Programming Principles in Python (CSCI 503/490)

Structural Pattern Matching

Dr. David Koop

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University

CPU-Bound vs. I/O-Bound

CPU
Processing

Compute Problem 1

Compute Problem 2

/10
Waiting

Request 1

CPU
Processing

Request 2

Request 3

Time

[J. Anderson]

D. Koop, CSCI 503/490, Fall 2024

Northern Illinois University p

https://realpython.com/python-concurrency

Threading

e Threading address the |/O walits by
letting separate pieces of a program
run at the same time

e [hreads run in the same process /0 | Feduest
Waiting : Request 2
* [hreads share the same memory A Request 3
. | : A | |
(and global variables) oy
: Thread 1 ! 1 '
* Operating system schedules threads; ceu =vvre B |
. rocessing
it can manage when each thread Thread 3 3
runs, €.g. round-robin scheduling Time >
e \WVhen blocking for |/O, other threads
can run

[J. Anderson]

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 3

https://realpython.com/python-concurrency

Python Threading Speed

e |f |/O bound, threads work great because time spent waiting can now be
used by other threads

e [hreads do not run simultaneously in standard Python, i.e. they cannot take
advantage of multiple cores

e Use threads when code is I/0 bound, otherwise no real speed-up plus some
overhead for using threads

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 4

Python and the GIL

e Solution for reference counting (used for garlbage collection)

e Could add locking to every value/data structure, but with multiple locks
comes possible deadlock

e Python instead has a Global Interpreter Lock (GIL) that must be acquired to
execute any Python code

e [his effectively makes Python single-threaded (faster execution)
e Python requires threads to give up GIL after certain amount of time

e Python 3 iImproved allocation of GIL to threads by not allowing a single CPU-
bound thread to hog it

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 5

Assignment 6

e Object-Oriented Programming
e Build an online course registration system
e Design classes, use inheritance

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 6

http://faculty.cs.niu.edu/~dakoop/cs503-2024fa/assignment6.html

lest 2

e Monday, November 11, in class from 9:30-10:45am
e Similar Format to Test 1

e Emphasizes topics covered since lest 1, but still need to know core
concepts from the first third of the course

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 7

http://faculty.cs.niu.edu/~dakoop/cs503-2024fa/test2.html

Multiprocessing

e Multiple processes do not need to share the same memory, interact less

e Python makes the difference between processes and threads minimal in
most cases

e Big win: can take advantage of multiple cores!

e 1mport multilprocessing
with multiprocessing.Pool () as pool:
pool.map (printer, range(d))

e Warning: known issues with running this in the notebook, use in scripts or
look for alternate possibilities/library

e S5et spec = None to use the $run command in the notebook with a
Multiprocessing script

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 8

Multiprocessing address CPU-bound processes

-~

/O
Waiting

CPU
Processing

Python
\ Interpreter #1

Compute Problem 1

~

ar

Waiting

CPU
Processing

Python
\ Interpreter #2

Compute Problem 1

NG

/

D. Koop, CSCI 503/490, Fall 2024

Time

>

[J. Anderson]

Northern Illinois University)

https://realpython.com/python-concurrency

Multiprocessing using concurrent.futures

e 1mport concurrent.futures
import multliprocessing as mp
1mport time

def dummy (num) :
time.sleep (D)
return num ** 2

with concurrent.futures.ProcessPoolkExecutor (max workers=)5,
mp context=mp.get context('fork')) as executor:

results = executor.map (dummy, range (10))

* mp.get context ('fork') changes from 'spawn' used by default in
MacOS, works in notebook

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 10

When to use threading or multiprocessing’

e |f your code has a lot of [/O or Network usage:
- Multithreading Is your best bet because of its low overhead
e |f you have a GUI
- Multithreading so your Ul thread doesn't get locked up
e |f your code i1s CPU bound:
- You should use multiprocessing (if your machine has multiple cores)

[J. Anderson]

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 11

https://realpython.com/python-concurrency

Subroutines vs. Coroutines

Coroutine Pattern
Traditional Subroutine Pattern

Calling Method Called Method

Code of the form: | l |
Path of execution

Calling Method Coroutine

.—————‘_‘"
N

=

Return

Code of the form: Code of the form:

Code of the form:

Return

[J. Weaver]

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 12

https://bbc.github.io/cloudfit-public-docs/asyncio/asyncio-part-1.html

Generators basically do this!

