
Programming Principles in Python (CSCI 503/490)

Structural Pattern Matching

Dr. David Koop

D. Koop, CSCI 503/490, Fall 2024

CPU-Bound vs. I/O-Bound

2

[J. Anderson]
D. Koop, CSCI 503/490, Fall 2024

https://realpython.com/python-concurrency

Threading
• Threading address the I/O waits by

letting separate pieces of a program
run at the same time

• Threads run in the same process
• Threads share the same memory

(and global variables)
• Operating system schedules threads;

it can manage when each thread
runs, e.g. round-robin scheduling

• When blocking for I/O, other threads
can run

3

[J. Anderson]
D. Koop, CSCI 503/490, Fall 2024

https://realpython.com/python-concurrency

Python Threading Speed
• If I/O bound, threads work great because time spent waiting can now be

used by other threads
• Threads do not run simultaneously in standard Python, i.e. they cannot take

advantage of multiple cores
• Use threads when code is I/O bound, otherwise no real speed-up plus some

overhead for using threads

4D. Koop, CSCI 503/490, Fall 2024

Python and the GIL
• Solution for reference counting (used for garbage collection)
• Could add locking to every value/data structure, but with multiple locks

comes possible deadlock
• Python instead has a Global Interpreter Lock (GIL) that must be acquired to

execute any Python code
• This effectively makes Python single-threaded (faster execution)
• Python requires threads to give up GIL after certain amount of time
• Python 3 improved allocation of GIL to threads by not allowing a single CPU-

bound thread to hog it

5D. Koop, CSCI 503/490, Fall 2024

Assignment 6
• Object-Oriented Programming
• Build an online course registration system
• Design classes, use inheritance

6D. Koop, CSCI 503/490, Fall 2024

http://faculty.cs.niu.edu/~dakoop/cs503-2024fa/assignment6.html

Test 2
• Monday, November 11, in class from 9:30-10:45am
• Similar Format to Test 1
• Emphasizes topics covered since Test 1, but still need to know core

concepts from the first third of the course

7D. Koop, CSCI 503/490, Fall 2024

http://faculty.cs.niu.edu/~dakoop/cs503-2024fa/test2.html

Multiprocessing
• Multiple processes do not need to share the same memory, interact less
• Python makes the difference between processes and threads minimal in

most cases
• Big win: can take advantage of multiple cores!
• import multiprocessing
with multiprocessing.Pool() as pool:
 pool.map(printer, range(5))

• Warning: known issues with running this in the notebook, use in scripts or
look for alternate possibilities/library

• Set __spec__ = None to use the %run command in the notebook with a
multiprocessing script

8D. Koop, CSCI 503/490, Fall 2024

Multiprocessing address CPU-bound processes

9

[J. Anderson]
D. Koop, CSCI 503/490, Fall 2024

https://realpython.com/python-concurrency

Multiprocessing using concurrent.futures
• import concurrent.futures
import multiprocessing as mp
import time

def dummy(num):
 time.sleep(5)
 return num ** 2

with concurrent.futures.ProcessPoolExecutor(max_workers=5,
 mp_context=mp.get_context('fork')) as executor:
 results = executor.map(dummy, range(10))

• mp.get_context('fork') changes from 'spawn' used by default in
MacOS, works in notebook

10D. Koop, CSCI 503/490, Fall 2024

When to use threading or multiprocessing?
• If your code has a lot of I/O or Network usage:
- Multithreading is your best bet because of its low overhead

• If you have a GUI
- Multithreading so your UI thread doesn't get locked up

• If your code is CPU bound:
- You should use multiprocessing (if your machine has multiple cores)

11

[J. Anderson]
D. Koop, CSCI 503/490, Fall 2024

https://realpython.com/python-concurrency

Subroutines vs. Coroutines

12

[J. Weaver]
D. Koop, CSCI 503/490, Fall 2024

https://bbc.github.io/cloudfit-public-docs/asyncio/asyncio-part-1.html

Generators basically do this!
• def random_numbers(start=1, end=1000):
 while True:
 yield random.randint(start, end)
for x in random_numbers():
 print(x)

• The yield statements pause execution of the function and go back to the
main function

• They are almost coroutines except you can't pass anything in
• Hard to have multiple things going on

13D. Koop, CSCI 503/490, Fall 2024

asyncio
• Single event loop that controls when each task is run
• Tasks can be ready or waiting
• Tasks are not interrupted like they are with threading
- Task controls when control goes back to the main event loop
- Either waiting or complete

• Event loop keeps track of whether tasks are ready or waiting
- Re-checks to see if new tasks are now ready
- Picks the task that has been waiting the longest

14

[J. Anderson]
D. Koop, CSCI 503/490, Fall 2024

https://realpython.com/python-concurrency

async
• async is a keyword that tells Python that the function uses await
• Also async with context manager
• async def download_site(session, url):
 async with session.get(url) as response:
 print("Read {0} from {1}".format(
 response.content_length, url))

