
Programming Principles in Python (CSCI 503/490)

Packages 

Dr. David Koop 

D. Koop, CSCI 503/490, Spring 2025



Parsing Files
• Dealing with different formats, determining more meaningful data from files 
• txt: text file 
• csv: comma-separated values 
• json: JavaScript object notation 
• Jupyter also has viewers for these formats 
• Look to use libraries to help possible 

- import json 

- import csv 

- import pandas

2D. Koop, CSCI 627/490, Spring 2025



Writing Files: With Statement
• With statement does "enter" and "exit" handling: 
• In the previous example, we need to remember to call outf.close() 
• Using a with statement, this is done automatically: 

- with open('huck-finn.txt', 'r') as f: 
    for line in f: 
        if 'Huckleberry' in line: 
            print(line.strip()) 

• This is important for writing files! 
- with open('output.txt', 'w') as f: 
    for k, v in counts.items(): 
        f.write(k + ': ' + v + '\n') 

• Without with, we need f.close()

3D. Koop, CSCI 627/490, Spring 2025



Command Line Interfaces (CLIs)
• Prompt: 
- $ 
-                                            

• Commands 
- $ cat <filename> 

- $ git init 

• Arguments/Flags: (options) 
- $ python -h 

- $ head -n 5 <filename> 

- $ git branch fix-parsing-bug

4D. Koop, CSCI 627/490, Spring 2025



Scripts, Programs, and Libraries
• Often, interpreted ~ scripts and compiled code ~ programs/libraries 
- Python does compile bytecode for modules that are imported 

• Modifying this usual definition a bit 
- Script: a one-off block of code meant to be run by itself, users edit the 

code if they wish to make changes 
- Program: code meant to be used in different situations, with parameters 

and flags to allow users to customize execution without editing the code 
- Library: code meant to be called from other scripts/programs 

• In Python, can't always tell from the name what's expected, code can be 
both a library and a program

5D. Koop, CSCI 627/490, Spring 2025



Program Execution
• Direct Unix execution of a program 
- Add the hashbang (#!) line as the first line, two approaches 
- #!/usr/bin/python 

- #!/usr/bin/env python 

- Sometimes specify python3 to make sure we're running Python 3 
- File must be flagged as executable (chmod a+x) and have line endings 
- Then you can say: $ ./filename.py arg1 ... 

• Executing the Python compiler/interpreter 
- $ python filename.py arg1 ... 

• Same results either way

6D. Koop, CSCI 503/490, Spring 2025



Accepting Command-Line Parameters
• Parameters are received as a list of strings entitled sys.argv 
• Need to import sys first 
• sys.argv[0] is the name of the program as executed 
- Executing as ./hw01.py or hw01.py will be passed as different strings 

• sys.argv[n] is the nth argument 
• sys.executable is the python executable being run

7D. Koop, CSCI 503/490, Spring 2025



Knowing when the file is being used as a script
• Whenever a module is imported, Python creates a special variable in the 

module called __name__ whose value is the name of the imported module. 
• Example: 
>>> import math 
>>> math.__name__ 
'math' 

• When Python code is run directly and not imported, the value of __name__ is 
'__main__'. 

• We can change the final lines of our programs to: 
if __name__ == '__main__': 
    main()

8D. Koop, CSCI 503/490, Spring 2025



Assignment 4
• Assignment covers strings and files 
• Reading & writing data to files 
• Deals with characters and formatting

9D. Koop, CSCI 627/490, Spring 2025

https://faculty.cs.niu.edu/~dakoop/cs503-2025sp/assignment4.html


Modules and Packages
• Python allows you to import code from other files, even your own 
• A module is a collection of definitions 
• A package is an organized collection of modules 
• Modules can be 
- a separate python file 
- a separate C library that is written to be used with Python 
- a built-in module contained in the interpreter 
- a module installed by the user (via conda or pip) 

• All types use the same import syntax

10

[RealPython]
D. Koop, CSCI 503/490, Spring 2025

https://realpython.com/python-modules-packages/


11

What is the purpose of having modules or packages?

