique entries
• value_counts returns a Series/DataFrame with index frequencies:

- s.value_counts() # Series({'c': 3,'a': 3,'b': 2,'d': 1})

19D. Koop, CSCI 627/490, Spring 2025

Reading and Writing CSV Files
• polars

- df = pl.read_csv(<fname>)

- df.write_csv(<fname>)

• pandas
- dfa = pd.read_csv(<fname>)

- dfa.to_csv(<fname>)

• Many options available!

20D. Koop, CSCI 627/490, Spring 2025

Reading & Writing Data in Pandas

21

[https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html]
D. Koop, CSCI 627/490, Spring 2025

Format
Type

Data Description Reader Writer
text CSV read_csv to_csv
text Fixed-Width Text File read_fwf
text JSON read_json to_json
text HTML read_html to_html
text Local clipboard read_clipboard to_clipboard

MS Excel read_excel to_excel
binary OpenDocument read_excel
binary HDF5 Format read_hdf to_hdf
binary Feather Format read_feather to_feather
binary Parquet Format read_parquet to_parquet
binary ORC Format read_orc
binary Msgpack read_msgpack to_msgpack
binary Stata read_stata to_stata
binary SAS read_sas
binary SPSS read_spss
binary Python Pickle Format read_pickle to_pickle
SQL SQL read_sql to_sql
SQL Google BigQuery read_gbq to_gbq

https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html
https://en.wikipedia.org/wiki/Comma-separated_values
https://www.json.org/
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/Microsoft_Excel
http://www.opendocumentformat.org/
https://support.hdfgroup.org/HDF5/whatishdf5.html
https://github.com/wesm/feather
https://parquet.apache.org/
https://https//orc.apache.org/
https://msgpack.org/index.html
https://en.wikipedia.org/wiki/Stata
https://en.wikipedia.org/wiki/SAS_(software)
https://en.wikipedia.org/wiki/SPSS
https://docs.python.org/3/library/pickle.html
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/BigQuery

pandas read_csv
• Convenient method to read csv files
• Lots of different options to help get data into the desired format
• Basic: dfa = pd.read_csv(fname)
• Parameters:

- path: where to read the data from
- sep (or delimiter): the delimiter (',', ' ', '\t', '\s+')
- header: if None, no header
- index_col: which column to use as the row index
- names: list of header names (e.g. if the file has no header)
- skiprows: number of list of lines to skip

22D. Koop, CSCI 627/490, Spring 2025

Writing CSV data with pandas
• Basic: dfa.to_csv(<fname>)
• Change delimiter with sep kwarg:

- dfa.to_csv('example.dsv', sep='|')

• Change missing value representation
- dfa.to_csv('example.dsv', na_rep='NULL')

• Don't write row or column labels:
- dfa.to_csv('example.csv', index=False, header=False)

• Series may also be written to csv

23D. Koop, CSCI 627/490, Spring 2025

Missing Data
• polars: shows null
• pandas: shows NaN (or NA or None depending on dtype)
• Checking if missing:
- polars: pl.col('pop').is_null(), .is_not_null()
- pandas: dfa['pop'].isnull(), .notnull()

• Drop missing data:
- polars: pl.col('pop').drop_nulls(), pandas: dfa['pop'].dropna()

• Filling in missing data:
- polars: pl.col('pop').fill_null(), (forward, backward, max,…)
- pandas: dfa['pop'].fillna(), now ffill(), bfill()

24D. Koop, CSCI 627/490, Spring 2025

Derived Data
• Create new columns from existing columns
• pandas

- dfa["CulmenRatio"] = dfa['CLength'] / dfa['CDepth'] # Mut!

