
Programming Principles in Python (CSCI 503/490)

Strings & Files

Dr. David Koop

(some slides adapted from Dr. Reva Freedman)

D. Koop, CSCI 503/490, Fall 2024

Memoization
• memo_dict = {}
def memoized_slow_function(s, t):
 if (s, t) not in memo_dict:
 memo_dict[(s, t)] = compute_slow_function(s, t)
 return memo_dict[(s, t)]

• for s, t in [(12, 10), (4, 5), (5, 4), (12, 10)]:
 if s > t and (c := memoized_slow_function(s, t) > 50):
 pass
 else:
 c = compute_fast_function(s, t)

• Second time executing for s=12, t=10, we don't need to compute!
• Tradeoff memory for compute time

2D. Koop, CSCI 503/490, Fall 2024

Functional Programming
• Programming without imperative statements like assignment
• In addition to comprehensions & iterators, have functions:
- map: iterable of n values to an iterable of n transformed values
- filter: iterable of n values to an iterable of m (m <= n) values

• Eliminates need for concrete looping constructs

3D. Koop, CSCI 503/490, Fall 2024

Lambda Functions
• def is_even(x):
 return (x % 2) == 0

• filter(is_even, range(10) # generator

• Lots of code to write a simple check
• Lambda functions allow inline function definition
• Usually used for "one-liners": a simple data transform/expression
• filter(lambda x: x % 2 == 0, range(10))

• Parameters follow lambda, no parentheses
• No return keyword as this is implicit in the syntax
• JavaScript has similar functionality (arrow functions): (d => d % 2 == 0)

4D. Koop, CSCI 503/490, Fall 2024

Unicode and ASCII
• Conceptual systems
• ASCII:
- old, English-centric, 7-bit system (only 128 characters)

• Unicode:
- Can represent over 1 million characters from all languages + emoji 🎉
- Characters have hexadecimal representation: é = U+00E9 and

name (LATIN SMALL LETTER E WITH ACUTE)
- Python allows you to type "é" or represent via code "\u00e9"

• Codes: ord → character to integer, chr → integer to character

5D. Koop, CSCI 503/490, Fall 2024

Strings
• Objects with methods
• Finding and counting substrings: count, find, startswith
• Removing leading & trailing substrings/whitespace: strip, removeprefix
• Transforming Text: replace, upper, lower, title
• Checking String Composition: isalnum, isnumeric, isupper

6D. Koop, CSCI 503/490, Fall 2024

Assignment 4
• Assignment will cover strings and files
• Reading & writing data to files
• Deals with characters and formatting

7D. Koop, CSCI 503/490, Fall 2024

https://faculty.cs.niu.edu/~dakoop/cs503-2024fa/assignment4.html

Splitting
• s = "Venkata, Ranjit, Pankaj, Ali, Karthika"

• names = s.split(',') # names is a list

• names = s.split(',', 3) # split by commas, split <= 3 times
• separator may be multiple characters
• if no separator is supplied (sep=None), runs of consecutive whitespace

delimit elements
• rsplit works in reverse, from the right of the string
• partition and rpartition for a single split with before, sep, and after
• splitlines splits at line boundaries, optional parameter to keep endings

8D. Koop, CSCI 503/490, Fall 2024

Joining
• join is a method on the separator used to join a list of strings
• ','.join(names)

- names is a list of strings, ',' is the separator used to join them
• Example:

- def orbit(n):
 # …
 return orbit_as_list
print(','.join(orbit_as_list))

9D. Koop, CSCI 503/490, Fall 2024

Formatting
• s.ljust, s.rjust: justify strings by adding fill characters to obtain a string

with specified width
• s.zfill: ljust with zeroes
• s.format: templating function
- Replace fields indicated by curly braces with corresponding values
- "My name is {} {}".format(first_name, last_name)

- "My name is {1} {0}".format(last_name, first_name)

- "My name is {first_name} {last_name}.format(
 first_name=name[0], last_name=name[1])

- Braces can contain number or name of keyword argument
- Whole format mini-language to control formatting

10D. Koop, CSCI 503/490, Fall 2024

https://docs.python.org/3/library/string.html#format-specification-mini-language

Format Strings
• Formatted string literals (f-strings) prefix the starting delimiter with f
• Reference variables directly!

