Programming Principles in Python (CSCI 503/490)

Comprehensions, Generators, and Lazy Evaluation

Dr. David Koop

(some slides adapted from Dr. Reva Freedman)

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 2

Quiz

1. Givenmylist = [1,2,3,4,5], which expression evaluates to [5, 4,317
@) mylist[-1:-3:-1]
(O) mylist[:1:-1]
(C)
()

mylist.reverse () [:3]

d) mylist[:-3]

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 3

2. Ifs = {1, 2yandt = {2, 3},whatdoes s | t evaluate to”
@ {1, 2, 3}

o) {1: 2, 2: 3}

() {1, 2, 2, 3}

(

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 4

Quiz

3. Whatdoes [2*i for i in range(l,4) if i % 2 == 0] evaluate to”
(@) [4]
b) (2, 4, 6]
(©) [4, 8]
(d) [2, 4, 6, 8]

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 5

Quiz

4. Given the function signature def £ (a, b=2, c=7), which of the following
expressions runs without an error?

@ £ (3, d=9)
(b) £ (b=6)

(C) £()

(d) £(b=3, a=1)

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 6

Quiz

5. Which statement inside a function allows assignment to an identifier x
defined outside of that function?

a) universal x

) *X

)
)

e

=

C
d

(
(
(C) global x
(

& X

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 7

Dictionary Methods

Method Meaning
<dict>.clear () Remove all key-value pairs

<dict>.update (other) |Updates the dictionary with values from other

<dict>.pop (k, d=None) Removes the pair with key k and returns value or
default 4 If no key

<dict>.get (k, d=None) |Returns the value for the key k or default d if no

key
<dict>.items () Returns iterable view over all pairs as (key, value)
tuples
<dict>.keys () Returns iterable view over all keys
<dict>.values () Returns iterable view over all values

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 8

Dictionary Methods

Method Meaninc Mutate
<dict>.clear () Remove all key-value pairs

<dict>.update (other) |Updates the dictionary with values from other

<dict>.pop (k, d=None) Removes the pair with key k and returns value or
default 4 If no key

<dict>.get (k, d=None) |Returns the value for the key k or default d if no
key

<dict>.items () Returns iterable view over all pairs as (key, value)
tuples

<dict>.keys () Returns iterable view over all keys

<dict>.values () Returns iterable view over all values

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 8

Dictionary lteration

e for k 1n d.keys () : lterate through keys
print ('key:', k)

e for k 1n d: lterates through keys
print ('key:', k)

e for v 1n d.values|(): l1terate through values
print ('value:', v)

e for k, v 1n d.items{(): l1terate through key-value pairs
print ('kevy:', k, 'value:', v)

* keys () IS superfluous but is a bit clearer
e items () IS the enumerate-like method

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 9

Sets & Operations

e s = {'DeKalb', 'Kane', 'Cook', '"Will'}
t = {'DeKalb', 'Winnebago', '"Will'}

® s.add, s.discard (s.remove)

e Union: s | t {'DeKalb', 'Kane', 'Cook', 'Will', 'Winnebago'}

e [ntersection: s & t {'DeKalb', '"Will'}

e Difference: s - t {'Kane', 'Cook'}

e Symmetric Difference: s ~ t {'Kane', 'Cook', 'Winnebago')}

e Object method variants: s.union(t), s.intersection(t),
s.dlfference(t), s.symmetric difference (t)

e * update and augmented operator variants

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 10

Assignment 3

e Use dictionaries, lists, sets, and iteration to US port entries to/from Canada
and Mexico

e Due Friday

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 11

https://faculty.cs.niu.edu/~dakoop/cs503-2025sp/assignment3.html

lest 1

e \Nednesday, Feb. 19, 12:30-1:45pm
¢ In-Class, paper/pen & pencill
e Covers material through this week
e Format:
- Multiple Choice
- Free Response
- Extra 2-sided Page for CSCI 503 Students
® |nfo on the course webpage

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 12

https://faculty.cs.niu.edu/~dakoop/cs503-2025sp/test1.html

|ist Comprehension

e output = []
for d 1n range(5):
output.append(d ** 2 - 1)

® Rewrite as a map:
- output = [d ** 2 - 1 for d 1n range(5)]

e Can also filter:
- output = [d for d 1n range(d5) 1£f d % 2 == 1]

e Combine map & filter:
- output = [d ** 2 - 1 for d in range(b) 1f d $ 2 == 1]

