
Programming Principles in Python (CSCI 503/490)

Exceptions

Dr. David Koop

D. Koop, CSCI 503/490, Spring 2024

2

Quiz

D. Koop, CSCI 503/490, Spring 2024

Question 1
• Given a class Car that inherits from Vehicle, what should the first line of its

constructor be?
(a) Vehicle(make, model, color)
(b) super().__init__(make, model, color)
(c) super.__init__(make, model, color)
(d) super(make, model, color)

3D. Koop, CSCI 503/490, Spring 2024

Question 2
• Which identifier does python conventionally use to refer to the current

instance in instance methods?
(a) this
(b) self
(c) obj
(d) cls

4D. Koop, CSCI 503/490, Spring 2024

Question 3
• Which of the following instance variables is intended to be protected?

(a) _attr_
(b) __attr
(c) proected: attr
(d) _attr

5D. Koop, CSCI 503/490, Spring 2024

Question 4
• Which decorator is used to define a setter for a property age?

(a) @setter(age)
(b) @age(setter)
(c) @property(age)
(d) @age.setter

6D. Koop, CSCI 503/490, Spring 2024

Question 5
• Which method would be called to evaluate 4 + Square(8)?

(a) Square.operator+
(b) Square.operator__add
(c) Square.__radd__
(d) Square.__add__

7D. Koop, CSCI 503/490, Spring 2024

Duck Typing
• "If it looks like a duck and quacks like a duck, it must be a duck."
• Python "does not look at an object’s type to determine if it has the right

interface; instead, the method or attribute is simply called or used"
• class Rectangle:
 def area(self):
 …

• class Circle:
 def area(self):
 …

• It doesn't matter that they don't have a common base class as long as they
respond to the methods/attributes we expect: shape.area()

8

[Python Glossary]
D. Koop, CSCI 503/490, Spring 2024

https://docs.python.org/3/glossary.html#term-duck-typing

Multiple Inheritance
• Can have a class inherit from two different superclasses
• HybridCar inherits from Car and Hybrid
• Python allows this!

- class HybridCar(Car, Hybrid): …

• Problem: how is super() is defined?
- Diamond Problem
- Python use the method resolution order (MRO) to determine order of calls

9D. Koop, CSCI 503/490, Spring 2024

Method Resolution Order
• The order in which Python checks classes for a method
• mro() is a class method
• Square.mro() # [__main__.Square, __main__.Rectangle, object]

• Order of base classes matters:
- class HybridCar(Car, Hybrid):
 pass
HybridCar.mro() # [__main__.HybridCar, __main__.Car,
 __main__.Hybrid, __main__.Vehicle, object]

- class HybridCar(Hybrid, Car):
 pass
HybridCar.mro() # [__main__.HybridCar, __main__.Hybrid,
 __main__.Car, __main__.Vehicle, object]

10D. Koop, CSCI 503/490, Spring 2024

Mixins
• Sometimes, we just want to add a particular method to a bunch of different

classes
• For example: print_as_dict()
• A mixin class allows us to specify one or more methods and add it as the

second
• Caution: Python searches from left to right so a base class should be at the

right with mixing

11D. Koop, CSCI 503/490, Spring 2024

Assignment 5
• Due next Monday
• Same Senate Stock Tracker data as A3
• Scripts, modules, packages
• Command-line program

12D. Koop, CSCI 503/490, Spring 2024

https://faculty.cs.niu.edu/~dakoop/cs503-2024sp/assignment5.html

Object-Based Programming
• With Python's libraries, you often don't need to write your own classes. Just
- Know what libraries are available
- Know what classes are available
- Make objects of existing classes
- Call their methods

• With inheritance and overriding and polymorphism, we have true object-
oriented programming (OOP)

13

[Deitel & Deitel]
D. Koop, CSCI 503/490, Spring 2024

14

What if we just want to store data?

