
Programming Principles in Python (CSCI 503/490)

Data

Dr. David Koop

D. Koop, CSCI 503/490, Fall 2024

Arrays
• Usually a fixed size—lists are meant to change size
• Are mutable—tuples are not
• Store only one type of data—lists and tuples can store anything
• Are faster to access and manipulate than lists or tuples
• Can be multidimensional:
- Can have list of lists or tuple of tuples but no guarantee on shape
- Multidimensional arrays are rectangles, cubes, etc.

2D. Koop, CSCI 503/490, Fall 2024

NumPy Arrays
• import numpy as np
• Creating:

- data1 = [6, 7, 8, 0, 1]

- arr1 = np.array(data1)

- arr1_float = np.array(data1, dtype='float64')

- np.ones((4,2)) # 2d array of ones

- arr1_ones = np.ones_like(arr1) # [1, 1, 1, 1, 1]

• Type and Shape Information:
- arr1.dtype # int64 # type of values stored in array

- arr1.ndim # 1 # number of dimensions

- arr1.shape # (5,) # shape of the array

3D. Koop, CSCI 503/490, Fall 2024

Array Operations
• a = np.array([1,2,3])
b = np.array([6,4,3])

• (Array, Array) Operations (Element-wise)
- Addition, Subtraction, Multiplication
- a + b # array([7, 6, 6])

• (Scalar, Array) Operations (Broadcasting):
- Addition, Subtraction, Multiplication, Division, Exponentiation
- a ** 2 # array([1, 4, 9])

- b + 3 # array([9, 7, 6])

4D. Koop, CSCI 503/490, Fall 2024

Indexing
• Same as with lists plus shorthand for 2D+

- arr1 = np.array([6, 7, 8, 0, 1])

- arr1[1]

- arr1[-1]

• What about two dimensions?
- arr2 = np.array([[1.5,2,3,4],[5,6,7,8]])

- arr[1][1]

- arr[1,1] # shorthand

5D. Koop, CSCI 503/490, Fall 2024

 [0.1913, 0.4544, 0.4519, 0.5535],
 [0.5994, 0.8174, -0.9297, -1.2564]])

Figure 4-2. Two-dimensional array slicing

Suppose each name corresponds to a row in the data array and we wanted to select all
the rows with corresponding name 'Bob'. Like arithmetic operations, comparisons
(such as ==) with arrays are also vectorized. Thus, comparing names with the string
'Bob' yields a boolean array:

In [87]: names == 'Bob'
Out[87]: array([True, False, False, True, False, False, False], dtype=bool)

This boolean array can be passed when indexing the array:

In [88]: data[names == 'Bob']
Out[88]:
array([[-0.048 , 0.5433, -0.2349, 1.2792],
 [2.1452, 0.8799, -0.0523, 0.0672]])

The boolean array must be of the same length as the axis it’s indexing. You can even
mix and match boolean arrays with slices or integers (or sequences of integers, more
on this later):

In [89]: data[names == 'Bob', 2:]
Out[89]:
array([[-0.2349, 1.2792],

86 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

numpy Array Slicing
• Indexing is similar to lists
- Even in 2D
- arr[2][2] same as arr[2,2]

• Slicing is a bit different:
- Slices are views
- Dimensionality unchanged with pure slicing
- arr[1:3][:2] != arr[1:3,:2]

6

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 503/490, Fall 2024

Assignment 7
• Illinois Unemployment Data
• Downloading and uncompressing files
• Finding files using OS libraries
• Use a match statement to process data
• Store per-county dataframes, each in a csv file

7D. Koop, CSCI 503/490, Fall 2024

https://faculty.cs.niu.edu/~dakoop/cs503-2024fa/assignment7.html

8

Quiz Wednesday

D. Koop, CSCI 503/490, Fall 2024

Array Transformations
• Transpose

- arr2.T # flip rows and columns

• Stacking: take iterable of arrays and stack them horizontally/vertically
- arrh1 = np.arange(3)

- arrh2 = np.arange(3,6)

- np.vstack([arrh1, arrh2])

- np.hstack([arr1.T, arr2.T]) # ???

