
Programming Principles in Python (CSCI 503/490)

Arrays

Dr. David Koop

D. Koop, CSCI 503/490, Fall 2024

Match Statement
• Python 3.10 added a match statement that can be used like a switch

statement
• match val:
 case 1:
 print('1st')
 case 2:
 print('2nd')
 case _:
 print('???')

• … but this isn't better than if/elif or a dictionary dispatch
• The reason it was introduced is that it can do more than a switch statement

2D. Koop, CSCI 503/490, Fall 2024

Structural Pattern Matching
• Besides literal cases, match statements can be used to
- differentiate structure
- assign values
- differentiate class instances

• Example:
• match sys.argv:
 case [_, "commit"]:
 print("Committing")
 case [_, 'add', fname]:
 print("Adding file", fname)

3D. Koop, CSCI 503/490, Fall 2024

Patterns
• Sequence Pattern:
match sys.argv:
 case [_, "commit"]:
 print("Committing")
 case [_, 'add', *fnames]:
 print("Adding files", fnames)

• Or and As Pattern:
match command.split():
 case ["go", ("north" | "south" | "east" | "west") as d]:
 current_room = current_room.neighbor(d)

4D. Koop, CSCI 503/490, Fall 2024

Mapping Pattern
• for action in actions:
 match action:
 case {"text": message, "color": c}:
 ui.set_text_color(c)
 ui.display(message)
 case {"sleep": duration}:
 ui.wait(duration)
 case {"sound": str(url), "format": "mp3"}:
 ui.play(url)
 case {"sound": _, "format": fmt, **rest}:
 warning("Unsupported audio format", fmt, rest)

• Remember: Any unmatched key-value pairs are ignored!
• Can capture other pairs using **rest

5D. Koop, CSCI 503/490, Fall 2024

Class Pattern
• @dataclass
class Click:
 x: float
 y: float
 button: Button # enum(LEFT, MIDDLE, RIGHT)

for event in events:
 match event:
 case Click(x, y, button=Button.LEFT):
 print("GOT a left click", x, y)
 case Click():
 print("GOT a click")
 case _:
 print("NO click")

6D. Koop, CSCI 503/490, Fall 2024

Assignment 7
• Concurrency, System Integration, and Structural Pattern Matching
• Coming soon…

7D. Koop, CSCI 503/490, Fall 2024

Monday
• I am at a workshop so no in-person lecture
• Video lecture
• Assignment 7 will have been released
• Quiz Wednesday

8D. Koop, CSCI 503/490, Fall 2024

Arrays

What is the difference between an array and a list (or a tuple)?

9D. Koop, CSCI 503/490, Fall 2024

Arrays
• Usually a fixed size—lists are meant to change size
• Are mutable—tuples are not
• Store only one type of data—lists and tuples can store any combination
• Are faster to access and manipulate than lists or tuples
• Can be multidimensional:
- Can have list of lists or tuple of tuples but no guarantee on shape
- Multidimensional arrays are rectangles, cubes, etc.

10D. Koop, CSCI 503/490, Fall 2024

Why NumPy?
• Fast vectorized array operations for data munging and cleaning, subsetting

and filtering, transformation, and any other kinds of computations
• Common array algorithms like sorting, unique, and set operations
• Efficient descriptive statistics and aggregating/summarizing data
• Data alignment and relational data manipulations for merging and joining

together heterogeneous data sets
• Expressing conditional logic as array expressions instead of loops with if-
elif-else branches

• Group-wise data manipulations (aggregation, transformation, function
application).

11

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 503/490, Fall 2024

12

import numpy as np

D. Koop, CSCI 503/490, Fall 2024

Creating arrays
• data1 = [6, 7, 8, 0, 1]
arr1 = np.array(data1)

• data2 = [[1.5,2,3,4],[5,6,7,8]]
arr2 = np.array(data2)

• data3 = np.array([6, "abc", 3.57]) # !!! check !!!

