
Programming Principles in Python (CSCI 503/490)

Object-Oriented Programming 

Dr. David Koop 

D. Koop, CSCI 503/490, Fall 2024



Classes and Instances in Python
• Class Definition: 

- class Vehicle: 
    def __init__(self, make, model, year, color): 
        self.make = make 
        self.model = model 
        self.year = year 
        self.color = color 
 
    def age(self): 
        return 2022 - self.year 

• Instances: 
- car1 = Vehicle('Toyota', 'Camry', 2000, 'red') 

- car2 = Vehicle('Dodge', 'Caravan', 2015, 'gray')

2D. Koop, CSCI 503/490, Fall 2024



Properties
• Properties allow transformations and checks but are accessed like attributes 
• getter and setter have same name, but different decorators 
• Decorators (@<decorator-name>) do some magic 
• @property 
def age(self): 
    return 2024 - self.year 

• @age.setter 
def age(self, age): 
    self.year = 2024 - age 

• Using property: 
- car1.age = 20

3D. Koop, CSCI 503/490, Fall 2024



Exercise
• Create Stack and Queue classes 
- Stack: last-in-first-out 
- Queue: first-in-first-out 

• Define constructor and push and pop methods for each

4D. Koop, CSCI 503/490, Fall 2024



Assignment 5
• Due next Monday 
• Same Food data as A3 
• Scripts, modules, packages 
• Command-line program

5D. Koop, CSCI 503/490, Fall 2024

https://faculty.cs.niu.edu/~dakoop/cs503-2024fa/assignment5.html


Quiz Wednesday
• Quiz on Object-Oriented Programming

6D. Koop, CSCI 503/490, Fall 2024



Class Attributes
• We can add class attributes inside the class indentation: 
• Access by prefixing with class name or self 

- class Vehicle: 
    CURRENT_YEAR = 2024 
    … 
    @age.setter 
    def age(self, age): 
        if age < 0 or age > Vehicle.CURRENT_YEAR - 1885: 
            print("Invalid age, will not set") 
        else: 
            self.year = self.CURRENT_YEAR - age 

• Constants should be CAPITALIZED 
• This is not a great constant! (EARLIEST_YEAR = 1885 would be!)

7D. Koop, CSCI 503/490, Fall 2024



Class and Static Methods
• Use @classmethod and @staticmethod decorators 
• Difference: class methods receive class as argument, static methods do not 
• class Square(Rectangle): 
    DEFAULT_SIDE = 10 
    … 
 
    @classmethod 
    def set_default_side(cls, s): 
        cls.DEFAULT_SIDE = s 
         
    @staticmethod 
    def set_default_side_static(s): 
        Square.DEFAULT_SIDE = s

8D. Koop, CSCI 503/490, Fall 2024



Class and Static Methods
• class Square(Rectangle): 
    DEFAULT_SIDE = 10 
     
    def __init__(self, side=None): 
        if side is None: 
            side = self.DEFAULT_SIDE 
        super().__init__(side, side) 
    … 

• Square.set_default_side(20) 
s2 = Square() 
s2.side # 20 

• Square.set_default_side_static(30) 
s3 = Square() 
s3.side # 30

9D. Koop, CSCI 503/490, Fall 2024



Inheritance
• Is-a relationship: Car is a Vehicle, Truck is a Vehicle 
• Make sure it isn't composition (has-a) relationship: Vehicle has wheels, 

Vehicle has a steering wheel 
• Subclass is specialization of base class (superclass) 
- Car is a subclass of Vehicle, Truck is a subclass of Vehicle 

• Can have an entire hierarchy of classes (e.g. Chevy Bolt is subclass of Car 
which is a subclass of Vehicle) 

• Single inheritance: only one base class 
• Multiple inheritance: allows more than base class 
- Many languages don't support, Python does

10D. Koop, CSCI 503/490, Fall 2024



Subclass
• Just put superclass(-es) in parentheses after the class declaration 
• class Car(Vehicle): 
    def __init__(self, make, model, year, color, num_doors): 
        super().__init__(make, model, year, color) 
        self.num_doors = num_doors 
 
    def open_door(self): 
        … 

• super() is a special method that locates the base class 
- Constructor should call superclass constructor, then initialize its own extra 

attributes 
- Instance methods can use super, too

11D. Koop, CSCI 503/490, Fall 2024



Instance Attribute Conventions in Python
• Remember, the naming is the convention 
• public: used anywhere 
• _protected: used in class and subclasses 
• __private: used only in the specific class 
• Note that double underscores induce name mangling to strongly discourage 

access in other entities

12D. Koop, CSCI 503/490, Fall 2024



Overriding Methods
• class Rectangle: 
    def __init__(self, height, 
                 width): 
        self.h = height 
        self.w = weight 
 
    def set_height(self, height): 
        self.h = height 
    def area(self): 
        return self.h * self.w 

• class Square(Rectangle): 
    def __init__(self, side): 
        super().__init__(side, side) 
 
    def set_height(self, height): 
        self.h = height 
        self.w = height 

• s = Square(4) 

• s.set_height(8) 