9D. Koop, CSCI 503/490, Fall 2024

Boolean Indexing
• names == 'Bob' gives back booleans that represent the element-wise

comparison with the array names
• Boolean arrays can be used to index into another array:

- data[names == 'Bob']

• Can even mix and match with integer slicing
• Can do boolean operations (&, |) between arrays (just like addition,

subtraction)
- data[(names == 'Bob') | (names == 'Will')]

• Note: or and and do not work with arrays
• We can set values too! data[data < 0] = 0

10D. Koop, CSCI 503/490, Fall 2024

pandas
• Contains high-level data structures and manipulation tools designed to make

data analysis fast and easy in Python
• Originally built on top of NumPy
• Built with the following requirements:
- Data structures with labeled axes (aligning data)
- Support time series data
- Do arithmetic operations that include metadata (labels)
- Handle missing data
- Add merge and relational operations

11D. Koop, CSCI 503/490, Fall 2024

polars
• Contains high-level data structures and manipulation tools designed to make

data analysis "lightning" fast and easy in Python
- Built using Apache Arrow
- Written from scratch using Rust but with a Python API
- Parallelized (uses multiple cores)
- Intuitive API

12D. Koop, CSCI 503/490, Fall 2024

Code Conventions
• Universal:

- import pandas as pd

- import polars as pl

• Also used:
- from pandas import Series, DataFrame

- from polars import Series, DataFrame

13D. Koop, CSCI 503/490, Fall 2024

polars Series
• A one-dimensional data structure (with a type)

- s = pl.Series([1,2,3])
• May also have a name

- s = pl.Series('name',['a','b','c'])

• Just like numpy arrays, a series has a dtype
- s = pl.Series('name',[1,2,3],dtype=pl.Float)

• Indexing:
- s[0] # 1.0

14D. Koop, CSCI 503/490, Fall 2024

pandas Series
• A one-dimensional array (with a type)

- t = pd.Series([1,2,3])

• May also have a name:
- t = pd.Series([1,2,3], name='num')

• Just like numpy arrays, a series has a dtype
- t = pd.Series([1,2,3], name='num', dtype='float')

• Indexing: t[0]

• …but a panads Series also has an index (polars does not)

15D. Koop, CSCI 503/490, Fall 2024

pandas Series and the Index
• pandas Series is a one-dimensional array (with a type) plus an index
• Basically two arrays: t.values and t.index

- obj.index # [0, 1, 2]

• Can specify the index explicitly (could be strings)
- t = pd.Series([1,2,3],['a','b','c'])

• Kind of like fixed-length, ordered dictionary + can create from a dictionary
- t = pd.Series({'a': 1, 'b': 2, 'c': 3})

• Indexing:
- t['a']

- What about t[0]?

16D. Koop, CSCI 503/490, Fall 2024

polars Series Operations
• Can do binary operations with two Series
• Just like numpy, between two Series, these are elementwise

- pl.Series([1,2,3]) + pl.Series([1,2,3]) # pl.Series([2,4,6])

• Between a Series and a scalar, this is broadcast
- pl.Series([1,2,3]) + 4 # pl.Series([5,6,7])

• Have to have the same number of elements
- pl.Series([1,2,3]) + pl.Series([1,2,3,4]) # Error

• Also works with non-numeric operations:
- pl.Series(['a','b']) + pl.Series(['c','d'])

17D. Koop, CSCI 503/490, Fall 2024

pandas Series Operations
• Same as polars

- pd.Series([1,2,3]) + pd.Series([1,2,3]) # pd.Series([2,4,6])

- pd.Series([1,2,3]) + 4 # pd.Series([5,6,7])
• …but with custom indexes, the operations align:

- pd.Series([1,2,3],index=list('abc') +
pd.Series([1,2,3],index=list('cba')
=> pd.Series([4,4,4], index=['a','b','c'])

18

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 503/490, Fall 2024

When only passing a dict, the index in the resulting Series will have the dict’s keys in
sorted order.