• Can check the type of an array in dtype property
• Types:

- arr1.dtype # dtype('int64')

- arr3.dtype # dtype('<U21'), unicode plus # chars

13D. Koop, CSCI 503/490, Fall 2024

Types
• "But I thought Python wasn't stingy about types…"
• numpy aims for speed
• Able to do array arithmetic
• int16, int32, int64, float32, float64, bool, object
• Can specify type explicitly

- arr1_float = np.array(data1, dtype='float64')
• astype method allows you to convert between different types of arrays:

arr = np.array([1, 2, 3, 4, 5])
arr.dtype
float_arr = arr.astype(np.float64)

14D. Koop, CSCI 503/490, Fall 2024

In [36]: arr2.dtype
Out[36]: dtype('int32')

dtypes are a source of NumPy’s flexibility for interacting with data coming from other
systems. In most cases they provide a mapping directly onto an underlying disk or
memory representation, which makes it easy to read and write binary streams of data
to disk and also to connect to code written in a low-level language like C or Fortran.
The numerical dtypes are named the same way: a type name, like float or int, fol‐
lowed by a number indicating the number of bits per element. A standard double-
precision floating-point value (what’s used under the hood in Python’s float object)
takes up 8 bytes or 64 bits. Thus, this type is known in NumPy as float64. See
Table 4-2 for a full listing of NumPy’s supported data types.

Don’t worry about memorizing the NumPy dtypes, especially if
you’re a new user. It’s often only necessary to care about the general
kind of data you’re dealing with, whether floating point, complex,
integer, boolean, string, or general Python object. When you need
more control over how data are stored in memory and on disk,
especially large datasets, it is good to know that you have control
over the storage type.

Table 4-2. NumPy data types
Type Type code Description
int8, uint8 i1, u1 Signed and unsigned 8-bit (1 byte) integer types
int16, uint16 i2, u2 Signed and unsigned 16-bit integer types
int32, uint32 i4, u4 Signed and unsigned 32-bit integer types
int64, uint64 i8, u8 Signed and unsigned 64-bit integer types
float16 f2 Half-precision floating point
float32 f4 or f Standard single-precision floating point; compatible with C float
float64 f8 or d Standard double-precision floating point; compatible with C double and

Python float object
float128 f16 or g Extended-precision floating point
complex64,
complex128,
complex256

c8, c16,
c32

Complex numbers represented by two 32, 64, or 128 floats, respectively

bool ? Boolean type storing True and False values
object O Python object type; a value can be any Python object
string_ S Fixed-length ASCII string type (1 byte per character); for example, to create a

string dtype with length 10, use 'S10'
unicode_ U Fixed-length Unicode type (number of bytes platform specific); same

specification semantics as string_ (e.g., 'U10')

4.1 The NumPy ndarray: A Multidimensional Array Object | 91

numpy data types (dtypes)

15

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 503/490, Fall 2024

Array Shape
• Our normal way of checking the size of a collection is… len
• How does this work for arrays?
• arr1 = np.array([1,2,3,6,9])
len(arr1) # 5

• arr2 = np.array([[1.5,2,3,4],[5,6,7,8]])
len(arr2) # 2

• All dimension lengths → shape: arr2.shape # (2,4)
• Number of dimensions: arr2.ndim # 2
• Can also reshape an array:

- arr2.reshape(4,2)

- arr2.reshape(-1,2) # what happens here?

16D. Koop, CSCI 503/490, Fall 2024

Speed Benefits
• Compare random number generation in pure Python versus numpy
• Python:

- import random
%timeit rolls_list = [random.randrange(1,7)
 for i in range(0, 60_000)]

• With NumPy:
- %timeit rolls_array = np.random.randint(1, 7, 60_000)

• Significant speedup (80x+)

17D. Koop, CSCI 503/490, Fall 2024

Array Programming
• Lists:

- c = []
for aa, bb in zip(a, b):
 c.append(aa + bb)

• How to improve this?

