Programming Principles in Python (CSCI 503/490)

SEeqUENCES

Dr. David Koop

(some slides adapted from Dr. Reva Freedman)

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University

SEqUENCES

e Strings "abcede™, Lists [1, 2, 3, 4, 5]1,and Tuples (1, 2, 3, 4, 5)

e Definingalist:my 1ist = [0, 1, 2, 3, 4]

e But lists can store different types:
- my list = [0, "a", 1.34]
* |ncluding other lists:
- my list = [0, "a", 1.34, [1, 2, 3]]

e Others are similar: tuples use parenthesis, strings are delineated by quotes
(single or double)

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 2

Seqguence Operations

e Concatenate: [1, 21 + [3, 4] [(1,2,3,4]
e Repeat: [1,2] * 3 (1,2,1,2,1,2]

® Length: my list = [1,2]; len(my list) %

e Concatenate: (1, 2) + (3, 4) (1,2,3,4)
e Repeat: (1,2) * 3 (1,2,1,2,1,2)

e [ength: my tuple = (1,2); len(my tuple) 2

e Concatenate: "ab" + "cd" # "abcd"
e Repeat: "ab" * 3 "ababab"
e length: my str = "ab"; len(my str) 2

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 3

Indexing & Slicing Quiz

my_liSt — ['aV’ 'b" 'C', 'd" 'e']

HEEEE
HEEEE
HEEEE
HEEEE

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 4

Indexing & Slicing Quiz

my_liSt — ['aV’ 'b" 'C', 'd" 'e']

ﬂ“ﬂﬂ my list[3]; my list[-2]; my list[3:4]
=lofelale
avfelafe
avfeld]e

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 4

Indexing & Slicing Quiz

my_liSt — ['aV’ 'b" 'C', 'd" 'e']

H“nﬂ my 1ist[3]; my list[-2]; my list[3:4]
e fefafe] misrii ey
my list[l:-2]
alefefefe
alefefafe

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 4

Indexing & Slicing Quiz

my_liSt — ['aV’ 'b" 'C', 'd" 'e']

H“nﬂ my 1ist[3]; my list[-2]; my list[3:4]
H““H my list[l:3]; my list[-4:-2];
my list[l:-2]
C 0:4]; my list[:4];

'“.nﬂ my i - —.
my list[-5:-1]

(1 (1

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 4

Indexing & Slicing Quiz

my_liSt — ['aV’ 'b" 'C', 'd', 'e']

H“nﬂ my 1ist[3]; my list[-2]; my list[3:4]
H““H my list[l:3]; my list[-4:-2];
my list[l:-2]
alefefale] Moy
C - _] _
my list[-5:-1]
2 [p]eafe] muviscra; myvisei-z:

(1 (1

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 4

Indexing (Positive and Negative)

e Positive indices start at zero, negative at -1
e my str = "abcde"; my str[l. "o
enmy list = [1,2,3,4,5 my list[-3] 3

17
e my tuple = (1,2,3,4,5); my tuple[-3] 1

0 ’ 2 3 4
HEEEE

-5 -4 -3 -2 -1

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 5

Slicing

e Positive or negative indices can be used at any step

e my str = "abcde"; my str[l:3] ["b", c"]

emy list = [1,2,3,4,5]; my list[3:-1] [4]

o Implicit indices
- my tuple = (1,2,3,4,5); my tuple[-2:] (4, 5)
- my tuple[:3] (1,2, 3)

0 1 % 3 4
oy lededelale
[=4 :=2]

-5 -4 -3 -2 -1

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 6

lteration

e for d 1n sequence:

do stutftf
e Important: d is a data item, not an index!
e sequence = "abcdet"
for d 1n sequence:
print (d, end=" ") a b c de £
e sequence = [1,2,3,4,95]
for d 1n sequence:
print (d, end=" ") 1 2 3 4 5
e sequence = (1,2,3,4,5)
for d 1n sequence:
print (d, end=" ") 1 2 3 4 5

