
Programming Principles in Python (CSCI 503/490)

Data 

Dr. David Koop 

D. Koop, CSCI 503/490, Spring 2024



Arrays
• Usually a fixed size—lists are meant to change size 
• Are mutable—tuples are not 
• Store only one type of data—lists and tuples can store anything 
• Are faster to access and manipulate than lists or tuples 
• Can be multidimensional: 
- Can have list of lists or tuple of tuples but no guarantee on shape 
- Multidimensional arrays are rectangles, cubes, etc.

2D. Koop, CSCI 503/490, Spring 2024



NumPy Arrays
• import numpy as np 
• Creating:  

- data1 = [6, 7, 8, 0, 1] 

- arr1 = np.array(data1) 

- arr1_float = np.array(data1, dtype='float64') 

- np.ones((4,2)) # 2d array of ones 

- arr1_ones = np.ones_like(arr1) # [1, 1, 1, 1, 1] 

• Type and Shape Information: 
- arr1.dtype # int64 # type of values stored in array 

- arr1.ndim # 1 # number of dimensions 

- arr1.shape # (5,) # shape of the array

3D. Koop, CSCI 503/490, Spring 2024



Array Operations
• a = np.array([1,2,3]) 
b = np.array([6,4,3]) 

• (Array, Array) Operations (Element-wise) 
- Addition, Subtraction, Multiplication 
- a + b # array([7, 6, 6]) 

• (Scalar, Array) Operations (Broadcasting): 
- Addition, Subtraction, Multiplication, Division, Exponentiation 
- a ** 2 # array([1, 4, 9]) 

- b + 3 # array([9, 7, 6])

4D. Koop, CSCI 503/490, Spring 2024



Indexing
• Same as with lists plus shorthand for 2D+ 

- arr1 = np.array([6, 7, 8, 0, 1]) 

- arr1[1] 

- arr1[-1] 

• What about two dimensions? 
- arr2 = np.array([[1.5,2,3,4],[5,6,7,8]]) 

- arr[1][1] 

- arr[1,1] # shorthand

5D. Koop, CSCI 503/490, Spring 2024



       [ 0.1913,  0.4544,  0.4519,  0.5535],
       [ 0.5994,  0.8174, -0.9297, -1.2564]])

Figure 4-2. Two-dimensional array slicing

Suppose each name corresponds to a row in the data array and we wanted to select all
the rows with corresponding name 'Bob'. Like arithmetic operations, comparisons
(such as ==) with arrays are also vectorized. Thus, comparing names with the string
'Bob' yields a boolean array:

In [87]: names == 'Bob'
Out[87]: array([ True, False, False, True, False, False, False], dtype=bool)

This boolean array can be passed when indexing the array:

In [88]: data[names == 'Bob']
Out[88]: 
array([[-0.048 ,  0.5433, -0.2349,  1.2792],
       [ 2.1452,  0.8799, -0.0523,  0.0672]])

The boolean array must be of the same length as the axis it’s indexing. You can even
mix and match boolean arrays with slices or integers (or sequences of integers, more
on this later):

In [89]: data[names == 'Bob', 2:]
Out[89]: 
array([[-0.2349,  1.2792],

86 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

numpy Array Slicing
• Indexing is similar to lists 
- Even in 2D 
- arr[2][2] same as arr[2,2] 

• Slicing is a bit different: 
- Slices are views 
- Dimensionality unchanged with pure slicing 
- arr[1:3][:2] != arr[1:3,:2]

6

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 503/490, Spring 2024



Assignment 7
• Energy Datasets 
• Downloading and uncompressing files 
• Finding files using OS libraries 
• Use a match statement to process data 
• Store per-year dataframes, each in a csv file

7D. Koop, CSCI 503/490, Spring 2024

https://faculty.cs.niu.edu/~dakoop/cs503-2024sp/assignment7.html


Array Transformations
• Transpose 

- arr2.T # flip rows and columns 

• Stacking: take iterable of arrays and stack them horizontally/vertically  
- arrh1 = np.arange(3) 

- arrh2 = np.arange(3,6) 

- np.vstack([arrh1, arrh2]) 

- np.hstack([arr1.T, arr2.T]) # ???

