
Programming Principles in Python (CSCI 503/490)

OOP & Exceptions

Dr. David Koop

D. Koop, CSCI 503/490, Fall 2024

2

Quiz

D. Koop, CSCI 503/490, Fall 2024

Question 1
• Which of the following instance variables is intended to be private?

(a) __attr
(b) _attr
(c) private:attr
(d) _attr_

3D. Koop, CSCI 503/490, Fall 2024

Question 2
• Which of the following is true?

(a) Python defines instance variables outside of methods
(b) Python uses the super method to access base class definitions
(c) Python does not allow multiple inheritance
(d) Python uses the extends keyword to declare a subclass

4D. Koop, CSCI 503/490, Fall 2024

Question 3
• Given a class Vehicle, which is a valid constructor signature?

(a) def __constructor__(this, make, model)
(b) def __new__(this, make, model)
(c) def __init__(self, make, model)
(d) def Vehicle(self, make, model)

5D. Koop, CSCI 503/490, Fall 2024

Question 4
• Which decorator is used to define a class method?

(a) $class
(b) @class
(c) @classmethod
(d) @staticmethod

6D. Koop, CSCI 503/490, Fall 2024

Question 5
• Which method would be called to evaluate Square(4) + 8?

(a) Square.__radd__
(b) Square.__add__
(c) int.__radd__
(d) int.__add__

7D. Koop, CSCI 503/490, Fall 2024

Inheritance
• Is-a relationship: Car is a Vehicle, Truck is a Vehicle
• Make sure it isn't composition (has-a) relationship: Vehicle has wheels,

Vehicle has a steering wheel
• Subclass is specialization of base class (superclass)
- Car is a subclass of Vehicle, Truck is a subclass of Vehicle

• Can have an entire hierarchy of classes (e.g. Chevy Bolt is subclass of Car
which is a subclass of Vehicle)

• Single inheritance: only one base class
• Multiple inheritance: allows more than base class
- Many languages don't support, Python does

8D. Koop, CSCI 503/490, Fall 2024

Instance Attribute Visibility Conventions in Python
• Remember, the naming is the convention (PEP8)

- public: used anywhere
- _protected: used in class and subclasses
- __private: used only in the specific class

• You can still access private names if you want but generally shouldn't:
- print(car1._color_hex)

• Double underscores leads to name mangling:
- self.__internal_vin is stored at self._Vehicle__internal_vin
- This is why __private makes sense (tied to defining class)

9D. Koop, CSCI 503/490, Fall 2024

Subclass
• Just put superclass(-es) in parentheses after the class declaration
• class Car(Vehicle):
 def __init__(self, make, model, year, color, num_doors):
 super().__init__(make, model, year, color)
 self.num_doors = num_doors

 def open_door(self):
 …

• super() is a special method that locates the base class
- Constructor should call superclass constructor
- Extra arguments should be initialized and extra instance methods

10D. Koop, CSCI 503/490, Fall 2024

Overriding Methods
• class Rectangle:
 def __init__(self, height,
 width):
 self.h = height
 self.w = weight

 def set_height(self, height):
 self.h = height
 def area(self):
 return self.h * self.w

• class Square(Rectangle):
 def __init__(self, side):
 super().__init__(side, side)

 def set_height(self, height):
 self.h = height
 self.w = height

• s = Square(4)

• s.set_height(8)

- Which method is called?
- Polymorphism
- Resolves according to inheritance

hierarchy
• s.area() # 64

- If no method defined, goes up the
inheritance hierarchy until found

11D. Koop, CSCI 503/490, Fall 2024

Class and Static Methods
• Use @classmethod and @staticmethod decorators
• Difference: class methods receive class as argument, static methods do not
• class Square(Rectangle):
 DEFAULT_SIDE = 10
 …

 @classmethod
 def set_default_side(cls, s):
 cls.DEFAULT_SIDE = s

 @staticmethod
 def set_default_side_static(s):
 Square.DEFAULT_SIDE = s

12D. Koop, CSCI 503/490, Fall 2024

Class and Static Methods
• class NewSquare(Square):
 DEFAULT_SIDE = 100

• NewSquare.set_default_side(200)
s5 = NewSquare()
s5.side # 200

• NewSquare.set_default_side_static(300)
s6 = NewSquare()
s6.side # !!! 200 !!!