—

e def random numbers (start=1, end=1000) :
while True:
vield random.randint (start, end)
for x 1n random numbers() :
print (x)

e [he yield statements pause execution of the function and go back to the
main function

® [hey are almost coroutines except you can't pass anything in
e Hard to have multiple things going on

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 13

aSyNCIO

e Single event loop that controls when each task is run
e [asks can be ready or waiting
e [asks are not interrupted like they are with threading
- lask controls when control goes back to the main event loop
- Elther waiting or complete
o Fvent loop keeps track of whether tasks are ready or waiting
- Re-checks to see if new tasks are now ready
- Picks the task that has been waiting the longest

[J. Anderson]
D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 14

https://realpython.com/python-concurrency

async

* async IS a keyword that tells Python that the function uses await
e AlsO async with context manager

—

e async def download site(session, url):
async wilith session.get (url) as response:
print ("Read {0} from {1}".format (
response.content length, url))

®* asyncio Uses a single thread
e Requires special libraries (aiohttp)
® [ends to have less overhead than multiprocessing

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 15

aSyNCIO

Request 1

i
Waiting : Request 2,
o Requesti3 .
CPU
Processing

Time——™™ >

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 16

When to use threading, asyncio, or multiprocessing”?

e |f your code has a lot of [/O or Network usage:
- |t there Is library support, use asyncio
- Otherwise, multithreading iIs your best bet (lower overhead)
e |f you have a GUI
- Multithreading so your Ul thread doesn't get locked up
e |f your code is CPU bound:
- You should use multiprocessing (if your machine has multiple cores)

[J. Anderson]

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 17

https://realpython.com/python-concurrency

Concurrency Comparison

Number of
Concurrency Type |Switching Decision Processors
Pre-emptive The operating system decides when 1
multitasking to switch tasks external to Python.
(threading)
Cooperative The tasks decide when to give up 1
multitasking control.
(@sync1o)
Multiprocessing The processes all run at the same Many
(multiprocessing) |time on different processors.

[J. Anderson]

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University =~ 18

https://realpython.com/python-concurrency

Match Statement

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 19

Conditional Logic

o if/elif/else e C++ Example:
e \\Vhat about a switch statement”? - switch (val)
e Exists In C++ case 1:
cout << "lst" << endl;
e \What are the advantages of a break;
switch?? case Z2:
cout << "2nd" << endl;
break;
default:

cout << "??2?" << endl;

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University =~ 20

Conditional Logic

o if/elif/else e C++ Example:
e \What about a switch statement? - switch (val) {
o Exists in C case 1:
XISLS 1N L++ cout << "lst" << endl;
e \\Vhat are the advantages of a break;
switch?? case 2:
cout << "2nd" << endl;
- Cleaner and less redundant break:

- More efficient than if/elif... default:
cout << "??2?" << endl;

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University =~ 21

Python

e Python's if/elif structure is pretty similar structure-wise to a switch statement

e |f you want the "jump” functionality, remember that dictionaries offer efficient
lookup and can store functions!

e Example:

- Ops = {
1: lambda: prin-
Z2: lambda: prin-

('lst'),
('2nd"')

\—
\—

J
ops.get (val, lambda: praint ('??2?2")) ()

® ... SO NO great need for a standard switch statement

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University =~ 22

Match Statement

e But... Python 3.10 added a match statement that can be used like a switch
statement

e match val:
case 1:
print ('lst')
case Z2:
print ('Z2nd’')
case
print ('??7?")

e \\Vhy"/
- |t can do more than a switch statement

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University =~ 23

Structural Pattern Matching

e Besides literal cases, match statements can be used to
- differentiate structure
- assign values
- differentiate class instances

® Example:

e match sys.argv:
case [, "commit"]:
print ("Committing")
case | , 'add', fname]:
print ("Adding file", fname)

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University =~ 24

Evaluation

e \\Norks similar to if/elif/else logic

e (Cases are processed in order

e Once the first case is matched, it's body is executed and no other cases will
be matched

e Name bindings (assignments) can be used after the match statement

- Like standard conditional logic in Python
- Differs from some other languages where if/then blocks are scoped...

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University =~ 25

Simple Patterns

¢ | iteral patterns:
- e.g. 2, "commit", but also True, False, None

e Simple capture pattern:
- an identifier: fname

o \Wildcard: matches anything:

[PEP 636]
D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University = 26

https://peps.python.org/pep-0636/

Seqguence Pattern

e A sequence composed of other patterns: ["add"™, fname]

e Any identifiers are assigned when the structure is matched

e Can allow a match of multiple values using * syntax

- match sys.argv:
case [, "commit"]:
print ("Committing")
case [, 'add', *fnames]:
print ("Adding files", fnames)

[PEP 636]
D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University =~ 27

https://peps.python.org/pep-0636/

Or Pattern

e May allow multiple patterns to be processed by a single block
e Uses the bar symbol | (not the word "or") to connect the patterns
® Example:

match command.split () :
Other cases

case |["north"] | ["go", "north"]:
current room = current room.neighbor ("north")
case ["pick", "up", obj] | ["pick", obj, "up"]:

Code for pickling up the gilven object

[PEP 636]
D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 28

https://peps.python.org/pep-0636/

Or Pattern

® Problem: Suppose we want to restrict the set of values but don't know which
pattern was selected...

e match command.split() :

case ["go", ("north" | "south" | "east" | "west") |:
current room = current room.neighbor(...)
how do I know which direction to go?