8D. Koop, CSCI 503/490, Spring 2024



Boolean Indexing
• names == 'Bob' gives back booleans that represent the element-wise 

comparison with the array names 
• Boolean arrays can be used to index into another array: 

- data[names == 'Bob'] 

• Can even mix and match with integer slicing 
• Can do boolean operations (&, |) between arrays (just like addition, 

subtraction) 
- data[(names == 'Bob') | (names == 'Will')] 

• Note: or and and do not work with arrays 
• We can set values too!   data[data < 0] = 0

9D. Koop, CSCI 503/490, Spring 2024



pandas
• Contains high-level data structures and manipulation tools designed to make 

data analysis fast and easy in Python 
• Built on top of NumPy 
• Built with the following requirements: 
- Data structures with labeled axes (aligning data) 
- Support time series data 
- Do arithmetic operations that include metadata (labels) 
- Handle missing data 
- Add merge and relational operations

10D. Koop, CSCI 503/490, Spring 2024



Pandas Code Conventions
• Universal: 

- import pandas as pd 

• Also used: 
- from pandas import Series, DataFrame

11D. Koop, CSCI 503/490, Spring 2024



Series
• A one-dimensional array (with a type) with an index 
• Index defaults to numbers but can also be text (like a dictionary) 
• Allows easier reference to specific items 
• obj = pd.Series([7,14,-2,1]) 

• Basically two arrays: obj.values and obj.index 
• Can specify the index explicitly and use strings 
• obj2 = pd.Series([4, 7, -5, 3],  
                 index=['d', 'b', 'a', 'c']) 

• Kind of like fixed-length, ordered dictionary + can create from a dictionary 
• obj3 = pd.Series({'Ohio': 35000, 'Texas': 71000, 
                  'Oregon': 16000, 'Utah': 5000})

12D. Koop, CSCI 503/490, Spring 2024



Series
• Indexing: s[1] or s['Oregon'] 
• Can check for missing data: pd.isnull(s) or pd.notnull(s) 
• Both index and values can have an associated name: 

- s.name = 'population'; s.index.name = 'state' 

• Addition and NumPy ops work as expected and preserve the index-value link 
• Arithmetic operations align:

13

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 503/490, Spring 2024

When only passing a dict, the index in the resulting Series will have the dict’s keys in
sorted order.

In [22]: states = ['California', 'Ohio', 'Oregon', 'Texas']

In [23]: obj4 = Series(sdata, index=states)

In [24]: obj4
Out[24]: 
California      NaN
Ohio          35000
Oregon        16000
Texas         71000
dtype: float64

In this case, 3 values found in sdata were placed in the appropriate locations, but since
no value for 'California' was found, it appears as NaN (not a number) which is con-
sidered in pandas to mark missing or NA values. I will use the terms “missing” or “NA”
to refer to missing data. The isnull and notnull functions in pandas should be used to
detect missing data:

In [25]: pd.isnull(obj4)      In [26]: pd.notnull(obj4)
Out[25]:                      Out[26]:                 
California     True           California    False      
Ohio          False           Ohio           True      
Oregon        False           Oregon         True      
Texas         False           Texas          True      
dtype: bool                   dtype: bool 

Series also has these as instance methods:

In [27]: obj4.isnull()
Out[27]: 
California     True
Ohio          False
Oregon        False
Texas         False
dtype: bool

I discuss working with missing data in more detail later in this chapter.

A critical Series feature for many applications is that it automatically aligns differently-
indexed data in arithmetic operations:

In [28]: obj3          In [29]: obj4      
Out[28]:               Out[29]:           
Ohio      35000        California      NaN
Oregon    16000        Ohio          35000
Texas     71000        Oregon        16000
Utah       5000        Texas         71000
dtype: int64           dtype: float64     
                                          
In [30]: obj3 + obj4
Out[30]: 
California       NaN
Ohio           70000

110 | Chapter 5: Getting Started with pandas

When only passing a dict, the index in the resulting Series will have the dict’s keys in
sorted order.