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 7

Seqguence Operations

Operator Meaning
<seg> t+ <seqg> Concatenation
<seg> * <int-expr> Repetition
<seg>[<int-expr>] Indexing
len (<seg>) Length
<seg>[<int-expr?>:<int-expr?>] |Gjicing
for <var> in <seg>: lteration
<expr> 1n <seqg> Membership (Boolean)

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 8

Seqguence Operations

Operator Meaning
<seg> t+ <seg> Concatenation
<seg> * <int-expr> Repetition
<seg>[<int-expr>] Indexing

len (<seg> Length

<seqg> Kint-expr?>:<int-expr?>J Slicing

for <var> 1n <seg>: lteration
<expr> 1n <seqg> Membership (Boolean)

<int-expr?>: may be <int-expr> but also can be empty

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 8

Assignment 2

e Due today
e (Grades and feedback from Assignment 1 are posted
e Python control flow and functions
e \ake sure to follow instructions
- Name the submitted file a2.ipynb
- Put your name and z-id In the first cell
- Label each part of the assignment using markdown
- Make sure to produce output according to specifications

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 9

http://faculty.cs.niu.edu/~dakoop/cs503-2025sp/assignment2.html

What's the difference between the sequences”?

e Strings can only store characters, lists & tuples can store arbitrary values
o Mutability: strings and tuples are immutable, lists are mutable

enmy list = [1, 2, 3, 4]
my list[2] = 300
my list (1, 2, 300, 4]

e my tuple = (1, 2, 3, 4); my tuple[Z2 300 TypekError

e my str = "abcdef"; my str[0] = "z" TypeError

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 10

LISt methods

Method Meaning

<list>.append (d) Add element 4 to end of list.

<list>.extend (s) Add all elements in s to end of list.
<list>.insert (i, d) |Insert d into list at index .

<list>.pop (i) Deletes ith element of the list and returns its value.
<list>.sort () Sort the list.

<list>.reverse () Reverse the list.

<list>.remove (d) Deletes first occurrence of 4 in list.

<list>.index (d) Returns index of first occurrence of d.
<list>.count (d) Returns the number of occurrences of d In list.

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 11

LISt methods

Method Meaninc Mutate
<list>.append (d) Add element d to end of list.

<list>.extend (s) Add all elements in s to end of list.

<list>.insert (i, d) |Insert d into list at index .

<list>.pop (i) Deletes ith element of the list and returns its value.
<list>.sort () Sort the list.

<list>.reverse () Reverse the list.

<list>.remove (d) Deletes first occurrence of 4 in list.

<list>.index (d) Returns index of first occurrence of d.
<list>.count (d) Returns the number of occurrences of d in list.

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 11

The del statement

* pop WOrks well for removing an element by index plus it returns the element

e Can also remove an element at index i using
- del my list[1]

e Note this Is very different syntax so | prefer pop

e But del can delete slices
- del my list[1:]]

e Also, can delete identifier names completely

- a = 3/
del a
a NamekError

e [Nis IS different than a = None

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 12

Updating collections

e [here are three ways to deal with operations that update collections:
- Returns an updated copy of the list
- Updates the collection in place
- Updates the collection in place and returns it
e list.sort and list.reverse WOrk in place and don't return the list

e Common error:

- sorted list = my list.sort () sorted list = None

* [nstead:
- sorted list

sorted (my list)

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 13

sorted and reversed

e [FOor both sort and reverse, have sorted & reversed which are not in place

e Called with the sequence as the argument

enmy list = [7, 3, 2, 5, 1]
for d 1n sorted(my list):

print (d, end=" ") 1 2 3 5 7
enmy list = [7, 3, 2, 5, 1]
for d 1n reversed(my list):
print (d, end=" ") 1 5 2 3 7
e But this doesn't work:
- reversed list = reversed(my list)

e |f you need a new list (same as with range):

- reversed list = list(reversed(my list))

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 14

Reverseq sort

e Both sort and sorted have a boolean parameter reverse that will sort the list

IN reverse
emy list = [7, 3, 2, 5, 1]
my list.sort (reverse=True) my list now [7, 5, 3, 2, 1]

e for 1 1n sorted(my list, reverse=True):
print(i, end = " ") prints 7 5 3 2 1

e [here s also a key parameter that should be a function that will be called on
each element before comparisons—the outputs will be used to sort