- dfa = dfa.assign(CulmenRatio= dfa['CLength'] / dfa['CDepth'])
• polars

- df.with_columns(
 (df['CLength'] / df['CDepth']).alias('CulmenRatio'))

• Note that operations are computed in a vectorized manner
• Similarities to functional paradigm (map/filter):
- specify the operation once, on entire column/frame
- no loops

25D. Koop, CSCI 627/490, Spring 2025

pandas inplace
• Generally, when we modify a data frame, we reassign:

- rdf = dfa.reset_index()

- This is usually very efficient
- Allows for method chaining

• There are versions where you can do this "inplace" (try to avoid this)
- dfa.reset_index(inplace=True)

- This means no reassignment, but it isn't usually any faster nor better
- Sometimes still creates a copy
- Will likely be deprecated

26D. Koop, CSCI 627/490, Spring 2025

https://github.com/pandas-dev/pandas/issues/16529

Aggregation
• Descriptive statistics

- df['Culmen Length (mm)'].mean()

- .median()

- .describe()

- .count()

- .min(), .max()

• Also general methods
- .sum()

- .product()

27D. Koop, CSCI 627/490, Spring 2025

Aggregation of time series data, a special use case of groupby, is referred
to as resampling in this book and will receive separate treatment in
Chapter 10.

GroupBy Mechanics
Hadley Wickham, an author of many popular packages for the R programming lan-
guage, coined the term split-apply-combine for talking about group operations, and I
think that’s a good description of the process. In the first stage of the process, data
contained in a pandas object, whether a Series, DataFrame, or otherwise, is split into
groups based on one or more keys that you provide. The splitting is performed on a
particular axis of an object. For example, a DataFrame can be grouped on its rows
(axis=0) or its columns (axis=1). Once this is done, a function is applied to each group,
producing a new value. Finally, the results of all those function applications are com-
bined into a result object. The form of the resulting object will usually depend on what’s
being done to the data. See Figure 9-1 for a mockup of a simple group aggregation.

Figure 9-1. Illustration of a group aggregation

Each grouping key can take many forms, and the keys do not have to be all of the same
type:

• A list or array of values that is the same length as the axis being grouped

• A value indicating a column name in a DataFrame

250 | Chapter 9: Data Aggregation and Group Operations

Split-Apply-Combine

28

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 627/490, Spring 2025

Split-Apply-Combine
• Similar to Map (split+apply) Reduce (combine) paradigm
• The Pattern:
1. Split the data by some grouping variable
2. Apply some function to each group independently
3. Combine the data into some output dataset

• The apply step is usually one of:
- Aggregate
- Transform
- Filter

29

[T. Brandt]
D. Koop, CSCI 627/490, Spring 2025

Group By
• Polars: group_by, Pandas: groupby
• group_by method creates a GroupBy object
• group_by does not compute anything until there is an aggregate step
• Sizes of groups:

- df.group_by('Island').agg(pl.len()) # DataFrame

- dfa.groupby('Island').size() # Series

• Can iterate through the groups (names and dataframes):
- for name, gdf in df.group_by('Island'):
 display(name, gdf)

30D. Koop, CSCI 627/490, Spring 2025

Aggregation
• Single Column:

- df.group_by('Island').agg(pl.col('Length (mm)').mean())
- dfa.groupby('Island')['Length (mm)'].mean()

• pandas returns a Series, polars returns a DataFrame
• List of Values:

- df.group_by('Island').agg(pl.col('Length (mm)'))

- dfa.groupby('Island')['Length (mm)'].apply(list)

31D. Koop, CSCI 627/490, Spring 2025

Aggregation (Multiple Columns)
• Multiple columns in an aggregation

- df.group_by('Island').agg(pl.col('Length','Depth').mean())

- dfa.groupby('Island')[['Length','Depth']].mean()

• Multiple aggregations for a column
- df.group_by('Island').agg(pl.col('Length').min().alias('LMin'),
 pl.col('Length').max().alias('LMax'))

- dfa.groupby('Island').agg({'Length': ['min','max']})

- dfa.groupby('Island').agg(LMin=('Length','min')
 LMax=('Length','max'))

32D. Koop, CSCI 627/490, Spring 2025

Different Data Layouts

33

[H. Wickham, 2014]
D. Koop, CSCI 627/490, Spring 2025

Journal of Statistical Software 3

2.1. Data structure

Most statistical datasets are rectangular tables made up of rows and columns. The columns
are almost always labelled and the rows are sometimes labelled. Table 1 provides some data
about an imaginary experiment in a format commonly seen in the wild. The table has two
columns and three rows, and both rows and columns are labelled.

treatmenta treatmentb

John Smith — 2
Jane Doe 16 11
Mary Johnson 3 1

Table 1: Typical presentation dataset.