18D. Koop, CSCI 503/490, Fall 2024

Array Programming
• Lists:

- c = []
for aa, bb in zip(a, b):
 c.append(aa + bb)

- c = [aa + bb for aa, bb in zip(a, b)]

• NumPy arrays:
- c = a + b

• More functional-style than imperative
• Internal iteration instead of external

19D. Koop, CSCI 503/490, Fall 2024

Operations
• a = np.array([1,2,3])
b = np.array([6,4,3])

• (Array, Array) Operations (Element-wise)
- Addition, Subtraction, Multiplication
- a + b # array([7, 6, 6])

• (Scalar, Array) Operations (Broadcasting):
- Addition, Subtraction, Multiplication, Division, Exponentiation
- a ** 2 # array([1, 4, 9])

- b + 3 # array([9, 7, 6])

20D. Koop, CSCI 503/490, Fall 2024

More on Array Creation
• Zeros: np.zeros(10)
• Ones: np.ones((4,5)) # shape
• Empty: np.empty((2,2))
• _like versions: pass an existing array and matches shape with specified

contents
• Range: np.arange(15) # constructs an array, not iterator!

21D. Koop, CSCI 503/490, Fall 2024

Indexing
• Same as with lists plus shorthand for 2D+

- arr1 = np.array([6, 7, 8, 0, 1])

- arr1[1]

- arr1[-1]

• What about two dimensions?
- arr2 = np.array([[1.5,2,3,4],[5,6,7,8]])

- arr[1][1]

- arr[1,1] # shorthand

22D. Koop, CSCI 503/490, Fall 2024

Figure 4-1. Indexing elements in a NumPy array

In multidimensional arrays, if you omit later indices, the returned object will be a
lower dimensional ndarray consisting of all the data along the higher dimensions. So
in the 2 × 2 × 3 array arr3d:

In [76]: arr3d = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])

In [77]: arr3d
Out[77]:
array([[[1, 2, 3],
 [4, 5, 6]],
 [[7, 8, 9],
 [10, 11, 12]]])

arr3d[0] is a 2 × 3 array:
In [78]: arr3d[0]
Out[78]:
array([[1, 2, 3],
 [4, 5, 6]])

Both scalar values and arrays can be assigned to arr3d[0]:
In [79]: old_values = arr3d[0].copy()

In [80]: arr3d[0] = 42

In [81]: arr3d
Out[81]:
array([[[42, 42, 42],
 [42, 42, 42]],
 [[7, 8, 9],
 [10, 11, 12]]])

In [82]: arr3d[0] = old_values

96 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

2D Indexing

23

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 503/490, Fall 2024

Slicing
• 1D: Similar to lists

- arr1 = np.array([6, 7, 8, 0, 1])

- arr1[2:5] # np.array([8, 0, 1]), sort of

• Can mutate original array:
- arr1[2:5] = 3 # supports assignment

- arr1 # the original array changed

• Slicing returns views (copy the array if original array shouldn't change)
- arr1[2:5] # a view

- arr1[2:5].copy() # a new array

24D. Koop, CSCI 503/490, Fall 2024

Slicing
• 2D+: comma separated indices as shorthand:

- arr2 = np.array([[1.5,2,3,4],[5,6,7,8]])

- a[1:3,1:3]

- a[1:3,:] # works like in single-dimensional lists

• Can combine index and slice in different dimensions
- a[1,:] # gives a row

- a[:,1] # gives a column

25D. Koop, CSCI 503/490, Fall 2024

2D Array Slicing

26

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 503/490, Fall 2024

How to obtain the blue slice
from array arr?