D. Koop, CSCI 503/490, Spring 2025



What is the purpose of having modules or packages?
• Code reuse: makes life easier because others have written solutions to 

various problems 
• Generally forces an organization of code that works together 
• Standardizes interfaces; easier maintenance 
• Encourages robustness, testing code 

• This does take time so don't always create a module or package  
- If you're going to use a method once, it's not worth putting it in a module 
- If you're using the same methods over and over in (especially in different 

projects), a module or package makes sense

12D. Koop, CSCI 503/490, Spring 2025



Module Contents
• Modules can contain 
- functions 
- variable (constant) declarations 
- import statements 
- class definitions 
- any other code 

• Note that variable values can be changed in the module's namespace, but 
this doesn't affect other Python sessions.

13D. Koop, CSCI 503/490, Spring 2025



Importing modules
• import <module> 

• import <module> as <another-identifier> 

• from <module> import <identifer-list> 

• from <module> import <identifer> as <another-identifier>, … 

• import imports from the top, from … import imports "inner" names 
• Need to use the qualified names when using import (foo.bar.mymethod) 
• as clause renames the imported name

14D. Koop, CSCI 503/490, Spring 2025



Using an imported module
• Import module, and call functions with fully qualified name 

- import math 
math.log10(100) 
math.sqrt(196) 

• Import module into current namespace and use unqualified name 
- from math import log10, sqrt 
log10(100) 
sqrt(196)

15D. Koop, CSCI 503/490, Spring 2025



How does import work?
• When a module/package is imported, Python 
- Searches for the module/package 

• Sometimes this is internal 
• Otherwise, there are directory paths (environment variable PYTHONPATH) 

that python searches (accessible via sys.path) 
- Loads it 

• This will run the code in specified module (or __init__.py for a package) 
- Binds the loaded names to a namespace

16

[RealPython]
D. Koop, CSCI 503/490, Spring 2025

https://realpython.com/python-import/


Namespaces
• An import defines a separate namespace while from…import adds names to 

the current namespace 
• Four levels of namespace 
- builtins: names exposed internally in python 
- global: names defined at the outermost level (wrt functions) 
- local: names defined in the current function 
- enclosing: names defined in the outer function (when nesting functions) 

• def foo(): 
    a = 12 
    def bar(): 
        print("This is a:", a)

17D. Koop, CSCI 503/490, Spring 2025

a is in the enclosing namespace of bar



Namespaces
• Namespace is basically a dictionary with 

names and their values 
• Accessing namespaces 

- __builtins__, globals(), locals() 
• Examine contents of a namespace: 
dir(<namespace>) 

• Python checks for a name in the sequence: 
local, enclosing, global, builtins 

• To access names in outer scopes, use 
global (global) and nonlocal (enclosing) 
declarations

18

[RealPython]
D. Koop, CSCI 503/490, Spring 2025

https://realpython.com/python-namespaces-scope/


Wildcard imports 
• Wildcard imports import all names (non-private) in the module 
• What about 

- from math import * 

• Avoid this! 
- Unclear which names are available! 
- Confuses someone reading your code 
- Think about packages that define the same names! 

• Allowed if republishing internal interface (e.g. in a package, you're exposing 
functions defined in different modules

19D. Koop, CSCI 503/490, Spring 2025



Import Guidelines (from PEP 8)
• Imports should be on separate lines 

- import sys, os 

- import sys 
import os 

• When importing multiple names from the same package, do use same line  
- from subprocess import Popen, PIPE 

• Imports should be at the top of the file (order: standard, third-party, local) 
• Avoid wildcard imports in most cases

20D. Koop, CSCI 503/490, Spring 2025



Conditional or Dynamic Imports
• Best practice is to put all imports at the beginning of the py file 
• Sometimes, a conditional import is required 

- if sys.version_info >= [3,7]: 
    OrderedDict = dict 
else: 
    from collections import OrderedDict 

• Can also dynamically load a module 
- import importlib 

- importlib.import_module("collections") 

- The __import__ method can also be used

21D. Koop, CSCI 503/490, Spring 2025



Absolute & Relative Imports
• Fully qualified names  

- import foo.bar.submodule 

• Relative names 
- import .submodule 

• Absolute imports recommended but relative imports acceptable

22D. Koop, CSCI 503/490, Spring 2025



Import Abbreviation Conventions
• Some libraries and users have developed particular conventions 
• import numpy as np 
• import pandas as pd 
• import matplotlib.pyplot as plt 
• This can lead to problems: 

- sympy and scipy were both abbreviated sp for a while…

23D. Koop, CSCI 503/490, Spring 2025



Reloading a Module?
• If you re-import a module, what happens? 