- Example: convert to lowercase

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 15

Nested Sort

e By default, sorts by comparing inner elements in order
e sorted([[4,2],[1,5],[1,31,([3,5]1])

- Istelement: 1 == 1 < 3 < 4

- 2nd element for equal: 3 < 5
- Result: [[1,371,[1,5],[3,51,[4,2]]

e | onger lists after shorter lists:
- sorted ([[1,2],[1]]) [[1],[1,2]]

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 16

enumerate

e Often you do not need the index when iterating through a sequence
e |f you need an index while looping through a sequence, use enumerate

e for 1, d 1n enumerate(my list):
print ("index:", 1, "element:", d)

e Fach time through the loop, It yields two items, the iIndex i & the element d

e i, d Isactually atuple

o Automatically unpacked above, can manually do this, but don't!
e for t 1n enumerate(my 1list):
1 = t[0]
d = t[l
print ("index:", 1, "element:", d)

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 17

enumerate

e Often you do not need the index when iterating through a sequence
e |f you need an index while looping through a sequence, use enumerate

e for 1, d 1n enumerate(my list):
print ("index:", 1, "element:", d)

e Fach time through the loop, It yields two items, the iIndex i & the element d

e i, d Isactually atuple

o Automatically unpacked above, can manually do this, but don't!
o = 1n enumerate (my list):

t | T

d = t|l
Oor1ntc

|_|.

("1ndex:", 1, "elementi—<

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 17

luples

e [uples are Immutable sequences

e \Ve've actually seen tuples a couple of times already
- Simultaneous Assignment
- Returning Multiple Values from a Function

e Python allows us to omit parentheses when it's clear

- b, a = a, b same as (b, a) = (a, b)

- tl = a, b don't normally do this

-c, d = f(2, 5, 8) same as (c, d) = £(2, 5, 8)
- t2 = £(2, 5, 8) don't normally do this

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 18

Packing and Unpacking

e def f (a, Db):
1f a > 3:
return a, b-a tuple packiling
return atb, Db tuple packiling
ecCc, d= f£(4, 3) tuple unpacking

¢ \lake sure to unpack the correct number of variables!
e Cc, d = atb, a-b, 2*a ValueError: too many values to unpack

e Sometimes, check return value before unpacking:

- retval = £(42)
1f retval 1s not None:
c, d = retval

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 19

Packing and Unpacking

e def f(a, Db):
1f a > 3:
return a, b-a tuple packiling t = (a, b-a)
return a+b, Db tuple packing returil v
e Cc, d = 1f£((4, 3) tuple unpacking
¢ \lake sure to unpack the correct number of variables!
e Cc, d = atb, a-b, 2*a ValueError: too many values to unpack

e Sometimes, check return value before unpacking:

- retval = £(42)
1f retval 1s not None:
c, d = retval

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 19

Packing and Unpacking

e def f (a, Db):
1f a > 3:
return a, b-a tuple packing t = (a, b-a)
return a+b, b tuple packing return t
ecCc, d= 1t£((4, 3) tuple unpacking

¢ \lake sure to unpack the correct number of variables!
e Cc, d = atb, a-b, 2*a ValueError: too many values to unpack

e Sometimes, check return value before unpacking:

- retval = £(42)
1f retval 1s not None:
c, d = retval

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 19

Unpacking other sequences

® You can unpack other sequences, too
- a, b = Tab'
-a, b= 1["a', "b']

e \Why is list unpacking rare”

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 20

Other sequence methods

emy list = [7, 2, 1, 12]

e Math methods:
- max (my list) 12

- min(my list) 1

- sum(my list) 22
* zip: combine two sequences INto a single sequence of tuples

- z1p lis

= list(zip(my list, "abcd"))
z1lp lis- '

(7, ta'), (2, 'b"), (1, 'c'), (12, 'd")]
- Use this instead of using indices to count through both

¢ Ol

D. Koop, CSCI 627/490, Spring 2025 Northern Illinois University 21