 [0.1913, 0.4544, 0.4519, 0.5535],
 [0.5994, 0.8174, -0.9297, -1.2564]])

Figure 4-2. Two-dimensional array slicing

Suppose each name corresponds to a row in the data array and we wanted to select all
the rows with corresponding name 'Bob'. Like arithmetic operations, comparisons
(such as ==) with arrays are also vectorized. Thus, comparing names with the string
'Bob' yields a boolean array:

In [87]: names == 'Bob'
Out[87]: array([True, False, False, True, False, False, False], dtype=bool)

This boolean array can be passed when indexing the array:

In [88]: data[names == 'Bob']
Out[88]:
array([[-0.048 , 0.5433, -0.2349, 1.2792],
 [2.1452, 0.8799, -0.0523, 0.0672]])

The boolean array must be of the same length as the axis it’s indexing. You can even
mix and match boolean arrays with slices or integers (or sequences of integers, more
on this later):

In [89]: data[names == 'Bob', 2:]
Out[89]:
array([[-0.2349, 1.2792],

86 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

2D Array Slicing

27

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 503/490, Fall 2024

How to obtain the blue slice
from array arr?

 [0.1913, 0.4544, 0.4519, 0.5535],
 [0.5994, 0.8174, -0.9297, -1.2564]])

Figure 4-2. Two-dimensional array slicing

Suppose each name corresponds to a row in the data array and we wanted to select all
the rows with corresponding name 'Bob'. Like arithmetic operations, comparisons
(such as ==) with arrays are also vectorized. Thus, comparing names with the string
'Bob' yields a boolean array:

In [87]: names == 'Bob'
Out[87]: array([True, False, False, True, False, False, False], dtype=bool)

This boolean array can be passed when indexing the array:

In [88]: data[names == 'Bob']
Out[88]:
array([[-0.048 , 0.5433, -0.2349, 1.2792],
 [2.1452, 0.8799, -0.0523, 0.0672]])

The boolean array must be of the same length as the axis it’s indexing. You can even
mix and match boolean arrays with slices or integers (or sequences of integers, more
on this later):

In [89]: data[names == 'Bob', 2:]
Out[89]:
array([[-0.2349, 1.2792],

86 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

arr[:2,1:]

 [0.1913, 0.4544, 0.4519, 0.5535],
 [0.5994, 0.8174, -0.9297, -1.2564]])

Figure 4-2. Two-dimensional array slicing

Suppose each name corresponds to a row in the data array and we wanted to select all
the rows with corresponding name 'Bob'. Like arithmetic operations, comparisons
(such as ==) with arrays are also vectorized. Thus, comparing names with the string
'Bob' yields a boolean array:

In [87]: names == 'Bob'
Out[87]: array([True, False, False, True, False, False, False], dtype=bool)

This boolean array can be passed when indexing the array:

In [88]: data[names == 'Bob']
Out[88]:
array([[-0.048 , 0.5433, -0.2349, 1.2792],
 [2.1452, 0.8799, -0.0523, 0.0672]])

The boolean array must be of the same length as the axis it’s indexing. You can even
mix and match boolean arrays with slices or integers (or sequences of integers, more
on this later):

In [89]: data[names == 'Bob', 2:]
Out[89]:
array([[-0.2349, 1.2792],

86 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

2D Array Slicing

28

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 503/490, Fall 2024

How to obtain the blue slice
from array arr?

 [0.1913, 0.4544, 0.4519, 0.5535],
 [0.5994, 0.8174, -0.9297, -1.2564]])

Figure 4-2. Two-dimensional array slicing

Suppose each name corresponds to a row in the data array and we wanted to select all
the rows with corresponding name 'Bob'. Like arithmetic operations, comparisons
(such as ==) with arrays are also vectorized. Thus, comparing names with the string
'Bob' yields a boolean array:

In [87]: names == 'Bob'
Out[87]: array([True, False, False, True, False, False, False], dtype=bool)

This boolean array can be passed when indexing the array:

In [88]: data[names == 'Bob']
Out[88]:
array([[-0.048 , 0.5433, -0.2349, 1.2792],
 [2.1452, 0.8799, -0.0523, 0.0672]])

The boolean array must be of the same length as the axis it’s indexing. You can even
mix and match boolean arrays with slices or integers (or sequences of integers, more
on this later):

In [89]: data[names == 'Bob', 2:]
Out[89]:
array([[-0.2349, 1.2792],

86 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

2D Array Slicing

28

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 503/490, Fall 2024

How to obtain the blue slice
from array arr?