In [22]: states = ['California', 'Ohio', 'Oregon', 'Texas']

In [23]: obj4 = Series(sdata, index=states)

In [24]: obj4
Out[24]: 
California      NaN
Ohio          35000
Oregon        16000
Texas         71000
dtype: float64

In this case, 3 values found in sdata were placed in the appropriate locations, but since
no value for 'California' was found, it appears as NaN (not a number) which is con-
sidered in pandas to mark missing or NA values. I will use the terms “missing” or “NA”
to refer to missing data. The isnull and notnull functions in pandas should be used to
detect missing data:

In [25]: pd.isnull(obj4)      In [26]: pd.notnull(obj4)
Out[25]:                      Out[26]:                 
California     True           California    False      
Ohio          False           Ohio           True      
Oregon        False           Oregon         True      
Texas         False           Texas          True      
dtype: bool                   dtype: bool 

Series also has these as instance methods:

In [27]: obj4.isnull()
Out[27]: 
California     True
Ohio          False
Oregon        False
Texas         False
dtype: bool

I discuss working with missing data in more detail later in this chapter.

A critical Series feature for many applications is that it automatically aligns differently-
indexed data in arithmetic operations:

In [28]: obj3          In [29]: obj4      
Out[28]:               Out[29]:           
Ohio      35000        California      NaN
Oregon    16000        Ohio          35000
Texas     71000        Oregon        16000
Utah       5000        Texas         71000
dtype: int64           dtype: float64     
                                          
In [30]: obj3 + obj4
Out[30]: 
California       NaN
Ohio           70000

110 | Chapter 5: Getting Started with pandas

Oregon         32000
Texas         142000
Utah             NaN
dtype: float64

Data alignment features are addressed as a separate topic.

Both the Series object itself and its index have a name attribute, which integrates with
other key areas of pandas functionality:

In [31]: obj4.name = 'population'

In [32]: obj4.index.name = 'state'

In [33]: obj4
Out[33]: 
state
California      NaN
Ohio          35000
Oregon        16000
Texas         71000
Name: population, dtype: float64

A Series’s index can be altered in place by assignment:

In [34]: obj.index = ['Bob', 'Steve', 'Jeff', 'Ryan']

In [35]: obj
Out[35]: 
Bob      4
Steve    7
Jeff    -5
Ryan     3
dtype: int64

DataFrame
A DataFrame represents a tabular, spreadsheet-like data structure containing an or-
dered collection of columns, each of which can be a different value type (numeric,
string, boolean, etc.). The DataFrame has both a row and column index; it can be
thought of as a dict of Series (one for all sharing the same index). Compared with other
such DataFrame-like structures you may have used before (like R’s data.frame), row-
oriented and column-oriented operations in DataFrame are treated roughly symmet-
rically. Under the hood, the data is stored as one or more two-dimensional blocks rather
than a list, dict, or some other collection of one-dimensional arrays. The exact details
of DataFrame’s internals are far outside the scope of this book.

While DataFrame stores the data internally in a two-dimensional for-
mat, you can easily represent much higher-dimensional data in a tabular
format using hierarchical indexing, a subject of a later section and a key
ingredient in many of the more advanced data-handling features in pan-
das.

Introduction to pandas Data Structures | 111



Data Frame
• A dictionary of Series (labels for each series) 
• A spreadsheet with row keys (the index) and column headers 
• Has an index shared with each series 
• Allows easy reference to any cell 
• df = DataFrame({'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada'], 
                'year': [2000, 2001, 2002, 2001], 
                'pop': [1.5, 1.7, 3.6, 2.4]}) 

• Index is automatically assigned just as with a series but can be passed in as 
well via index kwarg 

• Can reassign column names by passing columns kwarg

14D. Koop, CSCI 503/490, Spring 2024



Table 5-1. Possible data inputs to DataFrame constructor

Type Notes

2D ndarray A matrix of data, passing optional row and column labels

dict of arrays, lists, or tuples Each sequence becomes a column in the DataFrame. All sequences must be the same length.