In [22]: states = ['California', 'Ohio', 'Oregon', 'Texas']

In [23]: obj4 = Series(sdata, index=states)

In [24]: obj4
Out[24]:
California NaN
Ohio 35000
Oregon 16000
Texas 71000
dtype: float64

In this case, 3 values found in sdata were placed in the appropriate locations, but since
no value for 'California' was found, it appears as NaN (not a number) which is con-
sidered in pandas to mark missing or NA values. I will use the terms “missing” or “NA”
to refer to missing data. The isnull and notnull functions in pandas should be used to
detect missing data:

In [25]: pd.isnull(obj4) In [26]: pd.notnull(obj4)
Out[25]: Out[26]:
California True California False
Ohio False Ohio True
Oregon False Oregon True
Texas False Texas True
dtype: bool dtype: bool

Series also has these as instance methods:

In [27]: obj4.isnull()
Out[27]:
California True
Ohio False
Oregon False
Texas False
dtype: bool

I discuss working with missing data in more detail later in this chapter.

A critical Series feature for many applications is that it automatically aligns differently-
indexed data in arithmetic operations:

In [28]: obj3 In [29]: obj4
Out[28]: Out[29]:
Ohio 35000 California NaN
Oregon 16000 Ohio 35000
Texas 71000 Oregon 16000
Utah 5000 Texas 71000
dtype: int64 dtype: float64

In [30]: obj3 + obj4
Out[30]:
California NaN
Ohio 70000

110 | Chapter 5: Getting Started with pandas

When only passing a dict, the index in the resulting Series will have the dict’s keys in
sorted order.

In [22]: states = ['California', 'Ohio', 'Oregon', 'Texas']

In [23]: obj4 = Series(sdata, index=states)

In [24]: obj4
Out[24]:
California NaN
Ohio 35000
Oregon 16000
Texas 71000
dtype: float64

In this case, 3 values found in sdata were placed in the appropriate locations, but since
no value for 'California' was found, it appears as NaN (not a number) which is con-
sidered in pandas to mark missing or NA values. I will use the terms “missing” or “NA”
to refer to missing data. The isnull and notnull functions in pandas should be used to
detect missing data:

In [25]: pd.isnull(obj4) In [26]: pd.notnull(obj4)
Out[25]: Out[26]:
California True California False
Ohio False Ohio True
Oregon False Oregon True
Texas False Texas True
dtype: bool dtype: bool

Series also has these as instance methods:

In [27]: obj4.isnull()
Out[27]:
California True
Ohio False
Oregon False
Texas False
dtype: bool

I discuss working with missing data in more detail later in this chapter.

A critical Series feature for many applications is that it automatically aligns differently-
indexed data in arithmetic operations:

In [28]: obj3 In [29]: obj4
Out[28]: Out[29]:
Ohio 35000 California NaN
Oregon 16000 Ohio 35000
Texas 71000 Oregon 16000
Utah 5000 Texas 71000
dtype: int64 dtype: float64

In [30]: obj3 + obj4
Out[30]:
California NaN
Ohio 70000

110 | Chapter 5: Getting Started with pandas

Oregon 32000
Texas 142000
Utah NaN
dtype: float64

Data alignment features are addressed as a separate topic.

Both the Series object itself and its index have a name attribute, which integrates with
other key areas of pandas functionality:

In [31]: obj4.name = 'population'

In [32]: obj4.index.name = 'state'

In [33]: obj4
Out[33]:
state
California NaN
Ohio 35000
Oregon 16000
Texas 71000
Name: population, dtype: float64

A Series’s index can be altered in place by assignment:

In [34]: obj.index = ['Bob', 'Steve', 'Jeff', 'Ryan']

In [35]: obj
Out[35]:
Bob 4
Steve 7
Jeff -5
Ryan 3
dtype: int64

DataFrame
A DataFrame represents a tabular, spreadsheet-like data structure containing an or-
dered collection of columns, each of which can be a different value type (numeric,
string, boolean, etc.). The DataFrame has both a row and column index; it can be
thought of as a dict of Series (one for all sharing the same index). Compared with other
such DataFrame-like structures you may have used before (like R’s data.frame), row-
oriented and column-oriented operations in DataFrame are treated roughly symmet-
rically. Under the hood, the data is stored as one or more two-dimensional blocks rather
than a list, dict, or some other collection of one-dimensional arrays. The exact details
of DataFrame’s internals are far outside the scope of this book.