- Which method is called? 
- Polymorphism 
- Resolves according to inheritance 

hierarchy 
• s.area() # 64 

- If no method defined, goes up the 
inheritance hierarchy until found

13D. Koop, CSCI 503/490, Fall 2024



Class and Static Methods
• Use @classmethod and @staticmethod decorators 
• Difference: class methods receive class as argument, static methods do not 
• class Square(Rectangle): 
   DEFAULT_SIDE = 10 
   … 
 
    @classmethod 
    def set_default_side(cls, s): 
        cls.DEFAULT_SIDE = s 
         
    @staticmethod 
    def set_default_side_static(s): 
        Square.DEFAULT_SIDE = s

14D. Koop, CSCI 503/490, Fall 2024



Class and Static Methods
• class Square(Rectangle): 
    DEFAULT_SIDE = 10 
     
    def __init__(self, side=None): 
        if side is None: 
            side = self.DEFAULT_SIDE 
        super().__init__(side, side) 
    … 

• Square.set_default_side(20) 
s2 = Square() 
s2.side # 20 

• Square.set_default_side_static(30) 
s3 = Square() 
s3.side # 30

15D. Koop, CSCI 503/490, Fall 2024



Class and Static Methods
• class NewSquare(Square): 
    DEFAULT_SIDE = 100 

• NewSquare.set_default_side(200) 
s5 = NewSquare() 
s5.side # 200 

• NewSquare.set_default_side_static(300) 
s6 = NewSquare() 
s6.side # !!! 200 !!! 

• Why? 
- The static method sets Square.DEFAULT_SIDE not the 
NewSquare.DEFAULT_SIDE 

- self.DEFAULT_SIDE resolves to NewSquare.DEFAULT_SIDE

16D. Koop, CSCI 503/490, Fall 2024



Operator Overloading
• Dunder methods (__add__, __contains__, __len__) 
• Example: 

- class Square(Rectangle): 
    … 
    @property 
    def side(self): 
        return self.h 
    def __add__(self, right): 
        return Square(self.side + right.side) 
    def __repr__(self): 
        return f'{self.__class__.__name__}({self.side})' 
new_square = Square(8) + Square(4) 
new_square # Square(12)

17D. Koop, CSCI 503/490, Fall 2024



Operator Overloading Restrictions
• Precedence cannot be changed by overloading. However, parentheses can 

be used to force evaluation order in an expression. 
• The left-to-right or right-to-left grouping of an operator cannot be changed 
• The “arity” of an operator—that is, whether it’s a unary or binary operator—

cannot be changed. 
• You cannot create new operators—only overload existing operators  
• The meaning of how an operator works on objects of built-in types cannot be 

changed. You cannot change + so that it subtracts two integers 
• Works only with objects of custom classes or with a mixture of an object of a 

custom class and an object of a built-in type.

18

[Deitel & Deitel]
D. Koop, CSCI 503/490, Fall 2024



Left and Right Operands?
• class Square(Rectangle): 
    … 
    def __add__(self, right): 
        return Square(self.side + right) 
 
Square(8) + 4 # Square(12) 
4 + Square(8) # error 

• Solution: Use __radd__ and related operators 
• class Square(Rectangle): 
    … 
    def __radd__(self, left): 
        return Square(left + self.side) 
 
4 + Square(8) # Square (12)

19D. Koop, CSCI 503/490, Fall 2024



Ternary Operator
• In other languages: a = b < 5 ? b + 5 : b - 5 
• Means: if (b < 5) a = b + 5; else a = b - 5; 
• Kind of a weird construct, but can be a nice shortcut 
• Python does this differently: 
• <value> if <condition> else <value> 

• Python Example: a = b + 5 if b < 5 else b - 5 
• Reads so that the usual is listed first and the abnormal case is listed last 
• "Usually this, else default to this other" (cases are pushed apart)

20D. Koop, CSCI 503/490, Fall 2024



Checking type
• We can check the type of a Python object using the type method: 

- type(6) # int 

- type("abc") # str 

- s = Square(4) 

- type(s) # Square 

• Allows comparisons: 
- if type(s) == Square: 
    # … 

• But this is False: 
- if type(s) == Rectangle: 
    # …

21D. Koop, CSCI 503/490, Fall 2024



Checking InstanceOf/Inheritance
• How can we see if an object is an instance of a particular class or whether a 

particular class is a subclass of another? 
• Both check is-a relationship (but differently) 
• issubclass(cls1, cls2): checks if cls1 is-a (subclass of) cls2 
• isinstance(obj, cls): checks if obj is-a(n instance of) cls 
• Note that isinstance is True if obj is an instance of a class that is a 

subclass of cls 
- car = Car('Toyota','Camry', 2000, 'red', 4) 
isinstance(car, Vehicle) # True

22D. Koop, CSCI 503/490, Fall 2024



Exercise
• Create Stack and Queue classes 
- Stack: last-in-first-out 
- Queue: first-in-first-out 

• Define constructor and push and pop methods for each 
• How might we do this with inheritance?

23D. Koop, CSCI 503/490, Fall 2024