There are many ways to structure the same underlying data. Table 2 shows the same data
as Table 1, but the rows and columns have been transposed. The data is the same, but the
layout is di↵erent. Our vocabulary of rows and columns is simply not rich enough to describe
why the two tables represent the same data. In addition to appearance, we need a way to
describe the underlying semantics, or meaning, of the values displayed in table.

John Smith Jane Doe Mary Johnson

treatmenta — 16 3
treatmentb 2 11 1

Table 2: The same data as in Table 1 but structured di↵erently.

2.2. Data semantics

A dataset is a collection of values, usually either numbers (if quantitative) or strings (if
qualitative). Values are organised in two ways. Every value belongs to a variable and an
observation. A variable contains all values that measure the same underlying attribute (like
height, temperature, duration) across units. An observation contains all values measured on
the same unit (like a person, or a day, or a race) across attributes.

Table 3 reorganises Table 1 to make the values, variables and obserations more clear. The
dataset contains 18 values representing three variables and six observations. The variables
are:

1. person, with three possible values (John, Mary, and Jane).

2. treatment, with two possible values (a and b).

3. result, with five or six values depending on how you think of the missing value (-, 16,
3, 2, 11, 1).

The experimental design tells us more about the structure of the observations. In this exper-
iment, every combination of of person and treatment was measured, a completely crossed
design. The experimental design also determines whether or not missing values can be safely

Journal of Statistical Software 3

2.1. Data structure

Most statistical datasets are rectangular tables made up of rows and columns. The columns
are almost always labelled and the rows are sometimes labelled. Table 1 provides some data
about an imaginary experiment in a format commonly seen in the wild. The table has two
columns and three rows, and both rows and columns are labelled.

treatmenta treatmentb

John Smith — 2
Jane Doe 16 11
Mary Johnson 3 1

Table 1: Typical presentation dataset.

There are many ways to structure the same underlying data. Table 2 shows the same data
as Table 1, but the rows and columns have been transposed. The data is the same, but the
layout is di↵erent. Our vocabulary of rows and columns is simply not rich enough to describe
why the two tables represent the same data. In addition to appearance, we need a way to
describe the underlying semantics, or meaning, of the values displayed in table.

John Smith Jane Doe Mary Johnson

treatmenta — 16 3
treatmentb 2 11 1

Table 2: The same data as in Table 1 but structured di↵erently.

2.2. Data semantics

A dataset is a collection of values, usually either numbers (if quantitative) or strings (if
qualitative). Values are organised in two ways. Every value belongs to a variable and an
observation. A variable contains all values that measure the same underlying attribute (like
height, temperature, duration) across units. An observation contains all values measured on
the same unit (like a person, or a day, or a race) across attributes.

Table 3 reorganises Table 1 to make the values, variables and obserations more clear. The
dataset contains 18 values representing three variables and six observations. The variables
are:

1. person, with three possible values (John, Mary, and Jane).

2. treatment, with two possible values (a and b).

3. result, with five or six values depending on how you think of the missing value (-, 16,
3, 2, 11, 1).

The experimental design tells us more about the structure of the observations. In this exper-
iment, every combination of of person and treatment was measured, a completely crossed
design. The experimental design also determines whether or not missing values can be safely

4 Tidy Data

dropped. In this experiment, the missing value represents an observation that should have
been made, but wasn’t, so it’s important to keep it. Structural missing values, which represent
measurements that can’t be made (e.g., the count of pregnant males) can be safely removed.

name trt result

John Smith a —
Jane Doe a 16
Mary Johnson a 3
John Smith b 2
Jane Doe b 11
Mary Johnson b 1

Table 3: The same data as in Table 1 but with variables in columns and observations in rows.

For a given dataset, it’s usually easy to figure out what are observations and what are variables,
but it is surprisingly di�cult to precisely define variables and observations in general. For
example, if the columns in the Table 1 were height and weight we would have been happy
to call them variables. If the columns were height and width, it would be less clear cut, as
we might think of height and width as values of a dimension variable. If the columns were
home phone and work phone, we could treat these as two variables, but in a fraud detection
environment we might want variables phone number and number type because the use of one
phone number for multiple people might suggest fraud. A general rule of thumb is that it is
easier to describe functional relationships between variables (e.g., z is a linear combination
of x and y, density is the ratio of weight to volume) than between rows, and it is easier
to make comparisons between groups of observations (e.g., average of group a vs. average of
group b) than between groups of columns.