While DataFrame stores the data internally in a two-dimensional for-
mat, you can easily represent much higher-dimensional data in a tabular
format using hierarchical indexing, a subject of a later section and a key
ingredient in many of the more advanced data-handling features in pan-
das.

Introduction to pandas Data Structures | 111

pandas Series Operations
• Missing labels lead to NaN (not a number) values

• also have .add, .subtract, … that allow fill_value argument
• obj3.add(obj4, fill_value=0)

19D. Koop, CSCI 503/490, Fall 2024

When only passing a dict, the index in the resulting Series will have the dict’s keys in
sorted order.

In [22]: states = ['California', 'Ohio', 'Oregon', 'Texas']

In [23]: obj4 = Series(sdata, index=states)

In [24]: obj4
Out[24]:
California NaN
Ohio 35000
Oregon 16000
Texas 71000
dtype: float64

In this case, 3 values found in sdata were placed in the appropriate locations, but since
no value for 'California' was found, it appears as NaN (not a number) which is con-
sidered in pandas to mark missing or NA values. I will use the terms “missing” or “NA”
to refer to missing data. The isnull and notnull functions in pandas should be used to
detect missing data:

In [25]: pd.isnull(obj4) In [26]: pd.notnull(obj4)
Out[25]: Out[26]:
California True California False
Ohio False Ohio True
Oregon False Oregon True
Texas False Texas True
dtype: bool dtype: bool

Series also has these as instance methods:

In [27]: obj4.isnull()
Out[27]:
California True
Ohio False
Oregon False
Texas False
dtype: bool

I discuss working with missing data in more detail later in this chapter.

A critical Series feature for many applications is that it automatically aligns differently-
indexed data in arithmetic operations:

In [28]: obj3 In [29]: obj4
Out[28]: Out[29]:
Ohio 35000 California NaN
Oregon 16000 Ohio 35000
Texas 71000 Oregon 16000
Utah 5000 Texas 71000
dtype: int64 dtype: float64

In [30]: obj3 + obj4
Out[30]:
California NaN
Ohio 70000

110 | Chapter 5: Getting Started with pandas

When only passing a dict, the index in the resulting Series will have the dict’s keys in
sorted order.

In [22]: states = ['California', 'Ohio', 'Oregon', 'Texas']

In [23]: obj4 = Series(sdata, index=states)

In [24]: obj4
Out[24]:
California NaN
Ohio 35000
Oregon 16000
Texas 71000
dtype: float64

In this case, 3 values found in sdata were placed in the appropriate locations, but since
no value for 'California' was found, it appears as NaN (not a number) which is con-
sidered in pandas to mark missing or NA values. I will use the terms “missing” or “NA”
to refer to missing data. The isnull and notnull functions in pandas should be used to
detect missing data:

In [25]: pd.isnull(obj4) In [26]: pd.notnull(obj4)
Out[25]: Out[26]:
California True California False
Ohio False Ohio True
Oregon False Oregon True
Texas False Texas True
dtype: bool dtype: bool

Series also has these as instance methods:

In [27]: obj4.isnull()
Out[27]:
California True
Ohio False
Oregon False
Texas False
dtype: bool

I discuss working with missing data in more detail later in this chapter.

A critical Series feature for many applications is that it automatically aligns differently-
indexed data in arithmetic operations:

In [28]: obj3 In [29]: obj4
Out[28]: Out[29]:
Ohio 35000 California NaN
Oregon 16000 Ohio 35000
Texas 71000 Oregon 16000
Utah 5000 Texas 71000
dtype: int64 dtype: float64

In [30]: obj3 + obj4
Out[30]:
California NaN
Ohio 70000

110 | Chapter 5: Getting Started with pandas

Oregon 32000
Texas 142000
Utah NaN
dtype: float64

Data alignment features are addressed as a separate topic.

