
Programming Principles in Python (CSCI 503)

Files, Scripts, and Modules

Dr. David Koop

D. Koop, CSCI 503/490, Fall 2024

Format and f-Strings
• s.format: templating function
- Replace fields indicated by curly braces with corresponding values
- "My name is {} {}".format(first_name, last_name)

- "My name is {first_name} {last_name}.format(
 first_name=name[0], last_name=name[1])

• Formatted string literals (f-strings) reference variables directly!
- f"My name is {first_name} {last_name}"

• Can include expressions, too:
- f"My name is {name[0].capitalize()} {name[1].capitalize()}"

• Format mini-language allows specialized displays (alignment, numeric
formatting)

2D. Koop, CSCI 503/490, Fall 2024

https://docs.python.org/3/library/string.html#format-specification-mini-language

Regular Expressions
• AKA regex
• A syntax to better specify how to decompose strings
• Look for patterns rather than specific characters
• Metacharacters: . ^ $ * + ? { } [] \ | ()
- Repeat, one-of-these, optional

• Character Classes: \d (digit), \s (space), \w (word character), also \D, \S, \W
• Digits with slashes between them: \d+/\d+/\d+
• Usually use raw strings (no backslash plague): r'\d+/\d+/\d+'

3D. Koop, CSCI 503/490, Fall 2024

Regular Expression Examples
• s0 = "No full dates here, just 02/15"
s1 = "02/14/2021 is a date"
s2 = "Another date is 12/25/2020"
s3 = "April Fools' Day is 4/1/2021 & May the Fourth is 5/4/2021"

• re.match(r'\d+/\d+/\d+',s1) # returns match object

• re.match(r'\d+/\d+/\d+',s2) # None!

• re.search(r'\d+/\d+/\d+',s2) # returns 1 match object

• re.search(r'\d+/\d+/\d+',s3) # returns 1! match object

• re.findall(r'\d+/\d+/\d+',s3) # returns list of strings

• re.finditer(r'\d+/\d+/\d+',s3) # returns iterable of matches

4D. Koop, CSCI 503/490, Fall 2024

Substitution
• Do substitution in the middle of a string:
• re.sub(r'(\d+)/(\d+)/(\d+)',r'\3-\1-\2',s3)

• All matches are substituted
• First argument is the regular expression to match
• Second argument is the substitution
- \1, \2, … match up to the captured groups in the first argument

• Third argument is the string to perform substitution on
• Can also use a function:
• to_date = lambda m:
f'{m.group(3)}-{int(m.group(1)):02d}-{int(m.group(2)):02d}'
re.sub(r'(\d+)/(\d+)/(\d+)', to_date, s3)

5D. Koop, CSCI 503/490, Fall 2024

Assignment 4
• Assignment will cover strings and files
• Reading & writing data to files
• Deals with characters and formatting

6D. Koop, CSCI 503/490, Fall 2024

https://faculty.cs.niu.edu/~dakoop/cs503-2024fa/assignment4.html

Reading Files
• Use the open() method to open a file for reading

- f = open('huck-finn.txt')

• Usually, add an 'r' as the second parameter to indicate read (default)
• Can iterate through the file (think of the file as a collection of lines):

- f = open('huck-finn.txt', 'r')
for line in f:
 if 'Huckleberry' in line:
 print(line.strip())

• Using line.strip() because the read includes the newline, and print
writes a newline so we would have double-spaced text

• Closing the file: f.close()

7D. Koop, CSCI 503/490, Fall 2024

Remember Encodings (Unicode, ASCII)?
• Encoding: How things are actually stored
• ASCII "Extensions": how to represent characters for different languages
- No universal extension for 256 characters (one byte), so…
- ISO-8859-1, ISO-8859-2, CP-1252, etc.

• Unicode encoding:
- UTF-8: used in Python and elsewhere (uses variable # of 1—4 bytes)
- Also UTF-16 (2 or 4 bytes) and UTF-32 (4 bytes for everything)
- Byte Order Mark (BOM) for files to indicate endianness (which byte first)

8D. Koop, CSCI 503/490, Fall 2024

Encoding in Files
• all_lines = open('huck-finn.txt').readlines()
all_lines[0] # '\ufeff\n'

• \ufeff is the UTF Byte-Order-Mark (BOM)
• Optional for UTF-8, but if added, need to read it
• a = open('huck-finn.txt', encoding='utf-8-sig').readlines()
a[0] # '\n'

• No need to specify UTF-8 (or ascii since it is a subset)
• Other possible encodings:
- cp1252, utf-16, iso-8859-1

9D. Koop, CSCI 503/490, Fall 2024

Other Methods for Reading Files
• read(): read the entire file
• read(<num>): read <num> characters (bytes)

- open('huck-finn.txt', encoding='utf-8-sig').read(100)

• readlines(): read the entire file as a list of lines
- lines = open('huck-finn.txt', encoding='utf-8-sig').readlines()

10D. Koop, CSCI 503/490, Fall 2024

Reading a Text File
• Try to read a file at most once
• f = open('huck-finn.txt', 'r')
for i, line in enumerate(f):
 if 'Huckleberry' in line:
 print(line.strip())
for i, line in enumerate(f):
 if "George" in line:
 print(line.strip())