In a given analysis, there may be multiple levels of observation. For example, in a trial of new
allergy medication we might have three observational types: demographic data collected from
each person (age, sex, race), medical data collected from each person on each day (number
of sneezes, redness of eyes), and meterological data collected on each day (temperature,
pollen count).

2.3. Tidy data

Tidy data is a standard way of mapping the meaning of a dataset to its structure. A dataset is
messy or tidy depending on how rows, columns and tables are matched up with observations,
variables and types. In tidy data:

1. Each variable forms a column.

2. Each observation forms a row.

3. Each type of observational unit forms a table.

This is Codd’s 3rd normal form (Codd 1990), but with the constraints framed in statistical
language, and the focus put on a single dataset rather than the many connected datasets
common in relational databases. Messy data is any other other arrangement of the data.

Initial Data

Transpose

Tidy Data

Journal of Statistical Software 11

id year month element d1 d2 d3 d4 d5 d6 d7 d8

MX17004 2010 1 tmax — — — — — — — —
MX17004 2010 1 tmin — — — — — — — —
MX17004 2010 2 tmax — 27.3 24.1 — — — — —
MX17004 2010 2 tmin — 14.4 14.4 — — — — —
MX17004 2010 3 tmax — — — — 32.1 — — —
MX17004 2010 3 tmin — — — — 14.2 — — —
MX17004 2010 4 tmax — — — — — — — —
MX17004 2010 4 tmin — — — — — — — —
MX17004 2010 5 tmax — — — — — — — —
MX17004 2010 5 tmin — — — — — — — —

Table 11: Original weather dataset. There is a column for each possible day in the month. Columns
d9 to d31 have been omitted to conserve space.

id date element value

MX17004 2010-01-30 tmax 27.8
MX17004 2010-01-30 tmin 14.5
MX17004 2010-02-02 tmax 27.3
MX17004 2010-02-02 tmin 14.4
MX17004 2010-02-03 tmax 24.1
MX17004 2010-02-03 tmin 14.4
MX17004 2010-02-11 tmax 29.7
MX17004 2010-02-11 tmin 13.4
MX17004 2010-02-23 tmax 29.9
MX17004 2010-02-23 tmin 10.7

(a) Molten data

id date tmax tmin

MX17004 2010-01-30 27.8 14.5
MX17004 2010-02-02 27.3 14.4
MX17004 2010-02-03 24.1 14.4
MX17004 2010-02-11 29.7 13.4
MX17004 2010-02-23 29.9 10.7
MX17004 2010-03-05 32.1 14.2
MX17004 2010-03-10 34.5 16.8
MX17004 2010-03-16 31.1 17.6
MX17004 2010-04-27 36.3 16.7
MX17004 2010-05-27 33.2 18.2

(b) Tidy data

Table 12: (a) Molten weather dataset. This is almost tidy, but instead of values, the element column
contains names of variables. Missing values are dropped to conserve space. (b) Tidy weather dataset.
Each row represents the meteorological measurements for a single day. There are two measured
variables, minimum (tmin) and maximum (tmax) temperature; all other variables are fixed.

Problem: Variables stored in both rows & columns

34

[H. Wickham, 2014]
D. Koop, CSCI 627/490, Spring 2025

Mexico Weather, Global Historical Climatology Network

Journal of Statistical Software 11

id year month element d1 d2 d3 d4 d5 d6 d7 d8

MX17004 2010 1 tmax — — — — — — — —
MX17004 2010 1 tmin — — — — — — — —
MX17004 2010 2 tmax — 27.3 24.1 — — — — —
MX17004 2010 2 tmin — 14.4 14.4 — — — — —
MX17004 2010 3 tmax — — — — 32.1 — — —
MX17004 2010 3 tmin — — — — 14.2 — — —
MX17004 2010 4 tmax — — — — — — — —
MX17004 2010 4 tmin — — — — — — — —
MX17004 2010 5 tmax — — — — — — — —
MX17004 2010 5 tmin — — — — — — — —