D. Koop, CSCI 503/490, Spring 2024

Named Tuples
• Tuples are immutable, but cannot refer to with attribute names, only indexing
• Named tuples add the ability to use dot-notation
• from collections import namedtuple
Car = namedtuple('Car', ['make', 'model', 'year', 'color'])
car1 = Car(make='Toyota', model='Camry', year=2000,
 color="red")

• Can use kwargs or positional or mix
• car2 = Car('Ford', 'F150', 2018, 'gray')

• Access via dot-notation:
- car1.make # "Toyota"

- car2.year # 2018

15D. Koop, CSCI 503/490, Spring 2024

SimpleNamespace
• Named tuples do not allow mutation
• SimpleNamespace does allow mutation:
• from types import SimpleNamespace
car3 = SimpleNamespace(make='Toyota', model='Camry',
 year=2000, color="red")

• car3.num_doors = 4 # would fail for namedtuple

• Doesn't enforce any structure, though

16D. Koop, CSCI 503/490, Spring 2024

Typing
• Dynamic Typing: variable's type can change (what Python does)
• Static Typing: compiler enforces types, variable types generally don't change
• Duck Typing: check method/attribute existence, not type
• Python is a dynamically-typed language (and plans to remain so)
• …but it has recently added more support for type hinting/annotations that

allow static type checking
• Type annotations change nothing at runtime!

17

[RealPython, G. A. Hjelle]
D. Koop, CSCI 503/490, Spring 2024

https://realpython.com/python-type-checking/

Type Annotations
• def area(width : float, height : float) -> float:
 return width * height

• colon (:) after parameter names, followed by type
• arrow (->) after function signature, followed by type (then final colon)
• area("abc", 3) # runs, returns "abcabcabc"

• These won't prevent you from running this function with the wrong
arguments or returning a value that doesn't satisfy the type annotation

• Extensions for collections allows inner types to be specified:
- from typing import List
names : List[str] = ['Alice', 'Bob']

• Any and Optional, too

18D. Koop, CSCI 503/490, Spring 2024

mypy
• A static type checker for Python that uses the type annotations to check

whether types work out
• $ mypy <script.py>

- Writes type errors tagged by the line of code that introduced them
- Can also reveal the types of variables at various parts of the program

• There is an extension for Jupyter (mypy_ipython), but it basically works by
converting all cells to a script and then running mypy

- Cells not tagged in error messages
- Re-running cells introduces multiple copies of error
- Deleting cells doesn't remove errors

19D. Koop, CSCI 503/490, Spring 2024

Type Checking in Development Environments
• PyCharm can also use the type hints to do static type checking to alert

programmers to potential issues
• Microsoft VS Code Integration using Pyright

20D. Koop, CSCI 503/490, Spring 2024

https://github.com/microsoft/pyright

Type Checking Pros & Cons
• Pros:
- Good for documentation
- Improve IDEs and linters
- Build and maintain cleaner architecture

• Cons:
- Takes time and effort!
- Requires modern Python
- Some penalty for typing imports (can be alleviated)

21

[RealPython, G. A. Hjelle]
D. Koop, CSCI 503/490, Spring 2024

https://realpython.com/python-type-checking/

When to use typing
• No when learning Python
• No for short scripts, snippets in notebooks
• Yes for libraries, especially those used by others
• Yes for larger projects to better understand flow of code

22

[RealPython, G. A. Hjelle]
D. Koop, CSCI 503/490, Spring 2024

https://realpython.com/python-type-checking/

Data Classes
• from dataclasses import dataclass
@dataclass
class Rectangle:
 width: float
 height: float

• Rectangle(34, 21) # just works!

• Does a lot of boilerplate tasks
- Creates basic constructor (__init__)
- Creates __repr__ method
- Creates comparison dunder methods (==, !=, <, >, <=, >=)

23D. Koop, CSCI 503/490, Spring 2024

Data Classes
• Requires type annotations, but just like other type annotations, they are not

checked at runtime!
• Rectangle("abc", "def") # no error!