• asyncio uses a single thread
• Requires special libraries (aiohttp)
• Tends to have less overhead than multiprocessing

15D. Koop, CSCI 503/490, Fall 2024

asyncio

16D. Koop, CSCI 503/490, Fall 2024

When to use threading, asyncio, or multiprocessing?
• If your code has a lot of I/O or Network usage:
- If there is library support, use asyncio
- Otherwise, multithreading is your best bet (lower overhead)

• If you have a GUI
- Multithreading so your UI thread doesn't get locked up

• If your code is CPU bound:
- You should use multiprocessing (if your machine has multiple cores)

17

[J. Anderson]
D. Koop, CSCI 503/490, Fall 2024

https://realpython.com/python-concurrency

Concurrency Comparison

18

[J. Anderson]
D. Koop, CSCI 503/490, Fall 2024

Concurrency Type Switching Decision
Number of

Processors
Pre-emptive
multitasking
(threading)

The operating system decides when
to switch tasks external to Python.

1

Cooperative
multitasking
(asyncio)

The tasks decide when to give up
control.

1

Multiprocessing
(multiprocessing)

The processes all run at the same
time on different processors.

Many

https://realpython.com/python-concurrency

19

Match Statement

D. Koop, CSCI 503/490, Fall 2024

Conditional Logic
• if/elif/else
• What about a switch statement?
• Exists in C++
• What are the advantages of a

switch?

• C++ Example:
- switch (val) {
 case 1:
 cout << "1st" << endl;
 break;
 case 2:
 cout << "2nd" << endl;
 break;
 default:
 cout << "???" << endl;
}

20D. Koop, CSCI 503/490, Fall 2024

Conditional Logic
• if/elif/else
• What about a switch statement?
• Exists in C++
• What are the advantages of a

switch?
- Cleaner and less redundant
- More efficient than if/elif…

• C++ Example:
- switch (val) {
 case 1:
 cout << "1st" << endl;
 break;
 case 2:
 cout << "2nd" << endl;
 break;
 default:
 cout << "???" << endl;
}

21D. Koop, CSCI 503/490, Fall 2024

Python
• Python's if/elif structure is pretty similar structure-wise to a switch statement
• If you want the "jump" functionality, remember that dictionaries offer efficient

lookup and can store functions!
• Example:

- ops = {
 1: lambda: print('1st'),
 2: lambda: print('2nd')
}
ops.get(val, lambda: print('???'))()

• … so no great need for a standard switch statement

22D. Koop, CSCI 503/490, Fall 2024

Match Statement
• But… Python 3.10 added a match statement that can be used like a switch

statement
• match val:
 case 1:
 print('1st')
 case 2:
 print('2nd')
 case _:
 print('???')

• Why?
- It can do more than a switch statement

23D. Koop, CSCI 503/490, Fall 2024

Structural Pattern Matching
• Besides literal cases, match statements can be used to
- differentiate structure
- assign values
- differentiate class instances

• Example:
• match sys.argv:
 case [_, "commit"]:
 print("Committing")
 case [_, 'add', fname]:
 print("Adding file", fname)

24D. Koop, CSCI 503/490, Fall 2024

Evaluation
• Works similar to if/elif/else logic
• Cases are processed in order
• Once the first case is matched, it's body is executed and no other cases will

be matched
• Name bindings (assignments) can be used after the match statement
- Like standard conditional logic in Python
- Differs from some other languages where if/then blocks are scoped…

25D. Koop, CSCI 503/490, Fall 2024

Simple Patterns
• Literal patterns:
- e.g. 2, "commit", but also True, False, None

• Simple capture pattern:
- an identifier: fname

• Wildcard: matches anything: _

26

[PEP 636]
D. Koop, CSCI 503/490, Fall 2024

https://peps.python.org/pep-0636/

Sequence Pattern
• A sequence composed of other patterns: ["add", fname]
• Any identifiers are assigned when the structure is matched
• Can allow a match of multiple values using * syntax

- match sys.argv:
 case [_, "commit"]:
 print("Committing")
 case [_, 'add', *fnames]:
 print("Adding files", fnames)

27

[PEP 636]
D. Koop, CSCI 503/490, Fall 2024

https://peps.python.org/pep-0636/

Or Pattern
• May allow multiple patterns to be processed by a single block
• Uses the bar symbol | (not the word "or") to connect the patterns
• Example:

match command.split():
 ... # Other cases
 case ["north"] | ["go", "north"]:
 current_room = current_room.neighbor("north")
 case ["pick", "up", obj] | ["pick", obj, "up"]:
 ... # Code for picking up the given object

28

[PEP 636]
D. Koop, CSCI 503/490, Fall 2024

https://peps.python.org/pep-0636/

Or Pattern
• Problem: Suppose we want to restrict the set of values but don't know which

pattern was selected…

• match command.split():
 case ["go", ("north" | "south" | "east" | "west")]:
 current_room = current_room.neighbor(...)
 # how do I know which direction to go?