NumPy structured/record array Treated as the “dict of arrays” case

dict of Series Each value becomes a column. Indexes from each Series are unioned together to form the
result’s row index if no explicit index is passed.

dict of dicts Each inner dict becomes a column. Keys are unioned to form the row index as in the “dict of
Series” case.

list of dicts or Series Each item becomes a row in the DataFrame. Union of dict keys or Series indexes become the
DataFrame’s column labels

List of lists or tuples Treated as the “2D ndarray” case

Another DataFrame The DataFrame’s indexes are used unless different ones are passed

NumPy MaskedArray Like the “2D ndarray” case except masked values become NA/missing in the DataFrame result

Index Objects
pandas’s Index objects are responsible for holding the axis labels and other metadata
(like the axis name or names). Any array or other sequence of labels used when con-
structing a Series or DataFrame is internally converted to an Index:

In [67]: obj = Series(range(3), index=['a', 'b', 'c'])

In [68]: index = obj.index

In [69]: index
Out[69]: Index([u'a', u'b', u'c'], dtype='object')

In [70]: index[1:]
Out[70]: Index([u'b', u'c'], dtype='object')

Index objects are immutable and thus can’t be modified by the user:

In [71]: index[1] = 'd'
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-71-676fdeb26a68> in <module>()
----> 1 index[1] = 'd'
/home/phillip/miniconda3/envs/conda2/lib/python2.7/site-packages/pandas/core/
base.pyc in _disabled(self, *args, **kwargs)
    177         """This method will not function because object is immutable."""
    178         raise TypeError("'%s' does not support mutable operations." %
--> 179                         self.__class__)
    180 
    181     __setitem__ = __setslice__ = __delitem__ = __delslice__ = _disabled
TypeError: '<class 'pandas.core.index.Index'>' does not support mutable operations.

116 | Chapter 5: Getting Started with pandas

DataFrame Constructor Inputs

15

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 503/490, Spring 2024



DataFrame Access and Manipulation
• df.values → 2D NumPy array 

• Accessing a column: 
- df["<column>"] 

- df.<column> 

- Both return Series 
- Dot syntax only works when the column is a valid identifier 

• Assigning to a column: 
- df["<column>"] = <scalar> # all cells set to same value 

- df["<column>"] = <array>  # values set in order 

- df["<column>"] = <series> # values set according to match 
                          # between df and series indexes

16D. Koop, CSCI 503/490, Spring 2024



Indexing
• Same as with NumPy arrays but can use index labels 
• Slicing with labels: NumPy is exclusive, Pandas is inclusive! 

- s = Series(np.arange(4)) 
s[0:2] # gives two values like numpy 

- s = Series(np.arange(4), index=['a', 'b', 'c', 'd']) 
s['a':'c'] # gives three values, not two! 

• Obtaining data subsets 
- []: get columns by label 
- loc: get rows/cols by label 
- iloc: get rows/cols by position (integer index) 

- For single cells (scalars), also have at and iat

17D. Koop, CSCI 503/490, Spring 2024



Data Frame

18D. Koop, CSCI 503/490, Spring 2024



Data Frame

18D. Koop, CSCI 503/490, Spring 2024

Column Names



Data Frame

18D. Koop, CSCI 503/490, Spring 2024

Column Names

Index



Data Frame

18D. Koop, CSCI 503/490, Spring 2024

Column Names

Index

Column: df['Island']



Data Frame

18D. Koop, CSCI 503/490, Spring 2024

Column Names

Index

Column: df['Island']

Row: df.loc[2]



Data Frame

18D. Koop, CSCI 503/490, Spring 2024

Column Names

Index

Column: df['Island']

Cell: df.loc[341,'Species']

Row: df.loc[2]



Data Frame

18D. Koop, CSCI 503/490, Spring 2024

Column Names

Index

Column: df['Island']

Cell: df.loc[341,'Species']

Missing Data

Row: df.loc[2]



Arithmetic
• Add, subtract, multiply, and divide are element-wise like numpy 
• …but use labels to align 
• …and missing labels lead to NaN (not a number) values 

• also have .add, .subtract, … that allow fill_value argument 
• obj3.add(obj4, fill_value=0)

19D. Koop, CSCI 503/490, Spring 2024

When only passing a dict, the index in the resulting Series will have the dict’s keys in
sorted order.