- import my_module 
my_module.SECRET_NUMBER # 42 

- Change the definition of  SECRET_NUMBER to 14 
- import my_module 
my_module.SECRET_NUMBER # Still 42! 

• Modules are cached so they are not reloaded on each import call 
• Can reload a module via importlib.reload(<module>) 
• Be careful because dependencies will persist! (Order matters)

24D. Koop, CSCI 503/490, Spring 2025



25

Packages

D. Koop, CSCI 503/490, Spring 2025



Python Packages
• A package is basically a collection of modules in a directory subtree 
• Structures a module namespace by allowing dotted names 
• Example: 

- test_pkg/ 
    __init__.py 
    foo.py 
    bar.py 
    baz/ 
        fun.py 

• For packages that are to be executed as scripts, __main__.py can also be 
added

26D. Koop, CSCI 503/490, Spring 2025



What's __init__.py used for?
• Used to be required to identify a Python package (< 3.3) 
• Now, only required if a package (or sub-package) needs to run some 

initialization when it is loaded 
• Can be used to specify metadata 
• Can be used to import submodule to make available without further import 

- from . import <submodule> 
• Can be used to specify which names exposed on import 
- underscore names (_internal_function) not exposed by default 
- __all__ list can further restrict, sets up an "interface" (applies to wildcard)

27D. Koop, CSCI 503/490, Spring 2025



What is __main__.py used for?
• Remember for a module, when it is run as the main script, its __name__ is 
__main__ 

• Similar idea for packages 
• Used as the entry point of a package when the package is being run (e.g. via 
python -m) 

- python -m test_pkg runs the code in __main__.py of the package

28D. Koop, CSCI 503/490, Spring 2025



29

Example

D. Koop, CSCI 503/490, Spring 2025



Finding Packages
• Python Package Index (PyPI) is the standard repository (https://pypi.org) and 

pip (pip installs packages) is the official python package installer 
- Types of distribution: source (sdist) and wheels (binaries) 
- Each package can specify dependencies 
- Creating a PyPI package requires adding some metadata 

• Anaconda is a package index, conda is a package manager 
- conda is language-agnostic (not only Python) 
- solves dependencies 
- conda deals with non-Python dependencies 
- has different channels: default, conda-forge (community-led)

30D. Koop, CSCI 503/490, Spring 2025

https://pypi.org
https://anaconda.org


Installing Packages
• pip install <package-name> 

• conda install <package-name> 

• In Jupyter use: 
- %pip install <package-name> 

- %conda install <package-name> 

• Arguments can be multiple packages 
• Be careful! Security exploits using package installation and dependencies 

(e.g. Alex Birsan)

31D. Koop, CSCI 503/490, Spring 2025

https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610


Environments
• Both pip and conda support environments 
- venv 
- conda env 

• Idea is that you can create different environments for different work 
- environment for cs503 
- environment for research 
- environment for each project

32D. Koop, CSCI 503/490, Spring 2025



uv
• The new kid on the block 
• Fast. Written in rust, many optimizations (10-100x faster than pip!) 
• Can install python (including alpha releases) 
• Integrates with existing ecosystem (pyproject.toml, requirements.txt) 
• Project-based: associates environment with each run (uv init myproject) 
- Uses lock file (similar to web programming environments): uv.lock 
- Change in execution: uv run myscript.py 

• Can use standard python tools via temporary environments using uvx: 
- uvx jupyter lab 

• Documentation

33D. Koop, CSCI 503/490, Spring 2025

https://docs.astral.sh/uv/