• Use mypy to check typing
• If typing is not important, use typing.Any for types
• from typing import Any
from dataclasses import dataclass
@dataclass
class Rectangle:
 width: Any
 height: Any

24D. Koop, CSCI 503/490, Spring 2024

Data Classes
• Can add methods as normal
• from dataclasses import dataclass
@dataclass
class Rectangle:
 width: float
 height: float

 def area(self):
 return self.width * self.height

• Supports factory methods for more complicated inits
• __post_init__ method for extra processing after __init__

25D. Koop, CSCI 503/490, Spring 2024

26

Exceptions

D. Koop, CSCI 503/490, Spring 2024

Dealing with Errors
• Can explicitly check for errors at each step
- Check for division by zero
- Check for invalid parameter value (e.g. string instead of int)

• Sometimes all of this gets in the way and can't be addressed succinctly
- Too many potential errors to check
- Cannot handle groups of the same type of errors together

• Allow programmer to determine when and how to handle issues
- Allow things to go wrong and handle them instead
- Allow errors to be propagated and addressed once

27D. Koop, CSCI 503/490, Spring 2024

Advantages of Exceptions
• Separate error-handling code from "regular" code
• Allows propagation of errors up the call stack
• Errors can be grouped and differentiated

28

[Java Tutorial, Oracle]
D. Koop, CSCI 503/490, Spring 2024

https://docs.oracle.com/javase/tutorial/essential/exceptions/advantages.html

Try-Except
• The try statement has the following form:
try:
 <body>
except <ErrorType>*:
 <handler>

• When Python encounters a try statement, it attempts to execute the
statements inside the body.

• If there is no error, control passes to the next statement after the try…
except (unless else or finally clauses)

• Note: except not catch

29D. Koop, CSCI 503/490, Spring 2024

Try-Except
• If an error occurs while executing the body, Python looks for an except clause

with a matching error type. If one is found, the handler code is executed.
• try:
 c = a / b
except ZeroDivisionError:
 c = 0

• Without the except clause (or one that doesn't match), the code crashes

30D. Koop, CSCI 503/490, Spring 2024

Exception Hierarchy
• Python's BaseException class is the base class for all exceptions
• Four primary subclasses:

- SystemExit: just terminates program execution
- KeyboardInterrupt: occurs when user types Crl+C or selects Interrupt

Kernel in Jupyter
- GeneratorExit: generator done producing values
- Exception: most exceptions subclass from this!

• ZeroDivisionError, NameError, ValueError, IndexError
• Most exception handling is done for these exceptions

31D. Koop, CSCI 503/490, Spring 2024

Exception Hierarchy
• Except clauses match when error is an instance of specified exception class
• Remember isinstance matches objects of subclasses!
• try:
 c = a / b
except Exception:
 c = 0

• Can also have a bare except clause (matches any exception!)
• try:
 c, d = a / b
except:
 c, d = 0, 0

• …but DON'T do this!

32D. Koop, CSCI 503/490, Spring 2024

Exception Granularity
• If you catch any exception using a base class near the top of the hierarchy,

you may be masking code errors
• try:
 c, d = a / b
except Exception:
 c, d = 0, 0

• Remember Exception catches any exception is an instance of Exception
• Catches TypeError: cannot unpack non-iterable float object
• Better to have more granular (specific) exceptions!
• We don't want to catch the TypeError because this is a programming error

not a runtime error

33D. Koop, CSCI 503/490, Spring 2024

Exception Locality
• Generally, want try statement to be specific to a part of the code
• try:
 with open('missing-file.dat') as f:
 lines = f.readlines()
 with open('output-file.dat', 'w') as fout:
 fout.write("Testing")
except OSError:
 print("An error occurred processing files.")

• We don't know whether reading failed or writing failed
• Maybe that is ok, but having multiple try-except clauses might help

34

[Deitel & Deitel]
D. Koop, CSCI 503/490, Spring 2024

Exception Locality
• try:
 fname = 'missing-file.dat'
 with open(fname) as f:
 lines = f.readlines()
except OSError:
 print(f"An error occurred reading {fname}")
try:
 out_fname = 'output-file.dat'
 with open('output-file.dat', 'w') as fout:
 fout.write("Testing")
except OSError:
 print(f"An error occurred writing {out_fname}")

35D. Koop, CSCI 503/490, Spring 2024

Multiple Except Clauses
• May also be able to address with multiple except clauses:
• try:
 fname = 'missing-file.dat'
 with open(fname) as f:
 lines = f.readlines()
 out_fname = 'output-file.dat'
 with open('output-file.dat', 'w') as fout:
 fout.write("Testing")
except FileNotFoundError:
 print(f"File {fname} does not exist")
except PermissionError:
 print(f"Cannot write to {out_fname}")