In [22]: states = ['California', 'Ohio', 'Oregon', 'Texas']

In [23]: obj4 = Series(sdata, index=states)

In [24]: obj4
Out[24]: 
California      NaN
Ohio          35000
Oregon        16000
Texas         71000
dtype: float64

In this case, 3 values found in sdata were placed in the appropriate locations, but since
no value for 'California' was found, it appears as NaN (not a number) which is con-
sidered in pandas to mark missing or NA values. I will use the terms “missing” or “NA”
to refer to missing data. The isnull and notnull functions in pandas should be used to
detect missing data:

In [25]: pd.isnull(obj4)      In [26]: pd.notnull(obj4)
Out[25]:                      Out[26]:                 
California     True           California    False      
Ohio          False           Ohio           True      
Oregon        False           Oregon         True      
Texas         False           Texas          True      
dtype: bool                   dtype: bool 

Series also has these as instance methods:

In [27]: obj4.isnull()
Out[27]: 
California     True
Ohio          False
Oregon        False
Texas         False
dtype: bool

I discuss working with missing data in more detail later in this chapter.

A critical Series feature for many applications is that it automatically aligns differently-
indexed data in arithmetic operations:

In [28]: obj3          In [29]: obj4      
Out[28]:               Out[29]:           
Ohio      35000        California      NaN
Oregon    16000        Ohio          35000
Texas     71000        Oregon        16000
Utah       5000        Texas         71000
dtype: int64           dtype: float64     
                                          
In [30]: obj3 + obj4
Out[30]: 
California       NaN
Ohio           70000

110 | Chapter 5: Getting Started with pandas

When only passing a dict, the index in the resulting Series will have the dict’s keys in
sorted order.

In [22]: states = ['California', 'Ohio', 'Oregon', 'Texas']

In [23]: obj4 = Series(sdata, index=states)

In [24]: obj4
Out[24]: 
California      NaN
Ohio          35000
Oregon        16000
Texas         71000
dtype: float64

In this case, 3 values found in sdata were placed in the appropriate locations, but since
no value for 'California' was found, it appears as NaN (not a number) which is con-
sidered in pandas to mark missing or NA values. I will use the terms “missing” or “NA”
to refer to missing data. The isnull and notnull functions in pandas should be used to
detect missing data:

In [25]: pd.isnull(obj4)      In [26]: pd.notnull(obj4)
Out[25]:                      Out[26]:                 
California     True           California    False      
Ohio          False           Ohio           True      
Oregon        False           Oregon         True      
Texas         False           Texas          True      
dtype: bool                   dtype: bool 

Series also has these as instance methods:

In [27]: obj4.isnull()
Out[27]: 
California     True
Ohio          False
Oregon        False
Texas         False
dtype: bool

I discuss working with missing data in more detail later in this chapter.

A critical Series feature for many applications is that it automatically aligns differently-
indexed data in arithmetic operations:

In [28]: obj3          In [29]: obj4      
Out[28]:               Out[29]:           
Ohio      35000        California      NaN
Oregon    16000        Ohio          35000
Texas     71000        Oregon        16000
Utah       5000        Texas         71000
dtype: int64           dtype: float64     
                                          
In [30]: obj3 + obj4
Out[30]: 
California       NaN
Ohio           70000

110 | Chapter 5: Getting Started with pandas

Oregon         32000
Texas         142000
Utah             NaN
dtype: float64

Data alignment features are addressed as a separate topic.