Both the Series object itself and its index have a name attribute, which integrates with
other key areas of pandas functionality:

In [31]: obj4.name = 'population'

In [32]: obj4.index.name = 'state'

In [33]: obj4
Out[33]:
state
California NaN
Ohio 35000
Oregon 16000
Texas 71000
Name: population, dtype: float64

A Series’s index can be altered in place by assignment:

In [34]: obj.index = ['Bob', 'Steve', 'Jeff', 'Ryan']

In [35]: obj
Out[35]:
Bob 4
Steve 7
Jeff -5
Ryan 3
dtype: int64

DataFrame
A DataFrame represents a tabular, spreadsheet-like data structure containing an or-
dered collection of columns, each of which can be a different value type (numeric,
string, boolean, etc.). The DataFrame has both a row and column index; it can be
thought of as a dict of Series (one for all sharing the same index). Compared with other
such DataFrame-like structures you may have used before (like R’s data.frame), row-
oriented and column-oriented operations in DataFrame are treated roughly symmet-
rically. Under the hood, the data is stored as one or more two-dimensional blocks rather
than a list, dict, or some other collection of one-dimensional arrays. The exact details
of DataFrame’s internals are far outside the scope of this book.

While DataFrame stores the data internally in a two-dimensional for-
mat, you can easily represent much higher-dimensional data in a tabular
format using hierarchical indexing, a subject of a later section and a key
ingredient in many of the more advanced data-handling features in pan-
das.

Introduction to pandas Data Structures | 111

DataFrame
• A collection of Series (uniquely named)
- Similar to a table in a database
- Similar to a sheet in a spreadsheet

• df = DataFrame({'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada'],
 'year': [2000, 2001, 2002, 2001],
 'pop': [1.5, 1.7, 3.6, 2.4]})

• In pandas:
- Has an index shared with each series
- Index is automatically assigned just as with a series but can be passed in as

well via index kwarg

20D. Koop, CSCI 503/490, Fall 2024

Table 5-1. Possible data inputs to DataFrame constructor

Type Notes

2D ndarray A matrix of data, passing optional row and column labels

dict of arrays, lists, or tuples Each sequence becomes a column in the DataFrame. All sequences must be the same length.

NumPy structured/record array Treated as the “dict of arrays” case

dict of Series Each value becomes a column. Indexes from each Series are unioned together to form the
result’s row index if no explicit index is passed.

dict of dicts Each inner dict becomes a column. Keys are unioned to form the row index as in the “dict of
Series” case.

list of dicts or Series Each item becomes a row in the DataFrame. Union of dict keys or Series indexes become the
DataFrame’s column labels

List of lists or tuples Treated as the “2D ndarray” case

Another DataFrame The DataFrame’s indexes are used unless different ones are passed

NumPy MaskedArray Like the “2D ndarray” case except masked values become NA/missing in the DataFrame result

Index Objects
pandas’s Index objects are responsible for holding the axis labels and other metadata
(like the axis name or names). Any array or other sequence of labels used when con-
structing a Series or DataFrame is internally converted to an Index:

In [67]: obj = Series(range(3), index=['a', 'b', 'c'])

In [68]: index = obj.index

In [69]: index
Out[69]: Index([u'a', u'b', u'c'], dtype='object')

In [70]: index[1:]
Out[70]: Index([u'b', u'c'], dtype='object')

Index objects are immutable and thus can’t be modified by the user:

In [71]: index[1] = 'd'

TypeError Traceback (most recent call last)
<ipython-input-71-676fdeb26a68> in <module>()
----> 1 index[1] = 'd'
/home/phillip/miniconda3/envs/conda2/lib/python2.7/site-packages/pandas/core/
base.pyc in _disabled(self, *args, **kwargs)
 177 """This method will not function because object is immutable."""
 178 raise TypeError("'%s' does not support mutable operations." %
--> 179 self.__class__)
 180
 181 __setitem__ = __setslice__ = __delitem__ = __delslice__ = _disabled
TypeError: '<class 'pandas.core.index.Index'>' does not support mutable operations.