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 13

Multi-Level and Nested Comprehensions

e Flattening a list of lists

- my_ list = [[1,2,3],104,5],1[0,7,8,9,101]]
v for vlist 1n my list for v 1n vlist]

- [1,2,3,4,5,6,7,8,9,10]
e Note that the for loops are in order
o Difference between nested comprehensions

- [[v**2 for v 1n vlilist] for vlist 1n my list]
- [[1,4,9],[1l0,25],[36,49,04,81,100]]

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 14

Comprehensions using other collections

e Comprehensions can use existing collections, too (not just ranges)
e Anything that is iterable can be used in the for construct (like for loop)

e names = ['smith', 'Smith', 'John', 'mary', 'jJan']

e names”Z2 = [1tem.upper () for 1tem 1n names]

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 15

ANy expression Works as output items

e [uples inside of comprehension

- [(s, s+2) for s 1n slist]

e Dictionaries, too
- [{"2": 1, "3': 3} for (1, J) 1n tuple list]

¢ Function calls
- names = ['smith', 'Smith', 'John', 'mary', 'jan']
names2 = [1tem.upper () for 1tem 1n names]

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 16

Comprehensions for other collections

e Dictionaries

- {k: v for (k, v) 1n other dict.items ()
1f k.startswith('a') }

- Sometimes used for one-to-one map iNnverses
e How"/

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 17

Comprehensions for other collections

e Dictionaries

- {k: v for (k, v) 1n other dict.items ()
1f k.startswith('a') }

- Sometimes used for one-to-one map iNnverses

e {v: k for (k, v) 1n other dict.items() }

* Be careful that the dictionary is actually one-to-one!
* Sets:

- {s[0] for s 1n names}

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 18

Tuple Comprehension”?

e thing = (x ** 2 for X 1n numbers 1f x % 2 != 0)
thing not a tuple! <generator object <genexpr> ..>

e Actually a generator
e [his delays execution until we actually need each result

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 19

iterators

o Key concept: iterators only need to have a way to get the next element
® [0 be Iterable, an object must be able to produce an iterator
- Technically, must implementthe iter methoo

® An iterator must have two things:
- a method to get the next item
- a way to signal no more elements
¢ |n Python, an iterator is an object that must
- have a defined next methoo
- ralsSe StopException If NO More elements available

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 20

lteration Methods

e You can call iteration methods directly, but rarely done

-my list = [2,3,5,7,11]
1t = 1ter(my list)
first = next(1it)

print ("First element of list:", first)

e iter asks for the iterator from the object

e next asks for the next element
e Usually just handled by loops, comprenhensions, or generators

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 21

~or Loop and lteration

enmy list = [2,3,5,7,11]
for 1 1n my list:
print (1 * 1)

e Behind the scenes, the for construct
- asks for an iterator it = iter (my list)

- calls next (it) each time through the loop and assigns result to |
- handles the stopIteration exception by ending the loop

e | oop won't work If we don't have an iterable!

- for 1 1n 7892:
print (i1 * 1)

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 22

(Generators

e Special functions that return lazy iterables
¢ Use less memory
e Change is that functions yield instead of return

—

o def

square (1t) :
for 1 1n 1t:
vield 1*1

o [f we are Iterating through a generator, we hit the first yield and immediately
return that first computation

e (Generator expressions just shorthand (remember no tuple comprehensions)
- (i * 1 for 1 in [1,2,3,4,5])

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 23

(Generators

* [f memory IS Not an Issue, a comprehension Is probably faster
e ..unless we don't use all the items

® def sgquare(it) :
for 1 1n 1t:
vield 1*1

e for 7 1n square([1,2,3,4,5]):

1f 7 >= 9:
break
print (7j)

® [he square function only runs the computation for 1, 2, and 3
e \\hat If this computation is slow??

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University =~ 24

| azy Evaluation

e u = compute fast function(s, t)
v = compute slow function(s, t)
if s > t and s**2 + t**2 > 100:

return u / 100
else:
return v / 100

e \\Ve don't write code like this! Why?