• Can't iterate twice!
• Best: do both checks when reading the file once
• Otherwise: either reopen the file or seek to beginning (f.seek(0))

11D. Koop, CSCI 503/490, Fall 2024

Parsing Files
• Dealing with different formats, determining more meaningful data from files
• txt: text file
• csv: comma-separated values
• json: JavaScript object notation
• Jupyter also has viewers for these formats
• Look to use libraries to help possible

- import json

- import csv

- import pandas

• Python also has pickle, but not used much anymore

12D. Koop, CSCI 503/490, Fall 2024

Comma-separated values (CSV) Format
• Comma is a field separator, newlines denote records

- a,b,c,d,message
1,2,3,4,hello
5,6,7,8,world
9,10,11,12,foo

• May have a header (a,b,c,d,message), but not required
• No type information: we do not know what the columns are (numbers,

strings, floating point, etc.)
- Default: just keep everything as a string
- Type inference: Figure out the type to make each column based on values

• What about commas in a value? → double quotes

13D. Koop, CSCI 503/490, Fall 2024

JavaScript Object Notation (JSON)
• A format for web data
• Looks very similar to python dictionaries and lists
• Example:

- {"name": "Wes",
 "places_lived": ["United States", "Spain", "Germany"],
 "pet": null,
 "siblings": [{"name": "Scott", "age": 25, "pet": "Zuko"},
 {"name": "Katie", "age": 33, "pet": "Cisco"}] }

• Only contains literals (no variables) but allows null
• Values: strings, arrays, dictionaries, numbers, booleans, or null
- Dictionary keys must be strings
- Quotation marks help differentiate string or numeric values

14D. Koop, CSCI 503/490, Fall 2024

Python csv module
• Help reading csv files using the csv module

- import csv
with open('persons_of_concern.csv', 'r') as f:
 for i in range(3): # skip first three lines
 next(f)
 reader = csv.reader(f)
 records = [r for r in reader] # r is a list

• or
- import csv
with open('persons_of_concern.csv', 'r') as f:
 for i in range(3): # skip first three lines
 next(f)
 reader = csv.DictReader(f)
 records = [r for r in reader] # r is a dict

15D. Koop, CSCI 503/490, Fall 2024

Writing Files
• outf = open("mydata.txt", "w")

• If you open an existing file for writing, you wipe out the file’s contents. If the
named file does not exist, a new one is created.

• Methods for writing to a file:
- print(<expressions>, file= outf)
- outf.write(<string>)

- outf.writelines(<list of strings>)

• If you use write, no newlines are added automatically
- Also, remember we can change print's ending: print(…, end=", ")

• Make sure you close the file! Otherwise, content may be lost (buffering)
• outf.close()

16D. Koop, CSCI 503/490, Fall 2024

With Statement: Improved File Handling
• With statement does "enter" and "exit" handling:
• In the previous example, we need to remember to call outf.close()
• Using a with statement, this is done automatically:

- with open('huck-finn.txt', 'r') as f:
 for line in f:
 if 'Huckleberry' in line:
 print(line.strip())

• This is important for writing files!
- with open('output.txt', 'w') as f:
 for k, v in counts.items():
 f.write(k + ': ' + v + '\n')

• Without with, we need f.close()

17D. Koop, CSCI 503/490, Fall 2024

Context Manager
• The with statement is used with contexts
• A context manager's enter method is called at the beginning
• …and exit method at the end, even if there is an exception!
• outf = open('huck-finn-lines.txt','w')
for i, line in enumerate(huckleberry):
 outf.write(line)
 if i > 3:
 raise Exception("Failure")

• with open('huck-finn-lines.txt','w') as outf:
 for i, line in enumerate(huckleberry):
 outf.write(line)
 if i > 3:
 raise Exception("Failure")

18D. Koop, CSCI 503/490, Fall 2024

Context Manager
• The with statement is used with contexts
• A context manager's enter method is called at the beginning
• …and exit method at the end, even if there is an exception!
• outf = open('huck-finn-lines.txt','w')
for i, line in enumerate(huckleberry):
 outf.write(line)
 if i > 3:
 raise Exception("Failure")

• with open('huck-finn-lines.txt','w') as outf:
 for i, line in enumerate(huckleberry):
 outf.write(line)
 if i > 3:
 raise Exception("Failure")

18D. Koop, CSCI 503/490, Fall 2024

Reading & Writing JSON data
• Python has a built-in json module

- with open('example.json') as f:
 data = json.load(f)

- with open('example-out.json', 'w') as f:
 json.dump(data, f)

• Can also load/dump to strings:
- json.loads, json.dumps

19D. Koop, CSCI 503/490, Fall 2024

20

Command-Line Interfaces

D. Koop, CSCI 503/490, Fall 2024

Command Line Interfaces (CLIs)
• Prompt:
- $
-

• Commands
- $ cat <filename>

- $ git init

• Arguments/Flags: (options)
- $ python -h

- $ head -n 5 <filename>

- $ git branch fix-parsing-bug

21D. Koop, CSCI 503/490, Fall 2024

Command Line Interfaces
• Many command-line tools work with stdin and stdout

- cat test.txt # writes test.txt's contents to stdout

- cat # reads from stdin and writes back to stdout

- cat > test.txt # writes user's text to test.txt

• Redirecting input and output:
- < use input from a file descriptor for stdin
- > writes output on stdout to another file descriptor
- | connects stdout of one command to stdin of another command
- cat < test.txt | cat > test-out.txt