[PEP 6306]

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University =~ 29

https://peps.python.org/pep-0636/

AS Pattern

e Similar to exceptions where we can assign the matched value to an identifier
when the patterns are literals

e Can even do this in a more complex pattern:

e match command.split() :
case ["go", ("north" | "south" | "east" | "west") as d]:
current room = current room.neighbor (d)

[PEP 6306]

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 30

https://peps.python.org/pep-0636/

GGuards

® |[n some cases, we want to add additional logic to check the pattern before
allowing the block to be executed

o |f the guard is not True, other cases continue to be checked

e Example: Suppose certain directions are not allowed in a given room:

e match command.split () :
case ["go", dir] 1f dir 1n current room.exits:
current room = current room.neighbor (dir)
case ["go",]:
print ("Sorry, you can't go that way")

[PEP 636]
D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 31

https://peps.python.org/pep-0636/

Matching lypes

® YOu can match a type in a similar manner, but must put parentheses after it

- case str () :

e \\Ve can combine this with the as pattern to capture the value

- case str () as s:

e [here is also shorthand to do this (useful iIn more complex expressions)

- case str(s):

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 32

Class Pattern

¢ \\Ve can also match objects...

e match event:
case Click () as c:
print ("Click happened", c.x, c.Vy)

e pbut the type shortcut does not work

e match event:
case Click(c) :
print ("Click happened", c)

e TypeError: Click() accepts 0 positional sub-patterns (1 given)

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University = 33

Class Pattern

® [his hints at something different being allowed for classes

¢ \\le can match instance attributes!
e match event:
case Click(x=x,y=y) 1f x < vy:
print ("Lower-right click happened", x, V)

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 34

Class Pattern

e [his syntax Is a bit clunky and requires keyword-style attributes

e \WNecanuse match args to specify the order of attributes instead:

e class Click:
~ match args = ('x','y")

match event:
case Click(x,vy) 1f x < vy:
print ("Lower-right click happened", x, V)

e Dataclasses automatically order attributes based on their position

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 35

Matching Enumerated Values or Constants

e Can use dotted notation to reference the value of an enumerated value or
constant (Button.LEFT)

e Cannot use bare identifiers (e.qg. referencing constants) because they are
interpreted as part of the pattern...

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 36

Mapping Pattern

e Just [ike matching sequences, we can also match mappings (i.e. dictionaries)
e Any unmatched key-value pairs are ignored

- You don't need to use the multiple match as with sequences

- But you can use **rest If you want to use them

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 37

Mapping Pattern

e for action 1n actions:
match action:

case {"text": message, "color": c}:
ul.set text color (c)
ul.display (message)

case {"sleep": duration}:
ul.walt (duration)

case {"sound": url, "format": "mp3"}:
ul.play(url)

case {"sound": , "format": }:
warning ("Unsupported audio format")

[PEP 6306]

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 38

https://peps.python.org/pep-0636/

Match Statement Guidance

e /en of Python: "There should be one-- and preferable only one --obvious
way to do it."

- Can use If/elif/else logic
- Can use checks of sequence length, dictionary structure
 |f you're emulating a switch statement, don't use a match statement

e |f you're matching structure (sequence, mapping, object), a match statement
may be a good idea

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 39

Example

e def eval expr (expr):
"""Evaluate an expression and return the result."""
match expr:

case BinaryOp ('+', left, right):

return eval expr (left) + eval expr(right)
case BinaryOp('-', left, right):

return eval expr (left) - eval expr(right)
case BinaryOp('*', left, right):

return eval expr (left) * eval expr(right)
case BinaryOp('/', left, right):

return eval expr(left) / eval expr(right)
case UnaryOp('+', arqg):

return eval expr (arg)
case UnaryOp('-', arqg):

return -eval expr (arg)
case VarExpr (name) :

ralse ValueError (f"Unknown wvalue of: {name}")
case float () | int() :

return expr
case

ralse ValueError (f"Invalid expression value: {repr (expr)}")

[G. van Rossum]

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 40

https://github.com/gvanrossum/patma/blob/master/examples/expr.py