116 | Chapter 5: Getting Started with pandas

pandas DataFrame Constructor Inputs

21

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 503/490, Fall 2024

DataFrame Columns
• Access:
- polars: df['state']
- pandas: dfa['state'] or dfa.state (doesn't always work!)

• Modification:
- polars: df.with_columns(pl.Series('state',
 ['Ohio','Ohio','Texas','Nevada'))

- pandas: df.assign(state=['Ohio','Ohio','Texas','Nevada'])
- Both create new data frames
- pandas: df['state'] = ['Ohio','Ohio','Texas','Nevada']
- This mutates the dataframe but causes problems so avoid it!

22D. Koop, CSCI 503/490, Fall 2024

DataFrame Multiple Columns
• polars:

- df.select('state','year')

• pandas:
- df[['state','year']]

- Not a new operator! It is a subscript where the argument is a list

23D. Koop, CSCI 503/490, Fall 2024

DataFrame Indexing and Slicing
• polars:

- df[0], df[0:1] # equivalent, data frame with single row
• pandas:

- dfa[0] # error
- dfa.loc[0] # a Series!
- dfa[0:2] # a data frame with two rows

• pandas with an index (dfi = dfa.set_index('state'))
- dfi['Texas'], dfi['Ohio'] # a Series, a DataFrame!
- dfi.loc['Ohio':'Texas'] # inclusive slice!
- dfi.iloc[0:2] # not inclusive!

24D. Koop, CSCI 503/490, Fall 2024

pandas DataFrame Indexing and Slicing
• Same as with NumPy arrays but can use index labels
• Slicing with labels: NumPy is exclusive, Pandas is inclusive!

- s = Series(np.arange(4))
s[0:2] # gives two values like numpy

- s = Series(np.arange(4), index=['a', 'b', 'c', 'd'])
s['a':'c'] # gives three values, not two!

• Obtaining data subsets
- loc: get rows/cols by label
- iloc: get rows/cols by position (integer index)

25D. Koop, CSCI 503/490, Fall 2024

DataFrame Filtering
• polars:

- df['pop'] > 2 # boolean Series

- df.filter(pl.col('pop') > 2) # subset of dataframe

• pandas:
- dfa['pop'] > 2 # boolean Series

- dfa[dfa['pop'] > 2] # subset of dataframe

- dfa.query('pop > 2') # subset of dataframe

• Multiple criteria, use &, |, and ~; remember parentheses!
- df.filter((pl.col('year') < 2002) & (pl.col('pop') > 2))

- dfa[(dfa['year'] < 2002) & (dfa['pop'] > 2)]

26D. Koop, CSCI 503/490, Fall 2024

Sorting
• polars: df.sort('pop')
• pandas: dfa.sort_values('pop')
• Can sort by multiple columns, too
• pandas also has a sort_index method to sort by the index

- dfa.sort_index()

27D. Koop, CSCI 503/490, Fall 2024

Statistics
• Many common statistical methods can be used (min, max, median, etc.)
• describe: shortcut for easy stats!

28D. Koop, CSCI 503/490, Fall 2024

 one two
a 1.40 NaN
b 8.50 -4.5
c NaN NaN
d 9.25 -5.8

Another type of method is neither a reduction nor an accumulation. describe is one
such example, producing multiple summary statistics in one shot:

In [204]: df.describe()
Out[204]:
 one two
count 3.000000 2.000000
mean 3.083333 -2.900000
std 3.493685 2.262742
min 0.750000 -4.500000
25% 1.075000 -3.700000
50% 1.400000 -2.900000
75% 4.250000 -2.100000
max 7.100000 -1.300000

On non-numeric data, describe produces alternate summary statistics:

In [205]: obj = Series(['a', 'a', 'b', 'c'] * 4)

In [206]: obj.describe()
Out[206]:
count 16
unique 3
top a
freq 8
dtype: object

See Table 5-10 for a full list of summary statistics and related methods.