22D. Koop, CSCI 503/490, Fall 2024

Python and CLIs
• Python can be used as a CLI program
- Interactive mode: start the REPL

• $ python

- Non-interactive mode:
• $ python -c <command>: Execute a command
• $ python -m <module>|<package>: Execute a module

• Python can be used to create CLI programs
- Scripts: python my_script.py
- True command-line tools: ./command-written-in-python

23D. Koop, CSCI 503/490, Fall 2024

Interactive Python in the Shell
• Starting Python from the shell

- $ python

• >>> is the Python interactive prompt
- >>> print("Hello, world")
Hello, world

- >>> print("2+3=", 2+3)
2+3= 5

• This is a REPL (Read, Evaluate, Print, Loop)

24D. Koop, CSCI 503/490, Fall 2024

Interactive Python in the Shell
• ... is the continuation prompt
• >>> for i in range(5):
... print(i)
...

• Still need to indent appropriately!
• Empty line indicates the suite (block) is finished
• This isn't always the easiest environment to edit in

25D. Koop, CSCI 503/490, Fall 2024

Ending an Interactive Session
• Ctrl-D ends the input stream
- Just as in other Unix programs

• Another way to get normal termination
- >>> quit()

• Ctrl-C interrupts operation
- Just as in other Unix programs

26D. Koop, CSCI 503/490, Fall 2024

Interactive Problems
• But standard interactive Python doesn’t save programs!
• IPython does have some magic commands to help

- %history: prints code
- %save: saves a file with code
- These are most useful outside the notebook, but you can type them in the

notebook, too
• However, it is nice to be able to edit code in files and run it, too

27D. Koop, CSCI 503/490, Fall 2024

Module Files
• A module file is a text file with the .py extension, usually name.py
• Python source on Unix is expected to be in UTF-8
• Can use any text editor to write or edit…
• …but an editor that understands Python's spacing and indentation helps!
• Contents looks basically the same as what you would write in the cell(s) of a

notebook
• There are also ways to write code in multiple files organized as a package,

will cover this later

28D. Koop, CSCI 503/490, Fall 2024

Scripts, Programs, and Libraries
• Often, interpreted ~ scripts and compiled code ~ programs/libraries
- Python does compile bytecode for modules that are imported

• Modifying this usual definition a bit
- Script: a one-off block of code meant to be run by itself, users edit the

code if they wish to make changes
- Program: code meant to be used in different situations, with parameters

and flags to allow users to customize execution without editing the code
- Library: code meant to be called from other scripts/programs

• In Python, can't always tell from the name what's expected, code can be
both a library and a program

29D. Koop, CSCI 503/490, Fall 2024

Program Execution
• Direct Unix execution of a program
- Add the hashbang (#!) line as the first line, two approaches
- #!/usr/bin/python

- #!/usr/bin/env python

- Sometimes specify python3 to make sure we're running Python 3
- File must be flagged as executable (chmod a+x) and have line endings
- Then you can say: $./filename.py arg1 ...

• Executing the Python compiler/interpreter
- $ python filename.py arg1 ...

• Same results either way

30D. Koop, CSCI 503/490, Fall 2024

Writing CLI Programs
• Command Line Interface Guidelines
- Accept flags/arguments
- Human-readable output
- Allow non-interactive use even if program can also be interactive
- Add help/usage statements
- Consider subcommand use for complex tools
- Use simple, memorable name
- …

31D. Koop, CSCI 503/490, Fall 2024

https://clig.dev

Accepting Command-Line Parameters
• Parameters are received as a list of strings entitled sys.argv
• Need to import sys first
• sys.argv[0] is the name of the program as executed
- Executing as ./hw01.py or hw01.py will be passed as different strings

• sys.argv[n] is the nth argument
• sys.executable is the python executable being run

32D. Koop, CSCI 503/490, Fall 2024

Using Parameters
• Test len(sys.argv) to make sure the correct number of parameters were

passed
• Everything in sys.argv is a string, often need to cast arguments:

- my_value = int(sys.argv[1])

• Guard against bad inputs
- Test before using or deal with errors
- Use isnumeric or catch the exception
- Printing help/usage statement on error can help users

33D. Koop, CSCI 503/490, Fall 2024

The main function
• Convention: create a function named main()
• Customary, but not required

- def main():
 print("Running the main function")

• Nothing happens in a script with this definition!

34D. Koop, CSCI 503/490, Fall 2024

The main function
• Convention: create a function named main()
• Customary, but not required

- def main():
 print("Running the main function")

• Nothing happens in a script with this definition!
• Need to call the function in our script!
• def main():
 print("Running the main function")
main() # now, we're calling main

35D. Koop, CSCI 503/490, Fall 2024