Both the Series object itself and its index have a name attribute, which integrates with
other key areas of pandas functionality:

In [31]: obj4.name = 'population'

In [32]: obj4.index.name = 'state'

In [33]: obj4
Out[33]: 
state
California      NaN
Ohio          35000
Oregon        16000
Texas         71000
Name: population, dtype: float64

A Series’s index can be altered in place by assignment:

In [34]: obj.index = ['Bob', 'Steve', 'Jeff', 'Ryan']

In [35]: obj
Out[35]: 
Bob      4
Steve    7
Jeff    -5
Ryan     3
dtype: int64

DataFrame
A DataFrame represents a tabular, spreadsheet-like data structure containing an or-
dered collection of columns, each of which can be a different value type (numeric,
string, boolean, etc.). The DataFrame has both a row and column index; it can be
thought of as a dict of Series (one for all sharing the same index). Compared with other
such DataFrame-like structures you may have used before (like R’s data.frame), row-
oriented and column-oriented operations in DataFrame are treated roughly symmet-
rically. Under the hood, the data is stored as one or more two-dimensional blocks rather
than a list, dict, or some other collection of one-dimensional arrays. The exact details
of DataFrame’s internals are far outside the scope of this book.

While DataFrame stores the data internally in a two-dimensional for-
mat, you can easily represent much higher-dimensional data in a tabular
format using hierarchical indexing, a subject of a later section and a key
ingredient in many of the more advanced data-handling features in pan-
das.

Introduction to pandas Data Structures | 111



Filtering
• Same as with numpy arrays but allows use of column-based criteria 

- data[data < 5] = 0 

- data[data['three'] > 5] 

• data < 5 → boolean data frame, can be used to select specific elements 
• Multiple criteria, use &, |, and ~; remember parentheses! 

- data[(data['three'] > 5) & (data['two'] < 10)] 

• Also can check for missing values via isna()/isnull()/notnull() 
- data[data['three'].notnull() & data['two'].isnull()]

20D. Koop, CSCI 503/490, Spring 2024



Data Frame
• A dictionary of Series (labels for each series) 
• A spreadsheet with row keys (the index) and column headers 
• Has an index shared with each series 
• Allows easy reference to any cell 
• df = DataFrame({'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada'], 
                'year': [2000, 2001, 2002, 2001], 
                'pop': [1.5, 1.7, 3.6, 2.4]}) 

• Index is automatically assigned just as with a series but can be passed in as 
well via index kwarg 

• Can reassign column names by passing columns kwarg

21D. Koop, CSCI 503/490, Spring 2024



Data Frame

22D. Koop, CSCI 503/490, Spring 2024



Data Frame

22D. Koop, CSCI 503/490, Spring 2024

Column Names



Data Frame

22D. Koop, CSCI 503/490, Spring 2024

Column Names

Index



Data Frame

22D. Koop, CSCI 503/490, Spring 2024

Column Names

Index

Column: df['Island']



Data Frame

22D. Koop, CSCI 503/490, Spring 2024

Column Names

Index

Column: df['Island']

Row: df.loc[2]



Data Frame

22D. Koop, CSCI 503/490, Spring 2024

Column Names

Index

Column: df['Island']

Cell: df.loc[341,'Species']

Row: df.loc[2]



Data Frame

22D. Koop, CSCI 503/490, Spring 2024

Column Names

Index

Column: df['Island']

Cell: df.loc[341,'Species']

Missing Data

Row: df.loc[2]



Filtering

23D. Koop, CSCI 503/490, Spring 2024

df[df['Culmen Length (mm)'] > 40]



Filtering

23D. Koop, CSCI 503/490, Spring 2024

df[df['Culmen Length (mm)'] > 40]



DataFrame Index
• Similar to index for Series 
• Immutable 
• Can be shared with multiple structures (DataFrames or Series) 
• in operator works with: 'Ohio' in df.index 
• Can choose new index column(s) with set_index() 
• reindex creates a new object with the data conformed to new index 

- obj2 = obj.reindex(['a', 'b', 'c', 'd', 'e']) 

- can fill in missing values in different ways

24D. Koop, CSCI 503/490, Spring 2024


