Programming Principles in Python (CSCI 503/490)

Strings
Dr. David Koop

(some slides adapted from Dr. Reva Freedman)

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University

|ist Comprehension

e output = []
for d 1n range(5):
output.append(d ** 2 - 1)

® Rewrite as a map:
- output = [d ** 2 - 1 for d 1n range(5)]

e Can also filter:
- output = [d for d 1n range(d5) 1£f d % 2 == 1]

e Combine map & filter:
- output = [d ** 2 - 1 for d in range(b) 1f d $ 2 == 1]

D. Koop, CSCI 503/490, Spring 2024 Northern Illinois University 2

Comprehensions for other collections

e Dictionaries

- {k: v for (k, v) 1n other dict.items ()
1f k.startswith('a') }

- Example: one-to-one map Inverses

e {v: k for (k, v) 1n other dict.items() }

* Be careful that the dictionary Is actually one-to-one!
® Sets:

- {s[0] for s 1n names}

e Tuples” Not exactly

- (s[0] for s 1n names)

- Not a tuple, a generator expression

D. Koop, CSCI 503/490, Spring 2024 Northern Illinois University 3

lteration

e An iterable must be be able to return an iterator (defines iter method)

e An iterator must have two things:
- a method to get the next item (defined next method)

- a way to signal no more elements (raises StopException)

e You can call iteration methods directly, but rarely done

- 1t = 1ter(my list)
first = next(i1t)

e iter asks for the iterator from the object

e next asks for the next element
e Usually just handled by loops, comprenhensions, or generators

D. Koop, CSCI 503/490, Spring 2024 Northern Illinois University 4

(Generators

e Special functions that return lazy iterables
¢ Use less memory
e Change is that functions yield instead of return

—

o def

square (1t) :
for 1 1n 1t:
vield 1*1

o [f we are Iterating through a generator, we hit the first yield and immediately
return that first computation

e (Generator expressions just shorthand (remember no tuple comprehensions)
- (i * 1 for 1 in [1,2,3,4,5])

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 5

Efficient Evaluation

e Only compute when necessary, not beforehand

o 4+ — compute Fast Function{s+—+)
——eompute—stow—tFunetiron{s—+8)
1f s > t and s**2 + t**2 > 100:

u compute fast function(s, t)
res = u / 100

else:
v = compute slow function(s, t)
res = v / 100

e slow function will not be executed unless the condition IS true

Northern Illinois University 6

D. Koop, CSCI 503/490, Fall 2024

Short-Circuit Evaluation

o Automatic, works left to right according to order of operations (and before or)
e \Works for and and or

® and:

- Ifany value Is False, Stop and return False
-a, b =2, 3
a > 3 and b < 5
® Or:

- If any value Is True, stop and return True

-a, b, ¢ =2, 3, 7
a > 3 or b < 5 o0or ¢ > 8

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 7

Short-Circuit Evaluation

e Back to our example

[—

e 1f s > t and compute slow function(s, t) > 50:

c = compute slow function (s, t)
else:
c = compute fast function(s, t)
e s, t =10, 12 compute slow functlon 1s never run
s, t =5, 4 compute slow functilion 1s run once
e s, t =12, 10 compute slow function 1s run twice

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 8

Short-Circuit Evaluation

e \Nalrus operator saves us one computation

e 1f s > t and (¢ := compute slow function(s, t) > 50):
pass
else:
C = 8 ** 2 L ** 2
e s, t =10, 12 compute slow function 1s never run
e s, t = 5, 4 compute slow function 1s run once
e s, t =12, 10 compute slow functilon 1s run once

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 9

What about multiple executions?

e for s, t in [(12, 10), (4, 5), (5, 4), (12, 10)]:
1f s > t and (¢ := compute slow function(s, t) > 50):
pass
else:

c = compute fast function(s, t)

e \What's the problem here”

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 10

What about multiple executions?

e for s, t in [(12, 10), (4, 5), (5, 4), (12, 10)]:
1f s > t and (¢ := compute slow function(s, t) > 50):
pass
else:

C = compute T

ast function(s, t)
e \What's the problem here”
e Executing the function for the same inputs twice!