Table 11: Original weather dataset. There is a column for each possible day in the month. Columns
d9 to d31 have been omitted to conserve space.

id date element value

MX17004 2010-01-30 tmax 27.8
MX17004 2010-01-30 tmin 14.5
MX17004 2010-02-02 tmax 27.3
MX17004 2010-02-02 tmin 14.4
MX17004 2010-02-03 tmax 24.1
MX17004 2010-02-03 tmin 14.4
MX17004 2010-02-11 tmax 29.7
MX17004 2010-02-11 tmin 13.4
MX17004 2010-02-23 tmax 29.9
MX17004 2010-02-23 tmin 10.7

(a) Molten data

id date tmax tmin

MX17004 2010-01-30 27.8 14.5
MX17004 2010-02-02 27.3 14.4
MX17004 2010-02-03 24.1 14.4
MX17004 2010-02-11 29.7 13.4
MX17004 2010-02-23 29.9 10.7
MX17004 2010-03-05 32.1 14.2
MX17004 2010-03-10 34.5 16.8
MX17004 2010-03-16 31.1 17.6
MX17004 2010-04-27 36.3 16.7
MX17004 2010-05-27 33.2 18.2

(b) Tidy data

Table 12: (a) Molten weather dataset. This is almost tidy, but instead of values, the element column
contains names of variables. Missing values are dropped to conserve space. (b) Tidy weather dataset.
Each row represents the meteorological measurements for a single day. There are two measured
variables, minimum (tmin) and maximum (tmax) temperature; all other variables are fixed.

Problem: Variables stored in both rows & columns

34

[H. Wickham, 2014]
D. Koop, CSCI 627/490, Spring 2025

Mexico Weather, Global Historical Climatology Network

Variable in columns: day; Variable in rows: tmax/tmin

Journal of Statistical Software 11

id year month element d1 d2 d3 d4 d5 d6 d7 d8

MX17004 2010 1 tmax — — — — — — — —
MX17004 2010 1 tmin — — — — — — — —
MX17004 2010 2 tmax — 27.3 24.1 — — — — —
MX17004 2010 2 tmin — 14.4 14.4 — — — — —
MX17004 2010 3 tmax — — — — 32.1 — — —
MX17004 2010 3 tmin — — — — 14.2 — — —
MX17004 2010 4 tmax — — — — — — — —
MX17004 2010 4 tmin — — — — — — — —
MX17004 2010 5 tmax — — — — — — — —
MX17004 2010 5 tmin — — — — — — — —

Table 11: Original weather dataset. There is a column for each possible day in the month. Columns
d9 to d31 have been omitted to conserve space.

id date element value

MX17004 2010-01-30 tmax 27.8
MX17004 2010-01-30 tmin 14.5
MX17004 2010-02-02 tmax 27.3
MX17004 2010-02-02 tmin 14.4
MX17004 2010-02-03 tmax 24.1
MX17004 2010-02-03 tmin 14.4
MX17004 2010-02-11 tmax 29.7
MX17004 2010-02-11 tmin 13.4
MX17004 2010-02-23 tmax 29.9
MX17004 2010-02-23 tmin 10.7

(a) Molten data

id date tmax tmin

MX17004 2010-01-30 27.8 14.5
MX17004 2010-02-02 27.3 14.4
MX17004 2010-02-03 24.1 14.4
MX17004 2010-02-11 29.7 13.4
MX17004 2010-02-23 29.9 10.7
MX17004 2010-03-05 32.1 14.2
MX17004 2010-03-10 34.5 16.8
MX17004 2010-03-16 31.1 17.6
MX17004 2010-04-27 36.3 16.7
MX17004 2010-05-27 33.2 18.2

(b) Tidy data

Table 12: (a) Molten weather dataset. This is almost tidy, but instead of values, the element column
contains names of variables. Missing values are dropped to conserve space. (b) Tidy weather dataset.
Each row represents the meteorological measurements for a single day. There are two measured
variables, minimum (tmin) and maximum (tmax) temperature; all other variables are fixed.

Melting + Pivot

35

[H. Wickham, 2014]
D. Koop, CSCI 627/490, Spring 2025