29

[PEP 636]
D. Koop, CSCI 503/490, Fall 2024

https://peps.python.org/pep-0636/

As Pattern
• Similar to exceptions where we can assign the matched value to an identifier

when the patterns are literals
• Can even do this in a more complex pattern:
• match command.split():
 case ["go", ("north" | "south" | "east" | "west") as d]:
 current_room = current_room.neighbor(d)

30

[PEP 636]
D. Koop, CSCI 503/490, Fall 2024

https://peps.python.org/pep-0636/

Guards
• In some cases, we want to add additional logic to check the pattern before

allowing the block to be executed
• If the guard is not True, other cases continue to be checked
• Example: Suppose certain directions are not allowed in a given room:
• match command.split():
 case ["go", dir] if dir in current_room.exits:
 current_room = current_room.neighbor(dir)
 case ["go", _]:
 print("Sorry, you can't go that way")

31

[PEP 636]
D. Koop, CSCI 503/490, Fall 2024

https://peps.python.org/pep-0636/

Matching Types
• You can match a type in a similar manner, but must put parentheses after it

- case str():

• We can combine this with the as pattern to capture the value
- case str() as s:

• There is also shorthand to do this (useful in more complex expressions)
- case str(s):

32D. Koop, CSCI 503/490, Fall 2024

Class Pattern
• We can also match objects…
• match event:
 case Click() as c:
 print("Click happened", c.x, c.y)

• but the type shortcut does not work
• match event:
 case Click(c):
 print("Click happened", c)
 …

• TypeError: Click() accepts 0 positional sub-patterns (1 given)

33D. Koop, CSCI 503/490, Fall 2024

Class Pattern
• This hints at something different being allowed for classes
• We can match instance attributes!
• match event:
 case Click(x=x,y=y) if x < y:
 print("Lower-right click happened", x, y)

34D. Koop, CSCI 503/490, Fall 2024

Class Pattern
• This syntax is a bit clunky and requires keyword-style attributes
• We can use __match_args__ to specify the order of attributes instead:
• class Click:
 __match_args__ = ('x','y')
 …

match event:
 case Click(x,y) if x < y:
 print("Lower-right click happened", x, y)

• Dataclasses automatically order attributes based on their position

35D. Koop, CSCI 503/490, Fall 2024

Matching Enumerated Values or Constants
• Can use dotted notation to reference the value of an enumerated value or

constant (Button.LEFT)
• Cannot use bare identifiers (e.g. referencing constants) because they are

interpreted as part of the pattern…

36D. Koop, CSCI 503/490, Fall 2024

Mapping Pattern
• Just like matching sequences, we can also match mappings (i.e. dictionaries)
• Any unmatched key-value pairs are ignored
- You don't need to use the multiple match as with sequences
- But you can use **rest if you want to use them

37D. Koop, CSCI 503/490, Fall 2024

Mapping Pattern
• for action in actions:
 match action:
 case {"text": message, "color": c}:
 ui.set_text_color(c)
 ui.display(message)
 case {"sleep": duration}:
 ui.wait(duration)
 case {"sound": url, "format": "mp3"}:
 ui.play(url)
 case {"sound": _, "format": _}:
 warning("Unsupported audio format")

38

[PEP 636]
D. Koop, CSCI 503/490, Fall 2024

https://peps.python.org/pep-0636/

Match Statement Guidance
• Zen of Python: "There should be one-- and preferable only one --obvious

way to do it."
- Can use if/elif/else logic
- Can use checks of sequence length, dictionary structure

• If you're emulating a switch statement, don't use a match statement
• If you're matching structure (sequence, mapping, object), a match statement

may be a good idea

39D. Koop, CSCI 503/490, Fall 2024

Example
• def eval_expr(expr):
 """Evaluate an expression and return the result."""
 match expr:
 case BinaryOp('+', left, right):
 return eval_expr(left) + eval_expr(right)
 case BinaryOp('-', left, right):
 return eval_expr(left) - eval_expr(right)
 case BinaryOp('*', left, right):
 return eval_expr(left) * eval_expr(right)
 case BinaryOp('/', left, right):
 return eval_expr(left) / eval_expr(right)
 case UnaryOp('+', arg):
 return eval_expr(arg)
 case UnaryOp('-', arg):
 return -eval_expr(arg)
 case VarExpr(name):
 raise ValueError(f"Unknown value of: {name}")
 case float() | int():
 return expr
 case _:
 raise ValueError(f"Invalid expression value: {repr(expr)}")

40

[G. van Rossum]
D. Koop, CSCI 503/490, Fall 2024

https://github.com/gvanrossum/patma/blob/master/examples/expr.py