- f"My name is {first_name} {last_name}"

• Can include expressions, too:
- f"My name is {name[0].capitalize()} {name[1].capitalize()}"

• Same format mini-language is available

11D. Koop, CSCI 503/490, Fall 2024

https://docs.python.org/3/library/string.html#format-specification-mini-language

Format Mini-Language Presentation Types
• Not usually required for obvious types
• :d for integers
• :c for characters
• :s for strings
• :e or :f for floating point

- e: scientific notation (all but one digit after decimal point)
- f: fixed-point notation (decimal number)

12D. Koop, CSCI 503/490, Fall 2024

Field Widths and Alignments
• After : but before presentation type

- f'[{27:10d}]' # '[27]'

- f'[{"hello":10}]' # '[hello]'

• Shift alignment using < or >:
- f'[{"hello":>15}]' # '[hello]'

• Center align using ^:
- f'[{"hello":^7}]' # '[hello]'

13D. Koop, CSCI 503/490, Fall 2024

Numeric Formatting
• Add positive sign:

- f'[{27:+10d}]' # '[+27]'

• Add space but only show negative numbers:
- print(f'{27: d}\n{-27: d}') # note the space in front of 27

• Separators:
- f'{12345678:,d}' # '12,345,678'

14D. Koop, CSCI 503/490, Fall 2024

Raw Strings
• Raw strings prefix the starting delimiter with r
• Disallow escaped characters
• '\\n is the way you write a newline, \\\\ for \\.'

• r"\n is the way you write a newline, \\ for \."

• Useful for regular expressions

15D. Koop, CSCI 503/490, Fall 2024

Regular Expressions
• AKA regex
• A syntax to better specify how to decompose strings
• Look for patterns rather than specific characters
• "31" in "The last day of December is 12/31/2016."

• May work for some questions but now suppose I have other lines like: "The
last day of September is 9/30/2016."

• …and I want to find dates that look like:
• {digits}/{digits}/{digits}

• Cannot search for every combination!
• \d+/\d+/\d+ # \d is a character class

16D. Koop, CSCI 503/490, Fall 2024

Metacharacters
• Need to have some syntax to indicate things like repeat or one-of-these or

this is optional.
• . ^ $ * + ? { } [] \ | ()

• []: define character class
• ^: complement (opposite)
• \: escape, but now escapes metacharacters and references classes
• *: repeat zero or more times
• +: repeat one or more times
• ?: zero or one time
• {m,n}: at least m and at most n

17D. Koop, CSCI 503/490, Fall 2024

Predefined Character Classes

18

[Deitel & Deitel]
D. Koop, CSCI 503/490, Fall 2024

Character
class Matches

\d Any digit (0–9).
\D Any character that is not a digit.
\s Any whitespace character (such as spaces, tabs and newlines).
\S Any character that is not a whitespace character.
\w Any word character (also called an alphanumeric character)
\W Any character that is not a word character.

Performing Matches

19D. Koop, CSCI 503/490, Fall 2024

Method/Attribute Purpose

match() Determine if the RE matches at the beginning of
the string.

search() Scan through a string, looking for any location
where this RE matches.

findall() Find all substrings where the RE matches, and
returns them as a list.

finditer() Find all substrings where the RE matches, and
returns them as an iterator.

https://docs.python.org/3/glossary.html#term-iterator

Regular Expressions in Python
• import re

• re.match(<pattern>, <str_to_check>)

- Returns None if no match, information about the match otherwise
- Starts at the beginning of the string

• re.search(<pattern>, <str_to_check>)

- Finds single match anywhere in the string
• re.findall(<pattern>, <str_to_check>)

- Finds all matches in the string, search only finds the first match
• Can pass in flags to alter methods: e.g. re.IGNORECASE

20D. Koop, CSCI 503/490, Fall 2024

Examples
• s0 = "No full dates here, just 02/15"
s1 = "02/14/2021 is a date"
s2 = "Another date is 12/25/2020"

• re.match(r'\d+/\d+/\d+',s1) # returns match object

• re.match(r'\d+/\d+/\d+',s0) # None

• re.match(r'\d+/\d+/\d+',s2) # None!