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 25

| azy Evaluation

u = compute fast function(s, t)
v = compute slow function(s, t)
if s > t and s**2 + t**2 > 100:
return u / 100
else:
return v / 100

e \\Ve don't write code like this! Why?
e Don't compute values until you need to!

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 26

| azy Evaluation

* Rewriting
e 1f s > t and s**2 + t**2 > 100:
u = compute fast function(s, t)
res = u / 100
else:
v = compute slow function (s, t)

res = v / 100
e slow function will not be executed unless the condition Is true

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 27

| azy Evaluation

e \Vhat If this were rewritten as:

—

e def my function(s, t, u, v):

1f s > t and s**2 + t**2 > 100:
res = u

else:
res = v

return res

my function(s, t, compute fast function(s, t),
compute slow function(s, t))

e |n some languages (often pure functional languages), computation of v and v
may be deferred until we need them

* Python doesn't work that way in this case

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University ~ 28

Short-Circuit Evaluation

e But Python, and many other languages, do work this way for boolean
operations

e if b '= 0 and a/b > c:
return ratio - ¢

e Never get a divide by zero error!
e Compare with:

e def check ratio(val, ratio, cutoff):

—

1f val !'= 0 and ratio > cuto
return ratio - cutoff
check ratio(b, a/b, c)

® Here. a/b IS computed before check ratio Is called (out not used!)

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 29

Short-Circuit Evaluation

o \Norks from left to right according to order of operations (and before or)
e \Works for and and or

® and:

- Ifany value Is False, Stop and return False
-a, b =2, 3
a > 3 and b < 5
® Or:

- If any value Is True, stop and return True

-a, b, ¢ =2, 3, 7
a > 3 or b < 5 o0or ¢ > 8

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 30

Short-Circuit Evaluation

e Back to our example

[—

e 1f s > t and compute slow function(s, t) > 50:

c = compute slow function (s, t)
else:
c = compute fast function(s, t)
e s, t =10, 12 compute slow functlon 1s never run
s, t =5, 4 compute slow functilion 1s run once
e s, t =12, 10 compute slow function 1s run twice

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 31

Short-Circuit Evaluation

e \Nalrus operator saves us one computation

e 1f s > t and (¢ := compute slow function(s, t) > 50):
pass
else:
C = 8 ** 2 L ** 2
e s, t =10, 12 compute slow function 1s never run
e s, t = 5, 4 compute slow function 1s run once
e s, t =12, 10 compute slow functilon 1s run once

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University ~ 32

What about multiple executions?

e for s, t in [(12, 10), (4, 5), (5, 4), (12, 10)]:
1f s > t and (¢ := compute slow function(s, t) > 50):
pass
else:

c = compute fast function(s, t)

e \What's the problem here”

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University ~ 33

What about multiple executions?

e for s, t in [(12, 10),
1f s > t and (c :=
Pass
else:

C = compute T

(4, 2), (5, 4), (12, 10)]:
compute slow function (s, t) > 50):

ast function(s, t)
e \What's the problem here”
e Executing the function for the same inputs twice!

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 34

Viemolization

e memo dict = {}
def memolzed slow function(s, t):
1f (s, t) not 1n memo dict:

memo dict[(s, t)] = compute slow function(s, t)

return memo dict([(s, t)]

e for s, t in [(12, 10), (4, 5), (5, 4), (12, 10)]:
1f s > t and (¢ := memoized slow function(s, t) > 50):
Pass
else:

c = compute fast function (s, t)

B

e Second time executing for s=12, t=10, we don't need to compute!
¢ [radeoff memory for compute time

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University ~ 35

Viemolization

e Heavily used In functional languages because there Is N0 assignment

e Cache (store) the results of a function call so that if called again, returns the
result without having to compute

o [f arguments of a function are hashable, fairly straightforward to do this for
any Python function by caching in a dictionary

* |n what contexts, might this be a bad idea”

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 36

Viemolization

e Heavily used In functional languages because there Is N0 assignment

e Cache (store) the results of a function call so that if called again, returns the
result without having to compute

o [f arguments of a function are hashable, fairly straightforward to do this for
any Python function by caching in a dictionary

* |n what contexts, might this be a bad idea”

- def memoize random 1nt (a, b):
1f (a,b) not 1n random cache:
random cachel (a,b)] = random.randint (a,b)

return random cache| (a,b)]

- When we want to rerun, e.g. random number generators

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University = 37