• Why?
- The static method sets Square.DEFAULT_SIDE not the
NewSquare.DEFAULT_SIDE

- self.DEFAULT_SIDE resolves to NewSquare.DEFAULT_SIDE

13D. Koop, CSCI 503/490, Fall 2024

Assignment 5
• Due next Monday
• Same Food data as A3
• Scripts, modules, packages
• Command-line program

14D. Koop, CSCI 503/490, Fall 2024

https://faculty.cs.niu.edu/~dakoop/cs503-2024fa/assignment5.html

Interfaces
• In some languages, can define an abstract base class
- The structure is defined but without implementation
- Alternatively, some methods are defined abstract, others are implemented

• Interfaces are important for types
- Method can specify a particular type that can be abstract
- This doesn't matter as much in Python

• However, Python does have ABCs (Abstract Base Classes)
- Solution to be able to check for mappings, sequences via isinstance, etc.
- abc.Mapping, abc.Sequence, abc.MutableSequence

15D. Koop, CSCI 503/490, Fall 2024

Duck Typing
• "If it looks like a duck and quacks like a duck, it must be a duck."
• Python "does not look at an object’s type to determine if it has the right

interface; instead, the method or attribute is simply called or used"
• class Rectangle:
 def area(self):
 …

• class Circle:
 def area(self):
 …

• It doesn't matter that they don't have a common base class as long as they
respond to the methods/attributes we expect: shape.area()

16

[Python Glossary]
D. Koop, CSCI 503/490, Fall 2024

https://docs.python.org/3/glossary.html#term-duck-typing

Multiple Inheritance
• Can have a class inherit from two different superclasses
• HybridCar inherits from Car and Hybrid
• Python allows this!

- class HybridCar(Car, Hybrid): …

• Problem: how is super() is defined?
- Diamond Problem
- Python use the method resolution order (MRO) to determine order of calls

17D. Koop, CSCI 503/490, Fall 2024

Method Resolution Order
• The order in which Python checks classes for a method
• mro() is a class method
• Square.mro() # [__main__.Square, __main__.Rectangle, object]

• Order of base classes matters:
- class HybridCar(Car, Hybrid):
 pass
HybridCar.mro() # [__main__.HybridCar, __main__.Car,
 __main__.Hybrid, __main__.Vehicle, object]

- class HybridCar(Hybrid, Car):
 pass
HybridCar.mro() # [__main__.HybridCar, __main__.Hybrid,
 __main__.Car, __main__.Vehicle, object]

18D. Koop, CSCI 503/490, Fall 2024

Mixins
• Sometimes, we just want to add a particular method to a bunch of different

classes
• For example: print_as_dict()
• A mixin class allows us to specify one or more methods and add it as the

second
• Caution: Python searches from left to right so a base class should be at the

right with mixing

19D. Koop, CSCI 503/490, Fall 2024

Object-Based Programming
• With Python's libraries, you often don't need to write your own classes. Just
- Know what libraries are available
- Know what classes are available
- Make objects of existing classes
- Call their methods

• With inheritance and overriding and polymorphism, we have true object-
oriented programming (OOP)

20

[Deitel & Deitel]
D. Koop, CSCI 503/490, Fall 2024

21

What if we just want to store data?

D. Koop, CSCI 503/490, Fall 2024

Named Tuples
• Tuples are immutable, but cannot refer to with attribute names, only indexing
• Named tuples add the ability to use dot-notation
• from collections import namedtuple
Car = namedtuple('Car', ['make', 'model', 'year', 'color'])
car1 = Car(make='Toyota', model='Camry', year=2000,
 color="red")

• Can use kwargs or positional or mix
• car2 = Car('Ford', 'F150', 2018, 'gray')

• Access via dot-notation:
- car1.make # "Toyota"

- car2.year # 2018

22D. Koop, CSCI 503/490, Fall 2024

SimpleNamespace
• Named tuples do not allow mutation
• SimpleNamespace does allow mutation:
• from types import SimpleNamespace
car3 = SimpleNamespace(make='Toyota', model='Camry',
 year=2000, color="red")

• car3.num_doors = 4 # would fail for namedtuple

• Doesn't enforce any structure, though

23D. Koop, CSCI 503/490, Fall 2024

Typing
• Dynamic Typing: variable's type can change (what Python does)
• Static Typing: compiler enforces types, variable types generally don't change
• Duck Typing: check method/attribute existence, not type
• Python is a dynamically-typed language (and plans to remain so)
• …but it has recently added more support for type hinting/annotations that

allow static type checking
• Type annotations change nothing at runtime!

24

[RealPython, G. A. Hjelle]
D. Koop, CSCI 503/490, Fall 2024

https://realpython.com/python-type-checking/

Type Annotations
• def area(width : float, height : float) -> float:
 return width * height

• colon (:) after parameter names, followed by type
• arrow (->) after function signature, followed by type (then final colon)
• area("abc", 3) # runs, returns "abcabcabc"

• These won't prevent you from running this function with the wrong
arguments or returning a value that doesn't satisfy the type annotation

• Extensions for collections allows inner types to be specified:
- from typing import List
names : List[str] = ['Alice', 'Bob']

• Any and Optional, too

25D. Koop, CSCI 503/490, Fall 2024

mypy
• A static type checker for Python that uses the type annotations to check

whether types work out
• $ mypy <script.py>

- Writes type errors tagged by the line of code that introduced them
- Can also reveal the types of variables at various parts of the program