• re.search(r'\d+/\d+/\d+',s2) # returns 1 match object

• re.search(r'\d+/\d+/\d+',s3) # returns 1! match object

• re.findall(r'\d+/\d+/\d+',s3) # returns list of strings

• re.finditer(r'\d+/\d+/\d+',s3) # returns iterable of matches

21D. Koop, CSCI 503/490, Fall 2024

Grouping
• Parentheses capture a group that can be accessed or used later
• Access via groups() or group(n) where n is the number of the group, but

numbering starts at 1
• Note: group(0) is the full matched string
• for match in re.finditer(r'(\d+)/(\d+)/(\d+)',s3):
 print(match.groups())

• for match in re.finditer(r'(\d+)/(\d+)/(\d+)',s3):
 print('{2}-{0:02d}-{1:02d}'.format(
 *[int(x) for x in match.groups()]))

• * operator expands a list into individual elements

22D. Koop, CSCI 503/490, Fall 2024

Modifying Strings

23D. Koop, CSCI 503/490, Fall 2024

Method/Attribute Purpose

split() Split the string into a list, splitting it wherever the
RE matches

sub() Find all substrings where the RE matches, and
replace them with a different string

subn() Does the same thing as sub(), but returns the new
string and the number of replacements

Substitution
• Do substitution in the middle of a string:
• re.sub(r'(\d+)/(\d+)/(\d+)',r'\3-\1-\2',s3)

• All matches are substituted
• First argument is the regular expression to match
• Second argument is the substitution
- \1, \2, … match up to the captured groups in the first argument

• Third argument is the string to perform substitution on
• Can also use a function:
• to_date = lambda m:
f'{m.group(3)}-{int(m.group(1)):02d}-{int(m.group(2)):02d}'
re.sub(r'(\d+)/(\d+)/(\d+)', to_date, s3)

24D. Koop, CSCI 503/490, Fall 2024

25

Files

D. Koop, CSCI 503/490, Fall 2024

Files
• A file is a sequence of data stored on disk.
• Python uses the standard Unix newline character (\n) to mark line breaks.
- On Windows, end of line is marked by \r\n, i.e., carriage return + newline.
- On old Macs, it was carriage return \r only.
- Python converts these to \n when reading.

26D. Koop, CSCI 503/490, Fall 2024

Opening a File
• Opening associates a file on disk with an object in memory (file object or file

handle).
• We access the file via the file object.
• <filevar> = open(<name>, <mode>)

• Mode 'r' = read or 'w' = write, 'a' = append
• read is default
• Also add 'b' to indicate the file should be opened in binary mode: 'rb','wb'

27D. Koop, CSCI 503/490, Fall 2024

Standard File Objects
• When Python begins, it associates three standard file objects:

- sys.stdin: for input
- sys.stdout: for output
- sys.stderr: for errors

• In the notebook
- sys.stdin isn't really used, get_input can be used if necessary
- sys.stdout is the output shown after the code
- sys.stderr is shown with a red background

28D. Koop, CSCI 503/490, Fall 2024

Files and Jupyter
• You can double-click a file to see its contents (and edit it manually)
• To see one as text, may need to right-click
• Shell commands also help show files in the notebook
• The ! character indicates a shell command is being called
• These will work for Linux and macos but not necessarily for Windows
• !cat <fname>: print the entire contents of <fname>
• !head -n <num> <fname>: print the first <num> lines of <fname>
• !tail -n <num> <fname>: print the last <num> lines of <fname>

29D. Koop, CSCI 503/490, Fall 2024

Reading Files
• Use the open() method to open a file for reading

- f = open('huck-finn.txt')

• Usually, add an 'r' as the second parameter to indicate read (default)
• Can iterate through the file (think of the file as a collection of lines):

- f = open('huck-finn.txt', 'r')
for line in f:
 if 'Huckleberry' in line:
 print(line.strip())

• Using line.strip() because the read includes the newline, and print
writes a newline so we would have double-spaced text

• Closing the file: f.close()

30D. Koop, CSCI 503/490, Fall 2024