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 11

Viemolization

e memo dict = {}
def memolzed slow function(s, t):
1f (s, t) not 1n memo dict:

memo dict[(s, t)] = compute slow function(s, t)

return memo dict([(s, t)]

e for s, t in [(12, 10), (4, 5), (5, 4), (12, 10)]:
1f s > t and (¢ := memoized slow function(s, t) > 50):
Pass
else:

c = compute fast function (s, t)

B

e Second time executing for s=12, t=10, we don't need to compute!
¢ [radeoff memory for compute time

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University =~ 12

Viemolization

e Heavily used In functional languages because there Is N0 assignment

e Cache (store) the results of a function call so that if called again, returns the
result without having to compute

o [f arguments of a function are hashable, fairly straightforward to do this for
any Python function by caching in a dictionary

* |n what contexts, might this be a bad idea”

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 13

Viemolization

e Heavily used In functional languages because there Is N0 assignment

e Cache (store) the results of a function call so that if called again, returns the
result without having to compute

o [f arguments of a function are hashable, fairly straightforward to do this for
any Python function by caching in a dictionary

* |n what contexts, might this be a bad idea”

- def memoize random 1nt (a, b):
1f (a,b) not 1n random cache:
random cachel (a,b)] = random.randint (a,b)

return random cache| (a,b)]

- When we want to rerun, e.g. random number generators

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 14

~unctional Programming

e Programming without imperative statements like assignment

¢ |n addition to comprehensions & iterators, have functions:
- map: iterable of n values to an iterable of n transformed values
- filter: iterable of n values to an iterable of m (m <= n) values

e Eliminates need for concrete looping constructs

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 15

Viap

e (Generator function (lazy evaluation)

e -irst argument is a function, second argument is the iterable

—

e def upper(s):
return s.upper ()

e map (upper, ['sentence', 'fragment'])

e Similar comprehension:

- [upper(s) for s 1n ['sentence',

e [his only calls upper once

—

1f word == "SENTENCE":
break

I

e for word 1n map (upper, ['sentence',

generator

fragment']] comprehension

fragment']) :

D. Koop, CSCI 503/490, Fall 2024

Northern Illinois University 16

Fllter

® Also a generator

—

e def 1s even (x):
return (x % 2) == 0

e fi1lter(1s even, range(1l0)) generator

e Similar comprehension:

- [d for d 1n range(10) 1f 1s even(d)] comprehension

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 17

| ambda Functions

—

e def 1s even(x):
return (X % 2) ==

e filter(1s even, range (10) generator

¢ | ots of code to write a simple check

e | ambda functions allow inline function definition

e Usually used for "one-liners": a simple data transform/expression

O

e filter(lambda x: x 5 2 == 0, range(10))

e Parameters follow lambda, ho parentheses
e NO return Keyword as this is implicit in the syntax
e Javascript has similar functionality (arrow functions): (d => d % 2 == 0)

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 18

CSAC Panel: Real Jobs In the Real World

e Provides an insight into jolbs from
ALUMNI

NIU alumni
ASSOCIATION

. , /RN \| ¢ Food Is Provided

COMPUTER
SCIENCE
ALUMNI

COUNCIL

Advice From Real Technology Professionals

TUESDAY, OCT. 1|5-7p.m.

Barsema Alumni & Visitors Center (Ballroom)

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University ~ 19

Assignment 3

e Use dictionaries, lists, and iteration to analyze foods and their ingredients
e Due Today
¢ Helps with test concepts

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 20

https://faculty.cs.niu.edu/~dakoop/cs503-2024fa/assignment3.html

lest 1

e This Wednesday, Oct. 2, 9:30-10:45am
¢ In-Class, paper/pen & pencill
e Covers material through this week
e Format:
- Multiple Choice
- Free Response
- Extra Page for CSCI 503 Students
® |nfo on the course webpage

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 21

https://faculty.cs.niu.edu/~dakoop/cs503-2024fa/test1.html

Exercise: Count Letters

e \\Vrite code to take a string and return the count of each letter that occurs in a
dictionary

e count letters('i1llinois')
returns {'2': 3, '1': 2, 'n': 1, 'o': 1, 's': 1}

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University =~ 22

Exercise: Count Letters

o def count letters(s):
d = {}
for ¢ 1n s:
1f ¢ not 1in d:
dic] = 1
else:
dic] +=1
return d
count letters('i1llinois')

Northern Illinois University 23

D. Koop, CSCI 503/490, Fall 2024

Exercise: Count Letters

—

o def count letters(s):
d = {}
for ¢ 1n s:
dlc] =
return d
count letters('l1llinois')

d.get(c, 0) + 1

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University =~ 24

Exercise: Count Letters (using collections)

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University =~ 25

Exercise: Count Letters (using collections)

e from collections i1mport defaultdict
def count letters(s):
d = defaultdict (int)
for ¢ 1n s:
dic] += 1
return d
count letters('l1llinois')