Table 5-10. Descriptive and summary statistics

Method Description

count Number of non-NA values

describe Compute set of summary statistics for Series or each DataFrame column

min, max Compute minimum and maximum values

argmin, argmax Compute index locations (integers) at which minimum or maximum value obtained, respectively

idxmin, idxmax Compute index values at which minimum or maximum value obtained, respectively

quantile Compute sample quantile ranging from 0 to 1

sum Sum of values

mean Mean of values

median Arithmetic median (50% quantile) of values

mad Mean absolute deviation from mean value

var Sample variance of values

std Sample standard deviation of values

Summarizing and Computing Descriptive Statistics | 135

 one two
a 1.40 NaN
b 8.50 -4.5
c NaN NaN
d 9.25 -5.8

Another type of method is neither a reduction nor an accumulation. describe is one
such example, producing multiple summary statistics in one shot:

In [204]: df.describe()
Out[204]:
 one two
count 3.000000 2.000000
mean 3.083333 -2.900000
std 3.493685 2.262742
min 0.750000 -4.500000
25% 1.075000 -3.700000
50% 1.400000 -2.900000
75% 4.250000 -2.100000
max 7.100000 -1.300000

On non-numeric data, describe produces alternate summary statistics:

In [205]: obj = Series(['a', 'a', 'b', 'c'] * 4)

In [206]: obj.describe()
Out[206]:
count 16
unique 3
top a
freq 8
dtype: object

See Table 5-10 for a full list of summary statistics and related methods.

Table 5-10. Descriptive and summary statistics

Method Description

count Number of non-NA values

describe Compute set of summary statistics for Series or each DataFrame column

min, max Compute minimum and maximum values

argmin, argmax Compute index locations (integers) at which minimum or maximum value obtained, respectively

idxmin, idxmax Compute index values at which minimum or maximum value obtained, respectively

quantile Compute sample quantile ranging from 0 to 1

sum Sum of values

mean Mean of values

median Arithmetic median (50% quantile) of values

mad Mean absolute deviation from mean value

var Sample variance of values

std Sample standard deviation of values

Summarizing and Computing Descriptive Statistics | 135

Unique Values and Value Counts
• polars: unique() returns a Series/DataFrame with duplicates dropped
• pandas is more complicated
- Series unique() returns an array with only the unique values (no index)

• s = Series(['c','a','d','a','a','b','b','c','c'])
s.unique() # array(['c', 'a', 'd', 'b'])

- Data Frame drop_duplicates returns a DataFrame with duplicates
dropped

• Also nunique()/n_unique() to count number of unique entries
• value_counts returns a Series/DataFrame with index frequencies:

- s.value_counts() # Series({'c': 3,'a': 3,'b': 2,'d': 1})

29D. Koop, CSCI 503/490, Fall 2024

pandas DataFrame

30D. Koop, CSCI 503/490, Fall 2024

pandas DataFrame

30D. Koop, CSCI 503/490, Fall 2024

Column Names

pandas DataFrame

30D. Koop, CSCI 503/490, Fall 2024

Column Names

Index

pandas DataFrame

30D. Koop, CSCI 503/490, Fall 2024

Column Names

Index

Column: df['Island']

pandas DataFrame

30D. Koop, CSCI 503/490, Fall 2024

Column Names

Index

Column: df['Island']

Row: df.loc[2]

pandas DataFrame

30D. Koop, CSCI 503/490, Fall 2024

Column Names

Index

Column: df['Island']

Cell: df.loc[341,'Species']

Row: df.loc[2]

pandas DataFrame

30D. Koop, CSCI 503/490, Fall 2024

Column Names

Index

Column: df['Island']

Cell: df.loc[341,'Species']