• There is an extension for Jupyter (nb_mypy):
-

26D. Koop, CSCI 503/490, Fall 2024

Type Checking in Development Environments
• PyCharm can also use the type hints to do static type checking to alert

programmers to potential issues
• Microsoft VS Code Integration using Pyright

27D. Koop, CSCI 503/490, Fall 2024

https://github.com/microsoft/pyright

Type Checking Pros & Cons
• Pros:
- Good for documentation
- Improve IDEs and linters
- Build and maintain cleaner architecture

• Cons:
- Takes time and effort!
- Requires modern Python
- Some penalty for typing imports (can be alleviated)

28

[RealPython, G. A. Hjelle]
D. Koop, CSCI 503/490, Fall 2024

https://realpython.com/python-type-checking/

When to use typing
• No when learning Python
• No for short scripts, snippets in notebooks
• Yes for libraries, especially those used by others
• Yes for larger projects to better understand flow of code

29

[RealPython, G. A. Hjelle]
D. Koop, CSCI 503/490, Fall 2024

https://realpython.com/python-type-checking/

Data Classes
• from dataclasses import dataclass
@dataclass
class Rectangle:
 width: float
 height: float

• Rectangle(34, 21) # just works!

• Does a lot of boilerplate tasks
- Creates basic constructor (__init__)
- Creates __repr__ method
- Creates comparison dunder methods (==, !=, <, >, <=, >=)

30D. Koop, CSCI 503/490, Fall 2024

Data Classes
• Requires type annotations, but just like other type annotations, they are not

checked at runtime!
• Rectangle("abc", "def") # no error!

• Use mypy to check typing
• If typing is not important, use typing.Any for types
• from typing import Any
from dataclasses import dataclass
@dataclass
class Rectangle:
 width: Any
 height: Any

31D. Koop, CSCI 503/490, Fall 2024

Data Classes
• Can add methods as normal
• from dataclasses import dataclass
@dataclass
class Rectangle:
 width: float
 height: float

 def area(self):
 return self.width * self.height

• Supports factory methods for more complicated inits
• __post_init__ method for extra processing after __init__

32D. Koop, CSCI 503/490, Fall 2024

33

Exceptions

D. Koop, CSCI 503/490, Fall 2024

Dealing with Errors
• Can explicitly check for errors at each step
- Check for division by zero
- Check for invalid parameter value (e.g. string instead of int)

• Sometimes all of this gets in the way and can't be addressed succinctly
- Too many potential errors to check
- Cannot handle groups of the same type of errors together

• Allow programmer to determine when and how to handle issues
- Allow things to go wrong and handle them instead
- Allow errors to be propagated and addressed once

34D. Koop, CSCI 503/490, Fall 2024

Advantages of Exceptions
• Separate error-handling code from "regular" code
• Allows propagation of errors up the call stack
• Errors can be grouped and differentiated

35

[Java Tutorial, Oracle]
D. Koop, CSCI 503/490, Fall 2024

https://docs.oracle.com/javase/tutorial/essential/exceptions/advantages.html

Try-Except
• The try statement has the following form:
try:
 <body>
except <ErrorType>*:
 <handler>

• When Python encounters a try statement, it attempts to execute the
statements inside the body.

• If there is no error, control passes to the next statement after the try…
except (unless else or finally clauses)

• Note: except not catch

36D. Koop, CSCI 503/490, Fall 2024

Try-Except
• If an error occurs while executing the body, Python looks for an except clause

with a matching error type. If one is found, the handler code is executed.
• try:
 c = a / b
except ZeroDivisionError:
 c = 0

• Without the except clause (or one that doesn't match), the code crashes

37D. Koop, CSCI 503/490, Fall 2024

Exception Hierarchy
• Python's BaseException class is the base class for all exceptions
• Four primary subclasses:

- SystemExit: just terminates program execution
- KeyboardInterrupt: occurs when user types Crl+C or selects Interrupt

Kernel in Jupyter
- GeneratorExit: generator done producing values
- Exception: most exceptions subclass from this!

• ZeroDivisionError, NameError, ValueError, IndexError
• Most exception handling is done for these exceptions

38D. Koop, CSCI 503/490, Fall 2024

Exception Hierarchy
• Except clauses match when error is an instance of specified exception class
• Remember isinstance matches objects of subclasses!
• try:
 c = a / b
except Exception:
 c = 0

• Can also have a bare except clause (matches any exception!)
• try:
 c, d = a / b
except:
 c, d = 0, 0

• …but DON'T do this!

39D. Koop, CSCI 503/490, Fall 2024

Exception Granularity
• If you catch any exception using a base class near the top of the hierarchy,

you may be masking code errors
• try:
 c, d = a / b
except Exception:
 c, d = 0, 0

• Remember Exception catches any exception is an instance of Exception
• Catches TypeError: cannot unpack non-iterable float object
• Better to have more granular (specific) exceptions!
• We don't want to catch the TypeError because this is a programming error

not a runtime error

40D. Koop, CSCI 503/490, Fall 2024