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University =~ 25

Exercise: Count Letters (using collections)

e from collections i1mport defaultdict
def count letters(s):

d = defaultdict (int)
for ¢ 1n s:

dic] += 1
return d

count letters('l1llinois')

e from collections i1mport Counter
def count letters(s):
return Counter (s)

count letters('illinois')

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University =~ 25

Strings

e Remember strings are sequences of characters
e Strings are collections so have 1en, in, and iteration

- s = "Huskiesg"
len(s); "usk" 1n s; |[c for ¢ 1n s 1f ¢ == 's']

e Strings are sequences so have
- Indexing and slicing: s[0], s[1:]
- concatenation and repetition: s + " at NIU"; s * 2

e Single or double quotes 'stringl', "string2"
e [riple double-quotes: """A string over many lines"""
e Escaped characters: '\n' (newline) '\t (tab)

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University = 26

Unicode and ASCI|

e Conceptual systems

o ASCII:
- old 7-bit system (only 128 characters)

- English-centric
e Unicode:
- modern system
- Can represent over 1 million characters from all languages + emoji £+

- Characters have hexadecimal representation: € = U+00E9 and
name (LATIN SMALL LETTER E WITH ACUTE)

- Python allows you to type "é" or represent via code "\u00e9"

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University =~ 27

Unicode and ASCI|

e Encoding: How things are actually stored
o ASCII "Extensions”: how to represent characters for different languages
- No universal extension for 256 characters (one byte), so...
- 1S0O-8859-1, 1S0O-8859-2, CP-1252, etc.
e Unicode encoding:
- UTF-8: used in Python and elsewhere (uses variable # of 1 —4 bytes)
- Also UTF-16 (2 or 4 bytes) and UTF-32 (4 bytes for everything)
- Byte Order Mark (BOM) for files to indicate endianness (which byte first)

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 28

Codes

e Characters are still stored as bits and thus can be represented by numbers
- ord — character to integer

- chr — Integer to character
- "\N{horse}": named emo]l

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University =~ 29

Strings are Objects with Methods

e \Ve can call methods on strings like we can with lists

—

- s = "Peter Pilper picked a peck of pickled peppers"
s.count ('p')

e Doesn't matter iIf we have a variable or a literal

—

- "Peter Pilper picked a peck of pickled peppers".find("pick™")

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 30

Finding & Counting Substrings

S

S

.count (sub): Count the number of occurrences of sub IN s

.find (sub): FInd the first position where sub occurs in s, else -1

.rfind (sub): Like £ind, but returns the right-most position

.index (sub) : Like £ind, but raises a Valuekrror if not found

.rindex (sub): LiIke index, but returns right-most position

sub in s: Returns True If s contains sub

S

S

.startswith (sub): Returns True If s starts with sub
.endswith (sub): Returns True If s ends with sub

D. Koop, CSCI 503/490, Fall 2024

Northern Illinois University 31

Removing Leading and Trailing Strings

e s.strip(): Copy of s with leading and trailing whitespace removed

e s.1strip (): Copy of s with leading whitespace removed
e s.rstrip (): Copy of s with trailing whitespace removed

* s.removeprefix (prefix): CGopy of s with prefix removed (if it exists)

* s.removesuffix (suffix): Copy of s with suffix removed (If it exists)

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 32

Transtorming lext

® s.replace(oldsub, newsub):.
Copy of s with occurrences of oldsub IN s With newsub

e s.upper (): Copy of s with all uppercase characters

e s.lower (): Copy of s with all lowercase characters

e s.capitalize (): Copy of s with first character capitalized

e s.title (): Copy of s with first character of each word capitalized

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 33

Checking String Composition

String Method

1salnum ()

Returns True if the string contains only alphanumeric characters (i.e., digits & letters).

Description

1salpha ()

Returns

rue If the string contains only alphabetic characters (i.e., letters).

1sdecimal ()

Returns True if the string contains only decimal integer characters

1sdigit ()

Returns True if the string contains only digits (e.g., ‘0", "1°, 2.

1sidentifier ()

Returns True if the string represents a valid identifier.

1slower ()

Returns True if all alphabetic characters in the string are lowercase characters

1snumeric ()

Returns True if the characters in the string represent a numeric value w/o a + or - or .

1sspace ()

Returns True if the string contains only whitespace characters.

1stitle ()

Returns True if the first character of each word is the only uppercase character in It.

1supper ()

Returns True if all alphalbetic characters in the string are uppercase characters

[Deitel & Deitel]

D. Koop, CSCI 503/490, Fall 2024

Northern Illinois University 34