Missing Data

Row: df.loc[2]

polars DataFrame

31D. Koop, CSCI 503/490, Fall 2024

polars DataFrame

31D. Koop, CSCI 503/490, Fall 2024

Column Names
& Types

polars DataFrame

31D. Koop, CSCI 503/490, Fall 2024

Column Names
& Types

Column: df['Island']

polars DataFrame

31D. Koop, CSCI 503/490, Fall 2024

Column Names
& Types

Column: df['Island']

Row: df[2]

polars DataFrame

31D. Koop, CSCI 503/490, Fall 2024

Column Names
& Types

Column: df['Island']

Cell: df['Species'][341]

Row: df[2]

polars DataFrame

31D. Koop, CSCI 503/490, Fall 2024

Column Names
& Types

Column: df['Island']

Cell: df['Species'][341]

Missing Data

Row: df[2]

pandas Filtering

32D. Koop, CSCI 503/490, Fall 2024

df[df['Culmen Length (mm)'] > 40]

pandas Filtering

32D. Koop, CSCI 503/490, Fall 2024

df[df['Culmen Length (mm)'] > 40]

polars Filtering

33D. Koop, CSCI 503/490, Fall 2024

df.filter(pl.col('Culmen Length (mm)') > 40)

polars Filtering

33D. Koop, CSCI 503/490, Fall 2024

df.filter(pl.col('Culmen Length (mm)') > 40)

Reading and Writing CSV Files
• polars

- df = pl.read_csv(<fname>)

- df.write_csv(<fname>)

• pandas
- dfa = pd.read_csv(<fname>)

- dfa.to_csv(<fname>)

• Many options available!

34D. Koop, CSCI 503/490, Fall 2024

Reading & Writing Data in Pandas

35

[https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html]
D. Koop, CSCI 503/490, Fall 2024

Format
Type

Data Description Reader Writer
text CSV read_csv to_csv
text Fixed-Width Text File read_fwf
text JSON read_json to_json
text HTML read_html to_html
text Local clipboard read_clipboard to_clipboard

MS Excel read_excel to_excel
binary OpenDocument read_excel
binary HDF5 Format read_hdf to_hdf
binary Feather Format read_feather to_feather
binary Parquet Format read_parquet to_parquet
binary ORC Format read_orc
binary Msgpack read_msgpack to_msgpack
binary Stata read_stata to_stata
binary SAS read_sas
binary SPSS read_spss
binary Python Pickle Format read_pickle to_pickle
SQL SQL read_sql to_sql
SQL Google BigQuery read_gbq to_gbq

https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html
https://en.wikipedia.org/wiki/Comma-separated_values
https://www.json.org/
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/Microsoft_Excel
http://www.opendocumentformat.org/
https://support.hdfgroup.org/HDF5/whatishdf5.html
https://github.com/wesm/feather
https://parquet.apache.org/
https://https//orc.apache.org/
https://msgpack.org/index.html
https://en.wikipedia.org/wiki/Stata
https://en.wikipedia.org/wiki/SAS_(software)
https://en.wikipedia.org/wiki/SPSS
https://docs.python.org/3/library/pickle.html
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/BigQuery

pandas read_csv
• Convenient method to read csv files
• Lots of different options to help get data into the desired format
• Basic: dfa = pd.read_csv(fname)
• Parameters:

- path: where to read the data from
- sep (or delimiter): the delimiter (',', ' ', '\t', '\s+')
- header: if None, no header
- index_col: which column to use as the row index
- names: list of header names (e.g. if the file has no header)
- skiprows: number of list of lines to skip

36D. Koop, CSCI 503/490, Fall 2024

Writing CSV data with pandas
• Basic: dfa.to_csv(<fname>)
• Change delimiter with sep kwarg:

- dfa.to_csv('example.dsv', sep='|')

• Change missing value representation
- dfa.to_csv('example.dsv', na_rep='NULL')

• Don't write row or column labels:
- dfa.to_csv('example.csv', index=False, header=False)

• Series may also be written to csv

37D. Koop, CSCI 503/490, Fall 2024