 [0.1913, 0.4544, 0.4519, 0.5535],
 [0.5994, 0.8174, -0.9297, -1.2564]])

Figure 4-2. Two-dimensional array slicing

Suppose each name corresponds to a row in the data array and we wanted to select all
the rows with corresponding name 'Bob'. Like arithmetic operations, comparisons
(such as ==) with arrays are also vectorized. Thus, comparing names with the string
'Bob' yields a boolean array:

In [87]: names == 'Bob'
Out[87]: array([True, False, False, True, False, False, False], dtype=bool)

This boolean array can be passed when indexing the array:

In [88]: data[names == 'Bob']
Out[88]:
array([[-0.048 , 0.5433, -0.2349, 1.2792],
 [2.1452, 0.8799, -0.0523, 0.0672]])

The boolean array must be of the same length as the axis it’s indexing. You can even
mix and match boolean arrays with slices or integers (or sequences of integers, more
on this later):

In [89]: data[names == 'Bob', 2:]
Out[89]:
array([[-0.2349, 1.2792],

86 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

2D Array Slicing

28

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 503/490, Fall 2024

How to obtain the blue slice
from array arr?

 [0.1913, 0.4544, 0.4519, 0.5535],
 [0.5994, 0.8174, -0.9297, -1.2564]])

Figure 4-2. Two-dimensional array slicing

Suppose each name corresponds to a row in the data array and we wanted to select all
the rows with corresponding name 'Bob'. Like arithmetic operations, comparisons
(such as ==) with arrays are also vectorized. Thus, comparing names with the string
'Bob' yields a boolean array:

In [87]: names == 'Bob'
Out[87]: array([True, False, False, True, False, False, False], dtype=bool)

This boolean array can be passed when indexing the array:

In [88]: data[names == 'Bob']
Out[88]:
array([[-0.048 , 0.5433, -0.2349, 1.2792],
 [2.1452, 0.8799, -0.0523, 0.0672]])

The boolean array must be of the same length as the axis it’s indexing. You can even
mix and match boolean arrays with slices or integers (or sequences of integers, more
on this later):

In [89]: data[names == 'Bob', 2:]
Out[89]:
array([[-0.2349, 1.2792],

86 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

2D Array Slicing

28

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 503/490, Fall 2024

How to obtain the blue slice
from array arr?

 [0.1913, 0.4544, 0.4519, 0.5535],
 [0.5994, 0.8174, -0.9297, -1.2564]])

Figure 4-2. Two-dimensional array slicing

Suppose each name corresponds to a row in the data array and we wanted to select all
the rows with corresponding name 'Bob'. Like arithmetic operations, comparisons
(such as ==) with arrays are also vectorized. Thus, comparing names with the string
'Bob' yields a boolean array:

In [87]: names == 'Bob'
Out[87]: array([True, False, False, True, False, False, False], dtype=bool)

This boolean array can be passed when indexing the array:

In [88]: data[names == 'Bob']
Out[88]:
array([[-0.048 , 0.5433, -0.2349, 1.2792],
 [2.1452, 0.8799, -0.0523, 0.0672]])

The boolean array must be of the same length as the axis it’s indexing. You can even
mix and match boolean arrays with slices or integers (or sequences of integers, more
on this later):

In [89]: data[names == 'Bob', 2:]
Out[89]:
array([[-0.2349, 1.2792],

86 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

2D Array Slicing

28

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 503/490, Fall 2024

How to obtain the blue slice
from array arr?

More Reshaping
• reshape:

- arr2.reshape(4,2) # returns new view

• resize:
- arr2.resize(4,2) # no return, modifies arr2 in place

• flatten:
- arr2.flatten() # array([1.5,2.,3.,4.,5.,6.,7.,8.])

• ravel:
- arr2.ravel() # array([1.5,2.,3.,4.,5.,6.,7.,8.])

• flatten and ravel look the same, but ravel is a view

29D. Koop, CSCI 503/490, Fall 2024