• However, other OSError problems (disk full, etc.) won't be caught

36D. Koop, CSCI 503/490, Spring 2024

Multiple Except Clauses
• Function like an if/elif sequence
• Checked in order so put more granular exceptions earlier!
• try:
 fname = 'missing-file.dat'
 with open(fname) as f:
 lines = f.readlines()
 out_fname = 'output-file.dat'
 with open('output-file.dat', 'w') as fout:
 fout.write("Testing")
except FileNotFoundError:
 print(f"File {fname} does not exist")
except OSError:
 print("An error occurred processing files")

37D. Koop, CSCI 503/490, Spring 2024

Multiple Except Clauses
• Function like an if/elif sequence
• Checked in order so put more granular exceptions earlier!
• try:
 fname = 'missing-file.dat'
 with open(fname) as f:
 lines = f.readlines()
 out_fname = 'output-file.dat'
 with open('output-file.dat', 'w') as fout:
 fout.write("Testing")
except OSError:
 print("An error occurred processing files")
except FileNotFoundError:
 print(f"File {fname} does not exist")

38D. Koop, CSCI 503/490, Spring 2024

Multiple Except Clauses
• Function like an if/elif sequence
• Checked in order so put more granular exceptions earlier!
• try:
 fname = 'missing-file.dat'
 with open(fname) as f:
 lines = f.readlines()
 out_fname = 'output-file.dat'
 with open('output-file.dat', 'w') as fout:
 fout.write("Testing")
except OSError:
 print("An error occurred processing files")
except FileNotFoundError:
 print(f"File {fname} does not exist")

38D. Koop, CSCI 503/490, Spring 2024

Bare Except
• The bare except clause acts as a catch-all (elif any other exception)
• try:
 fname = 'missing-file.dat'
 with open(fname) as f:
 lines = f.readlines()
 out_fname = 'output-file.dat'
 with open('output-file.dat', 'w') as fout:
 fout.write("Testing")
except FileNotFoundError:
 print(f"File {fname} does not exist")
except OSError:
 print("An error occurred processing files")
except:
 print("Any other error goes here")

39D. Koop, CSCI 503/490, Spring 2024

Handling Multiple Exceptions at Once
• Can process multiple exceptions with one clause, use tuple of classes
• Allows some specificity but without repeating
• try:
 fname = 'missing-file.dat'
 with open(fname) as f:
 lines = f.readlines()
 out_fname = 'output-file.dat'
 with open('output-file.dat', 'w') as fout:
 fout.write("Testing")
except (FileNotFoundError, PermissionError):
 print("An error occurred processing files")

40D. Koop, CSCI 503/490, Spring 2024

Exception Objects
• Exceptions themselves are a type of object.
• If you follow the error type with an identifier in an except clause, Python will

assign that identifier the actual exception object.
• Sometimes exceptions encode information that is useful for handling
• try:
 fname = 'missing-file.dat'
 with open(fname) as f:
 lines = f.readlines()
 out_fname = 'output-file.dat'
 with open('output-file.dat', 'w') as fout:
 fout.write("Testing")
except OSError as e:
 print(e.errno, e.filename, e)

41D. Koop, CSCI 503/490, Spring 2024

Else Clause
• Code that executes if no exception occurs
• b = 3
a = 2
try:
 c = b / a
except ZeroDivisionError:
 print("Division failed")
 c = 0
else:
 print("Division successful:", c)

42D. Koop, CSCI 503/490, Spring 2024

Finally
• Code that always runs, regardless of whether there is an exception
• b = 3
a = 0
try:
 c = b / a
except ZeroDivisionError:
 print("Division failed")
 c = 0
finally:
 print("This always runs")

43D. Koop, CSCI 503/490, Spring 2024

Finally
• Code that always runs, regardless of whether there is an exception
• …even if the exception isn't handled!
• b = 3
a = 0
try:
 c = b / a
finally:
 print("This always runs, even if we crash")

• Remember that context managers (e.g. for files) have built-in cleanup clauses

44D. Koop, CSCI 503/490, Spring 2024

